Properties

Label 325.3.g.b.99.1
Level $325$
Weight $3$
Character 325.99
Analytic conductor $8.856$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [325,3,Mod(99,325)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("325.99"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(325, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 325.g (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,4,0,0,0,-16,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.85560859171\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 13)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 99.1
Root \(-1.58114 + 1.58114i\) of defining polynomial
Character \(\chi\) \(=\) 325.99
Dual form 325.3.g.b.174.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.581139 + 0.581139i) q^{2} +4.16228i q^{3} +3.32456i q^{4} +(-2.41886 - 2.41886i) q^{6} +(-4.58114 - 4.58114i) q^{7} +(-4.25658 - 4.25658i) q^{8} -8.32456 q^{9} +(5.32456 - 5.32456i) q^{11} -13.8377 q^{12} +(-11.5811 + 5.90569i) q^{13} +5.32456 q^{14} -8.35089 q^{16} -21.9737 q^{17} +(4.83772 - 4.83772i) q^{18} +(-3.16228 - 3.16228i) q^{19} +(19.0680 - 19.0680i) q^{21} +6.18861i q^{22} +8.51317 q^{23} +(17.7171 - 17.7171i) q^{24} +(3.29822 - 10.1623i) q^{26} +2.81139i q^{27} +(15.2302 - 15.2302i) q^{28} +5.81139 q^{29} +(0.513167 + 0.513167i) q^{31} +(21.8794 - 21.8794i) q^{32} +(22.1623 + 22.1623i) q^{33} +(12.7698 - 12.7698i) q^{34} -27.6754i q^{36} +(24.2302 + 24.2302i) q^{37} +3.67544 q^{38} +(-24.5811 - 48.2039i) q^{39} +(4.83772 + 4.83772i) q^{41} +22.1623i q^{42} -30.4868 q^{43} +(17.7018 + 17.7018i) q^{44} +(-4.94733 + 4.94733i) q^{46} +(-37.3662 - 37.3662i) q^{47} -34.7587i q^{48} -7.02633i q^{49} -91.4605i q^{51} +(-19.6338 - 38.5021i) q^{52} +35.8114i q^{53} +(-1.63381 - 1.63381i) q^{54} +39.0000i q^{56} +(13.1623 - 13.1623i) q^{57} +(-3.37722 + 3.37722i) q^{58} +(-58.2719 + 58.2719i) q^{59} -80.3246 q^{61} -0.596443 q^{62} +(38.1359 + 38.1359i) q^{63} -7.97367i q^{64} -25.7587 q^{66} +(-39.0833 + 39.0833i) q^{67} -73.0527i q^{68} +35.4342i q^{69} +(91.5548 + 91.5548i) q^{71} +(35.4342 + 35.4342i) q^{72} +(-31.6228 - 31.6228i) q^{73} -28.1623 q^{74} +(10.5132 - 10.5132i) q^{76} -48.7851 q^{77} +(42.2982 + 13.7281i) q^{78} +18.7851 q^{79} -86.6228 q^{81} -5.62278 q^{82} +(-44.6228 + 44.6228i) q^{83} +(63.3925 + 63.3925i) q^{84} +(17.7171 - 17.7171i) q^{86} +24.1886i q^{87} -45.3288 q^{88} +(-8.89039 + 8.89039i) q^{89} +(80.1096 + 26.0000i) q^{91} +28.3025i q^{92} +(-2.13594 + 2.13594i) q^{93} +43.4299 q^{94} +(91.0680 + 91.0680i) q^{96} +(121.355 - 121.355i) q^{97} +(4.08328 + 4.08328i) q^{98} +(-44.3246 + 44.3246i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} - 16 q^{6} - 12 q^{7} - 36 q^{8} - 8 q^{9} - 4 q^{11} - 68 q^{12} - 40 q^{13} - 4 q^{14} - 84 q^{16} - 12 q^{17} + 32 q^{18} + 32 q^{21} + 72 q^{23} - 24 q^{24} - 88 q^{26} + 4 q^{28} - 40 q^{29}+ \cdots - 152 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/325\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.581139 + 0.581139i −0.290569 + 0.290569i −0.837305 0.546736i \(-0.815870\pi\)
0.546736 + 0.837305i \(0.315870\pi\)
\(3\) 4.16228i 1.38743i 0.720252 + 0.693713i \(0.244026\pi\)
−0.720252 + 0.693713i \(0.755974\pi\)
\(4\) 3.32456i 0.831139i
\(5\) 0 0
\(6\) −2.41886 2.41886i −0.403144 0.403144i
\(7\) −4.58114 4.58114i −0.654448 0.654448i 0.299613 0.954061i \(-0.403143\pi\)
−0.954061 + 0.299613i \(0.903143\pi\)
\(8\) −4.25658 4.25658i −0.532073 0.532073i
\(9\) −8.32456 −0.924951
\(10\) 0 0
\(11\) 5.32456 5.32456i 0.484050 0.484050i −0.422372 0.906423i \(-0.638802\pi\)
0.906423 + 0.422372i \(0.138802\pi\)
\(12\) −13.8377 −1.15314
\(13\) −11.5811 + 5.90569i −0.890857 + 0.454284i
\(14\) 5.32456 0.380325
\(15\) 0 0
\(16\) −8.35089 −0.521931
\(17\) −21.9737 −1.29257 −0.646284 0.763097i \(-0.723678\pi\)
−0.646284 + 0.763097i \(0.723678\pi\)
\(18\) 4.83772 4.83772i 0.268762 0.268762i
\(19\) −3.16228 3.16228i −0.166436 0.166436i 0.618975 0.785411i \(-0.287548\pi\)
−0.785411 + 0.618975i \(0.787548\pi\)
\(20\) 0 0
\(21\) 19.0680 19.0680i 0.907999 0.907999i
\(22\) 6.18861i 0.281301i
\(23\) 8.51317 0.370138 0.185069 0.982726i \(-0.440749\pi\)
0.185069 + 0.982726i \(0.440749\pi\)
\(24\) 17.7171 17.7171i 0.738212 0.738212i
\(25\) 0 0
\(26\) 3.29822 10.1623i 0.126855 0.390857i
\(27\) 2.81139i 0.104125i
\(28\) 15.2302 15.2302i 0.543937 0.543937i
\(29\) 5.81139 0.200393 0.100196 0.994968i \(-0.468053\pi\)
0.100196 + 0.994968i \(0.468053\pi\)
\(30\) 0 0
\(31\) 0.513167 + 0.513167i 0.0165538 + 0.0165538i 0.715335 0.698781i \(-0.246274\pi\)
−0.698781 + 0.715335i \(0.746274\pi\)
\(32\) 21.8794 21.8794i 0.683730 0.683730i
\(33\) 22.1623 + 22.1623i 0.671584 + 0.671584i
\(34\) 12.7698 12.7698i 0.375581 0.375581i
\(35\) 0 0
\(36\) 27.6754i 0.768762i
\(37\) 24.2302 + 24.2302i 0.654872 + 0.654872i 0.954162 0.299290i \(-0.0967499\pi\)
−0.299290 + 0.954162i \(0.596750\pi\)
\(38\) 3.67544 0.0967222
\(39\) −24.5811 48.2039i −0.630286 1.23600i
\(40\) 0 0
\(41\) 4.83772 + 4.83772i 0.117993 + 0.117993i 0.763638 0.645645i \(-0.223411\pi\)
−0.645645 + 0.763638i \(0.723411\pi\)
\(42\) 22.1623i 0.527673i
\(43\) −30.4868 −0.708996 −0.354498 0.935057i \(-0.615348\pi\)
−0.354498 + 0.935057i \(0.615348\pi\)
\(44\) 17.7018 + 17.7018i 0.402313 + 0.402313i
\(45\) 0 0
\(46\) −4.94733 + 4.94733i −0.107551 + 0.107551i
\(47\) −37.3662 37.3662i −0.795025 0.795025i 0.187281 0.982306i \(-0.440033\pi\)
−0.982306 + 0.187281i \(0.940033\pi\)
\(48\) 34.7587i 0.724140i
\(49\) 7.02633i 0.143395i
\(50\) 0 0
\(51\) 91.4605i 1.79334i
\(52\) −19.6338 38.5021i −0.377573 0.740426i
\(53\) 35.8114i 0.675687i 0.941202 + 0.337843i \(0.109697\pi\)
−0.941202 + 0.337843i \(0.890303\pi\)
\(54\) −1.63381 1.63381i −0.0302557 0.0302557i
\(55\) 0 0
\(56\) 39.0000i 0.696429i
\(57\) 13.1623 13.1623i 0.230917 0.230917i
\(58\) −3.37722 + 3.37722i −0.0582280 + 0.0582280i
\(59\) −58.2719 + 58.2719i −0.987659 + 0.987659i −0.999925 0.0122657i \(-0.996096\pi\)
0.0122657 + 0.999925i \(0.496096\pi\)
\(60\) 0 0
\(61\) −80.3246 −1.31680 −0.658398 0.752670i \(-0.728766\pi\)
−0.658398 + 0.752670i \(0.728766\pi\)
\(62\) −0.596443 −0.00962004
\(63\) 38.1359 + 38.1359i 0.605332 + 0.605332i
\(64\) 7.97367i 0.124589i
\(65\) 0 0
\(66\) −25.7587 −0.390284
\(67\) −39.0833 + 39.0833i −0.583332 + 0.583332i −0.935817 0.352485i \(-0.885337\pi\)
0.352485 + 0.935817i \(0.385337\pi\)
\(68\) 73.0527i 1.07430i
\(69\) 35.4342i 0.513539i
\(70\) 0 0
\(71\) 91.5548 + 91.5548i 1.28950 + 1.28950i 0.935088 + 0.354417i \(0.115321\pi\)
0.354417 + 0.935088i \(0.384679\pi\)
\(72\) 35.4342 + 35.4342i 0.492141 + 0.492141i
\(73\) −31.6228 31.6228i −0.433189 0.433189i 0.456523 0.889712i \(-0.349095\pi\)
−0.889712 + 0.456523i \(0.849095\pi\)
\(74\) −28.1623 −0.380571
\(75\) 0 0
\(76\) 10.5132 10.5132i 0.138331 0.138331i
\(77\) −48.7851 −0.633572
\(78\) 42.2982 + 13.7281i 0.542285 + 0.176001i
\(79\) 18.7851 0.237785 0.118893 0.992907i \(-0.462066\pi\)
0.118893 + 0.992907i \(0.462066\pi\)
\(80\) 0 0
\(81\) −86.6228 −1.06942
\(82\) −5.62278 −0.0685704
\(83\) −44.6228 + 44.6228i −0.537624 + 0.537624i −0.922830 0.385207i \(-0.874130\pi\)
0.385207 + 0.922830i \(0.374130\pi\)
\(84\) 63.3925 + 63.3925i 0.754673 + 0.754673i
\(85\) 0 0
\(86\) 17.7171 17.7171i 0.206013 0.206013i
\(87\) 24.1886i 0.278030i
\(88\) −45.3288 −0.515100
\(89\) −8.89039 + 8.89039i −0.0998920 + 0.0998920i −0.755287 0.655395i \(-0.772502\pi\)
0.655395 + 0.755287i \(0.272502\pi\)
\(90\) 0 0
\(91\) 80.1096 + 26.0000i 0.880325 + 0.285714i
\(92\) 28.3025i 0.307636i
\(93\) −2.13594 + 2.13594i −0.0229671 + 0.0229671i
\(94\) 43.4299 0.462020
\(95\) 0 0
\(96\) 91.0680 + 91.0680i 0.948625 + 0.948625i
\(97\) 121.355 121.355i 1.25108 1.25108i 0.295850 0.955235i \(-0.404397\pi\)
0.955235 0.295850i \(-0.0956027\pi\)
\(98\) 4.08328 + 4.08328i 0.0416661 + 0.0416661i
\(99\) −44.3246 + 44.3246i −0.447723 + 0.447723i
\(100\) 0 0
\(101\) 104.921i 1.03882i 0.854525 + 0.519411i \(0.173849\pi\)
−0.854525 + 0.519411i \(0.826151\pi\)
\(102\) 53.1512 + 53.1512i 0.521091 + 0.521091i
\(103\) −35.4342 −0.344021 −0.172011 0.985095i \(-0.555026\pi\)
−0.172011 + 0.985095i \(0.555026\pi\)
\(104\) 74.4342 + 24.1580i 0.715713 + 0.232289i
\(105\) 0 0
\(106\) −20.8114 20.8114i −0.196334 0.196334i
\(107\) 4.42989i 0.0414009i −0.999786 0.0207004i \(-0.993410\pi\)
0.999786 0.0207004i \(-0.00658962\pi\)
\(108\) −9.34662 −0.0865427
\(109\) −120.774 120.774i −1.10802 1.10802i −0.993411 0.114608i \(-0.963439\pi\)
−0.114608 0.993411i \(-0.536561\pi\)
\(110\) 0 0
\(111\) −100.853 + 100.853i −0.908586 + 0.908586i
\(112\) 38.2566 + 38.2566i 0.341577 + 0.341577i
\(113\) 68.5438i 0.606582i −0.952898 0.303291i \(-0.901915\pi\)
0.952898 0.303291i \(-0.0980854\pi\)
\(114\) 15.2982i 0.134195i
\(115\) 0 0
\(116\) 19.3203i 0.166554i
\(117\) 96.4078 49.1623i 0.823999 0.420190i
\(118\) 67.7281i 0.573967i
\(119\) 100.664 + 100.664i 0.845919 + 0.845919i
\(120\) 0 0
\(121\) 64.2982i 0.531390i
\(122\) 46.6797 46.6797i 0.382621 0.382621i
\(123\) −20.1359 + 20.1359i −0.163707 + 0.163707i
\(124\) −1.70605 + 1.70605i −0.0137585 + 0.0137585i
\(125\) 0 0
\(126\) −44.3246 −0.351782
\(127\) 101.162 0.796553 0.398277 0.917265i \(-0.369608\pi\)
0.398277 + 0.917265i \(0.369608\pi\)
\(128\) 92.1512 + 92.1512i 0.719932 + 0.719932i
\(129\) 126.895i 0.983680i
\(130\) 0 0
\(131\) −257.732 −1.96742 −0.983711 0.179755i \(-0.942469\pi\)
−0.983711 + 0.179755i \(0.942469\pi\)
\(132\) −73.6797 + 73.6797i −0.558180 + 0.558180i
\(133\) 28.9737i 0.217847i
\(134\) 45.4256i 0.338997i
\(135\) 0 0
\(136\) 93.5327 + 93.5327i 0.687741 + 0.687741i
\(137\) 175.272 + 175.272i 1.27936 + 1.27936i 0.941028 + 0.338329i \(0.109862\pi\)
0.338329 + 0.941028i \(0.390138\pi\)
\(138\) −20.5922 20.5922i −0.149219 0.149219i
\(139\) −135.460 −0.974536 −0.487268 0.873252i \(-0.662007\pi\)
−0.487268 + 0.873252i \(0.662007\pi\)
\(140\) 0 0
\(141\) 155.528 155.528i 1.10304 1.10304i
\(142\) −106.412 −0.749381
\(143\) −30.2192 + 93.1096i −0.211323 + 0.651116i
\(144\) 69.5174 0.482760
\(145\) 0 0
\(146\) 36.7544 0.251743
\(147\) 29.2456 0.198949
\(148\) −80.5548 + 80.5548i −0.544289 + 0.544289i
\(149\) −36.2192 36.2192i −0.243082 0.243082i 0.575042 0.818124i \(-0.304986\pi\)
−0.818124 + 0.575042i \(0.804986\pi\)
\(150\) 0 0
\(151\) −75.1776 + 75.1776i −0.497865 + 0.497865i −0.910773 0.412908i \(-0.864513\pi\)
0.412908 + 0.910773i \(0.364513\pi\)
\(152\) 26.9210i 0.177112i
\(153\) 182.921 1.19556
\(154\) 28.3509 28.3509i 0.184097 0.184097i
\(155\) 0 0
\(156\) 160.257 81.7214i 1.02729 0.523855i
\(157\) 55.4562i 0.353224i 0.984281 + 0.176612i \(0.0565138\pi\)
−0.984281 + 0.176612i \(0.943486\pi\)
\(158\) −10.9167 + 10.9167i −0.0690932 + 0.0690932i
\(159\) −149.057 −0.937465
\(160\) 0 0
\(161\) −39.0000 39.0000i −0.242236 0.242236i
\(162\) 50.3399 50.3399i 0.310740 0.310740i
\(163\) 45.4605 + 45.4605i 0.278899 + 0.278899i 0.832669 0.553771i \(-0.186812\pi\)
−0.553771 + 0.832669i \(0.686812\pi\)
\(164\) −16.0833 + 16.0833i −0.0980688 + 0.0980688i
\(165\) 0 0
\(166\) 51.8641i 0.312434i
\(167\) −137.215 137.215i −0.821646 0.821646i 0.164698 0.986344i \(-0.447335\pi\)
−0.986344 + 0.164698i \(0.947335\pi\)
\(168\) −162.329 −0.966243
\(169\) 99.2456 136.789i 0.587252 0.809404i
\(170\) 0 0
\(171\) 26.3246 + 26.3246i 0.153945 + 0.153945i
\(172\) 101.355i 0.589274i
\(173\) 79.3815 0.458853 0.229426 0.973326i \(-0.426315\pi\)
0.229426 + 0.973326i \(0.426315\pi\)
\(174\) −14.0569 14.0569i −0.0807870 0.0807870i
\(175\) 0 0
\(176\) −44.4648 + 44.4648i −0.252641 + 0.252641i
\(177\) −242.544 242.544i −1.37030 1.37030i
\(178\) 10.3331i 0.0580511i
\(179\) 318.329i 1.77837i 0.457545 + 0.889187i \(0.348729\pi\)
−0.457545 + 0.889187i \(0.651271\pi\)
\(180\) 0 0
\(181\) 238.144i 1.31572i −0.753142 0.657858i \(-0.771463\pi\)
0.753142 0.657858i \(-0.228537\pi\)
\(182\) −61.6644 + 31.4452i −0.338815 + 0.172776i
\(183\) 334.333i 1.82696i
\(184\) −36.2370 36.2370i −0.196940 0.196940i
\(185\) 0 0
\(186\) 2.48256i 0.0133471i
\(187\) −117.000 + 117.000i −0.625668 + 0.625668i
\(188\) 124.226 124.226i 0.660776 0.660776i
\(189\) 12.8794 12.8794i 0.0681448 0.0681448i
\(190\) 0 0
\(191\) −3.70605 −0.0194034 −0.00970171 0.999953i \(-0.503088\pi\)
−0.00970171 + 0.999953i \(0.503088\pi\)
\(192\) 33.1886 0.172857
\(193\) −43.1359 43.1359i −0.223502 0.223502i 0.586469 0.809972i \(-0.300517\pi\)
−0.809972 + 0.586469i \(0.800517\pi\)
\(194\) 141.048i 0.727054i
\(195\) 0 0
\(196\) 23.3594 0.119181
\(197\) −126.094 + 126.094i −0.640073 + 0.640073i −0.950573 0.310501i \(-0.899503\pi\)
0.310501 + 0.950573i \(0.399503\pi\)
\(198\) 51.5174i 0.260189i
\(199\) 152.241i 0.765032i 0.923949 + 0.382516i \(0.124942\pi\)
−0.923949 + 0.382516i \(0.875058\pi\)
\(200\) 0 0
\(201\) −162.675 162.675i −0.809331 0.809331i
\(202\) −60.9737 60.9737i −0.301850 0.301850i
\(203\) −26.6228 26.6228i −0.131147 0.131147i
\(204\) 304.065 1.49052
\(205\) 0 0
\(206\) 20.5922 20.5922i 0.0999620 0.0999620i
\(207\) −70.8683 −0.342359
\(208\) 96.7128 49.3178i 0.464965 0.237105i
\(209\) −33.6754 −0.161127
\(210\) 0 0
\(211\) −47.5744 −0.225471 −0.112736 0.993625i \(-0.535961\pi\)
−0.112736 + 0.993625i \(0.535961\pi\)
\(212\) −119.057 −0.561589
\(213\) −381.077 + 381.077i −1.78909 + 1.78909i
\(214\) 2.57438 + 2.57438i 0.0120298 + 0.0120298i
\(215\) 0 0
\(216\) 11.9669 11.9669i 0.0554024 0.0554024i
\(217\) 4.70178i 0.0216672i
\(218\) 140.373 0.643913
\(219\) 131.623 131.623i 0.601017 0.601017i
\(220\) 0 0
\(221\) 254.480 129.770i 1.15149 0.587193i
\(222\) 117.219i 0.528015i
\(223\) −38.2260 + 38.2260i −0.171417 + 0.171417i −0.787602 0.616185i \(-0.788677\pi\)
0.616185 + 0.787602i \(0.288677\pi\)
\(224\) −200.465 −0.894932
\(225\) 0 0
\(226\) 39.8334 + 39.8334i 0.176254 + 0.176254i
\(227\) −44.7324 + 44.7324i −0.197059 + 0.197059i −0.798738 0.601679i \(-0.794499\pi\)
0.601679 + 0.798738i \(0.294499\pi\)
\(228\) 43.7587 + 43.7587i 0.191924 + 0.191924i
\(229\) 167.634 167.634i 0.732025 0.732025i −0.238995 0.971021i \(-0.576818\pi\)
0.971021 + 0.238995i \(0.0768181\pi\)
\(230\) 0 0
\(231\) 203.057i 0.879034i
\(232\) −24.7367 24.7367i −0.106624 0.106624i
\(233\) 292.789 1.25661 0.628303 0.777969i \(-0.283750\pi\)
0.628303 + 0.777969i \(0.283750\pi\)
\(234\) −27.4562 + 84.5964i −0.117334 + 0.361523i
\(235\) 0 0
\(236\) −193.728 193.728i −0.820882 0.820882i
\(237\) 78.1886i 0.329910i
\(238\) −117.000 −0.491597
\(239\) −0.0153037 0.0153037i −6.40324e−5 6.40324e-5i 0.707075 0.707139i \(-0.250014\pi\)
−0.707139 + 0.707075i \(0.750014\pi\)
\(240\) 0 0
\(241\) 240.197 240.197i 0.996669 0.996669i −0.00332576 0.999994i \(-0.501059\pi\)
0.999994 + 0.00332576i \(0.00105862\pi\)
\(242\) −37.3662 37.3662i −0.154406 0.154406i
\(243\) 335.246i 1.37961i
\(244\) 267.043i 1.09444i
\(245\) 0 0
\(246\) 23.4036i 0.0951364i
\(247\) 55.2982 + 17.9473i 0.223879 + 0.0726613i
\(248\) 4.36868i 0.0176156i
\(249\) −185.732 185.732i −0.745913 0.745913i
\(250\) 0 0
\(251\) 131.842i 0.525267i 0.964896 + 0.262633i \(0.0845910\pi\)
−0.964896 + 0.262633i \(0.915409\pi\)
\(252\) −126.785 + 126.785i −0.503115 + 0.503115i
\(253\) 45.3288 45.3288i 0.179165 0.179165i
\(254\) −58.7893 + 58.7893i −0.231454 + 0.231454i
\(255\) 0 0
\(256\) −75.2107 −0.293792
\(257\) 156.579 0.609255 0.304628 0.952471i \(-0.401468\pi\)
0.304628 + 0.952471i \(0.401468\pi\)
\(258\) 73.7434 + 73.7434i 0.285827 + 0.285827i
\(259\) 222.004i 0.857159i
\(260\) 0 0
\(261\) −48.3772 −0.185353
\(262\) 149.778 149.778i 0.571673 0.571673i
\(263\) 338.982i 1.28891i 0.764644 + 0.644453i \(0.222915\pi\)
−0.764644 + 0.644453i \(0.777085\pi\)
\(264\) 188.671i 0.714664i
\(265\) 0 0
\(266\) −16.8377 16.8377i −0.0632997 0.0632997i
\(267\) −37.0043 37.0043i −0.138593 0.138593i
\(268\) −129.935 129.935i −0.484830 0.484830i
\(269\) 222.061 0.825506 0.412753 0.910843i \(-0.364567\pi\)
0.412753 + 0.910843i \(0.364567\pi\)
\(270\) 0 0
\(271\) 39.0722 39.0722i 0.144178 0.144178i −0.631333 0.775511i \(-0.717492\pi\)
0.775511 + 0.631333i \(0.217492\pi\)
\(272\) 183.500 0.674631
\(273\) −108.219 + 333.438i −0.396407 + 1.22139i
\(274\) −203.715 −0.743484
\(275\) 0 0
\(276\) −117.803 −0.426822
\(277\) −112.053 −0.404522 −0.202261 0.979332i \(-0.564829\pi\)
−0.202261 + 0.979332i \(0.564829\pi\)
\(278\) 78.7214 78.7214i 0.283170 0.283170i
\(279\) −4.27189 4.27189i −0.0153114 0.0153114i
\(280\) 0 0
\(281\) −174.846 + 174.846i −0.622229 + 0.622229i −0.946101 0.323872i \(-0.895015\pi\)
0.323872 + 0.946101i \(0.395015\pi\)
\(282\) 180.767i 0.641019i
\(283\) 271.201 0.958309 0.479154 0.877731i \(-0.340943\pi\)
0.479154 + 0.877731i \(0.340943\pi\)
\(284\) −304.379 + 304.379i −1.07176 + 1.07176i
\(285\) 0 0
\(286\) −36.5480 71.6712i −0.127790 0.250599i
\(287\) 44.3246i 0.154441i
\(288\) −182.136 + 182.136i −0.632416 + 0.632416i
\(289\) 193.842 0.670734
\(290\) 0 0
\(291\) 505.114 + 505.114i 1.73579 + 1.73579i
\(292\) 105.132 105.132i 0.360040 0.360040i
\(293\) 240.156 + 240.156i 0.819643 + 0.819643i 0.986056 0.166413i \(-0.0532184\pi\)
−0.166413 + 0.986056i \(0.553218\pi\)
\(294\) −16.9957 + 16.9957i −0.0578086 + 0.0578086i
\(295\) 0 0
\(296\) 206.276i 0.696879i
\(297\) 14.9694 + 14.9694i 0.0504020 + 0.0504020i
\(298\) 42.0968 0.141264
\(299\) −98.5922 + 50.2762i −0.329740 + 0.168148i
\(300\) 0 0
\(301\) 139.664 + 139.664i 0.464001 + 0.464001i
\(302\) 87.3772i 0.289329i
\(303\) −436.710 −1.44129
\(304\) 26.4078 + 26.4078i 0.0868679 + 0.0868679i
\(305\) 0 0
\(306\) −106.302 + 106.302i −0.347394 + 0.347394i
\(307\) 219.684 + 219.684i 0.715583 + 0.715583i 0.967697 0.252114i \(-0.0811259\pi\)
−0.252114 + 0.967697i \(0.581126\pi\)
\(308\) 162.189i 0.526586i
\(309\) 147.487i 0.477304i
\(310\) 0 0
\(311\) 341.684i 1.09866i 0.835605 + 0.549331i \(0.185117\pi\)
−0.835605 + 0.549331i \(0.814883\pi\)
\(312\) −100.552 + 309.816i −0.322283 + 0.992999i
\(313\) 438.517i 1.40101i −0.713645 0.700507i \(-0.752957\pi\)
0.713645 0.700507i \(-0.247043\pi\)
\(314\) −32.2278 32.2278i −0.102636 0.102636i
\(315\) 0 0
\(316\) 62.4520i 0.197633i
\(317\) −153.140 + 153.140i −0.483092 + 0.483092i −0.906118 0.423026i \(-0.860968\pi\)
0.423026 + 0.906118i \(0.360968\pi\)
\(318\) 86.6228 86.6228i 0.272399 0.272399i
\(319\) 30.9431 30.9431i 0.0970002 0.0970002i
\(320\) 0 0
\(321\) 18.4384 0.0574406
\(322\) 45.3288 0.140773
\(323\) 69.4868 + 69.4868i 0.215130 + 0.215130i
\(324\) 287.982i 0.888834i
\(325\) 0 0
\(326\) −52.8377 −0.162079
\(327\) 502.695 502.695i 1.53729 1.53729i
\(328\) 41.1843i 0.125562i
\(329\) 342.359i 1.04061i
\(330\) 0 0
\(331\) −195.982 195.982i −0.592091 0.592091i 0.346105 0.938196i \(-0.387504\pi\)
−0.938196 + 0.346105i \(0.887504\pi\)
\(332\) −148.351 148.351i −0.446840 0.446840i
\(333\) −201.706 201.706i −0.605724 0.605724i
\(334\) 159.482 0.477491
\(335\) 0 0
\(336\) −159.235 + 159.235i −0.473912 + 0.473912i
\(337\) 7.32456 0.0217346 0.0108673 0.999941i \(-0.496541\pi\)
0.0108673 + 0.999941i \(0.496541\pi\)
\(338\) 21.8181 + 137.169i 0.0645507 + 0.405826i
\(339\) 285.298 0.841588
\(340\) 0 0
\(341\) 5.46477 0.0160257
\(342\) −30.5964 −0.0894633
\(343\) −256.664 + 256.664i −0.748293 + 0.748293i
\(344\) 129.770 + 129.770i 0.377238 + 0.377238i
\(345\) 0 0
\(346\) −46.1317 + 46.1317i −0.133329 + 0.133329i
\(347\) 154.759i 0.445991i −0.974820 0.222995i \(-0.928417\pi\)
0.974820 0.222995i \(-0.0715835\pi\)
\(348\) −80.4164 −0.231082
\(349\) −220.419 + 220.419i −0.631573 + 0.631573i −0.948462 0.316890i \(-0.897361\pi\)
0.316890 + 0.948462i \(0.397361\pi\)
\(350\) 0 0
\(351\) −16.6032 32.5591i −0.0473026 0.0927609i
\(352\) 232.996i 0.661920i
\(353\) 331.680 331.680i 0.939603 0.939603i −0.0586746 0.998277i \(-0.518687\pi\)
0.998277 + 0.0586746i \(0.0186874\pi\)
\(354\) 281.903 0.796337
\(355\) 0 0
\(356\) −29.5566 29.5566i −0.0830241 0.0830241i
\(357\) −418.993 + 418.993i −1.17365 + 1.17365i
\(358\) −184.993 184.993i −0.516741 0.516741i
\(359\) −132.785 + 132.785i −0.369875 + 0.369875i −0.867431 0.497557i \(-0.834231\pi\)
0.497557 + 0.867431i \(0.334231\pi\)
\(360\) 0 0
\(361\) 341.000i 0.944598i
\(362\) 138.395 + 138.395i 0.382307 + 0.382307i
\(363\) −267.627 −0.737265
\(364\) −86.4384 + 266.329i −0.237468 + 0.731673i
\(365\) 0 0
\(366\) 194.294 + 194.294i 0.530858 + 0.530858i
\(367\) 282.416i 0.769527i 0.923015 + 0.384763i \(0.125717\pi\)
−0.923015 + 0.384763i \(0.874283\pi\)
\(368\) −71.0925 −0.193186
\(369\) −40.2719 40.2719i −0.109138 0.109138i
\(370\) 0 0
\(371\) 164.057 164.057i 0.442202 0.442202i
\(372\) −7.10106 7.10106i −0.0190889 0.0190889i
\(373\) 648.877i 1.73962i 0.493390 + 0.869808i \(0.335758\pi\)
−0.493390 + 0.869808i \(0.664242\pi\)
\(374\) 135.986i 0.363600i
\(375\) 0 0
\(376\) 318.105i 0.846023i
\(377\) −67.3025 + 34.3203i −0.178521 + 0.0910352i
\(378\) 14.9694i 0.0396016i
\(379\) 429.302 + 429.302i 1.13272 + 1.13272i 0.989722 + 0.143002i \(0.0456755\pi\)
0.143002 + 0.989722i \(0.454325\pi\)
\(380\) 0 0
\(381\) 421.065i 1.10516i
\(382\) 2.15373 2.15373i 0.00563804 0.00563804i
\(383\) 132.739 132.739i 0.346577 0.346577i −0.512256 0.858833i \(-0.671190\pi\)
0.858833 + 0.512256i \(0.171190\pi\)
\(384\) −383.559 + 383.559i −0.998852 + 0.998852i
\(385\) 0 0
\(386\) 50.1359 0.129886
\(387\) 253.789 0.655786
\(388\) 403.452 + 403.452i 1.03982 + 1.03982i
\(389\) 510.342i 1.31193i 0.754790 + 0.655966i \(0.227739\pi\)
−0.754790 + 0.655966i \(0.772261\pi\)
\(390\) 0 0
\(391\) −187.065 −0.478428
\(392\) −29.9082 + 29.9082i −0.0762964 + 0.0762964i
\(393\) 1072.75i 2.72965i
\(394\) 146.557i 0.371971i
\(395\) 0 0
\(396\) −147.359 147.359i −0.372120 0.372120i
\(397\) −142.061 142.061i −0.357837 0.357837i 0.505178 0.863015i \(-0.331427\pi\)
−0.863015 + 0.505178i \(0.831427\pi\)
\(398\) −88.4733 88.4733i −0.222295 0.222295i
\(399\) −120.596 −0.302247
\(400\) 0 0
\(401\) 144.298 144.298i 0.359846 0.359846i −0.503910 0.863756i \(-0.668106\pi\)
0.863756 + 0.503910i \(0.168106\pi\)
\(402\) 189.074 0.470333
\(403\) −8.97367 2.91245i −0.0222672 0.00722693i
\(404\) −348.816 −0.863405
\(405\) 0 0
\(406\) 30.9431 0.0762144
\(407\) 258.031 0.633982
\(408\) −389.309 + 389.309i −0.954189 + 0.954189i
\(409\) −91.8598 91.8598i −0.224596 0.224596i 0.585835 0.810431i \(-0.300767\pi\)
−0.810431 + 0.585835i \(0.800767\pi\)
\(410\) 0 0
\(411\) −729.530 + 729.530i −1.77501 + 1.77501i
\(412\) 117.803i 0.285929i
\(413\) 533.903 1.29274
\(414\) 41.1843 41.1843i 0.0994791 0.0994791i
\(415\) 0 0
\(416\) −124.175 + 382.601i −0.298498 + 0.919713i
\(417\) 563.824i 1.35210i
\(418\) 19.5701 19.5701i 0.0468184 0.0468184i
\(419\) 83.2327 0.198646 0.0993231 0.995055i \(-0.468332\pi\)
0.0993231 + 0.995055i \(0.468332\pi\)
\(420\) 0 0
\(421\) 68.3135 + 68.3135i 0.162265 + 0.162265i 0.783569 0.621304i \(-0.213397\pi\)
−0.621304 + 0.783569i \(0.713397\pi\)
\(422\) 27.6473 27.6473i 0.0655150 0.0655150i
\(423\) 311.057 + 311.057i 0.735359 + 0.735359i
\(424\) 152.434 152.434i 0.359515 0.359515i
\(425\) 0 0
\(426\) 442.917i 1.03971i
\(427\) 367.978 + 367.978i 0.861775 + 0.861775i
\(428\) 14.7274 0.0344099
\(429\) −387.548 125.781i −0.903375 0.293195i
\(430\) 0 0
\(431\) 469.963 + 469.963i 1.09040 + 1.09040i 0.995485 + 0.0949152i \(0.0302580\pi\)
0.0949152 + 0.995485i \(0.469742\pi\)
\(432\) 23.4776i 0.0543463i
\(433\) −122.140 −0.282079 −0.141040 0.990004i \(-0.545044\pi\)
−0.141040 + 0.990004i \(0.545044\pi\)
\(434\) 2.73239 + 2.73239i 0.00629582 + 0.00629582i
\(435\) 0 0
\(436\) 401.520 401.520i 0.920917 0.920917i
\(437\) −26.9210 26.9210i −0.0616041 0.0616041i
\(438\) 152.982i 0.349274i
\(439\) 31.2897i 0.0712749i −0.999365 0.0356374i \(-0.988654\pi\)
0.999365 0.0356374i \(-0.0113462\pi\)
\(440\) 0 0
\(441\) 58.4911i 0.132633i
\(442\) −72.4740 + 223.302i −0.163968 + 0.505209i
\(443\) 567.372i 1.28075i −0.768062 0.640375i \(-0.778779\pi\)
0.768062 0.640375i \(-0.221221\pi\)
\(444\) −335.291 335.291i −0.755161 0.755161i
\(445\) 0 0
\(446\) 44.4292i 0.0996170i
\(447\) 150.754 150.754i 0.337258 0.337258i
\(448\) −36.5285 + 36.5285i −0.0815368 + 0.0815368i
\(449\) 530.873 530.873i 1.18234 1.18234i 0.203209 0.979135i \(-0.434863\pi\)
0.979135 0.203209i \(-0.0651371\pi\)
\(450\) 0 0
\(451\) 51.5174 0.114229
\(452\) 227.878 0.504154
\(453\) −312.910 312.910i −0.690750 0.690750i
\(454\) 51.9915i 0.114519i
\(455\) 0 0
\(456\) −112.053 −0.245730
\(457\) −232.092 + 232.092i −0.507860 + 0.507860i −0.913869 0.406009i \(-0.866920\pi\)
0.406009 + 0.913869i \(0.366920\pi\)
\(458\) 194.837i 0.425408i
\(459\) 61.7765i 0.134589i
\(460\) 0 0
\(461\) −209.748 209.748i −0.454984 0.454984i 0.442021 0.897005i \(-0.354262\pi\)
−0.897005 + 0.442021i \(0.854262\pi\)
\(462\) 118.004 + 118.004i 0.255421 + 0.255421i
\(463\) −127.645 127.645i −0.275691 0.275691i 0.555695 0.831386i \(-0.312452\pi\)
−0.831386 + 0.555695i \(0.812452\pi\)
\(464\) −48.5303 −0.104591
\(465\) 0 0
\(466\) −170.151 + 170.151i −0.365131 + 0.365131i
\(467\) 687.737 1.47267 0.736335 0.676617i \(-0.236555\pi\)
0.736335 + 0.676617i \(0.236555\pi\)
\(468\) 163.443 + 320.513i 0.349237 + 0.684857i
\(469\) 358.092 0.763522
\(470\) 0 0
\(471\) −230.824 −0.490073
\(472\) 496.078 1.05101
\(473\) −162.329 + 162.329i −0.343190 + 0.343190i
\(474\) −45.4384 45.4384i −0.0958617 0.0958617i
\(475\) 0 0
\(476\) −334.664 + 334.664i −0.703077 + 0.703077i
\(477\) 298.114i 0.624977i
\(478\) 0.0177872 3.72117e−5
\(479\) 318.642 318.642i 0.665224 0.665224i −0.291383 0.956607i \(-0.594115\pi\)
0.956607 + 0.291383i \(0.0941152\pi\)
\(480\) 0 0
\(481\) −423.710 137.517i −0.880895 0.285899i
\(482\) 279.176i 0.579203i
\(483\) 162.329 162.329i 0.336085 0.336085i
\(484\) −213.763 −0.441659
\(485\) 0 0
\(486\) 194.824 + 194.824i 0.400873 + 0.400873i
\(487\) −557.065 + 557.065i −1.14387 + 1.14387i −0.156136 + 0.987736i \(0.549904\pi\)
−0.987736 + 0.156136i \(0.950096\pi\)
\(488\) 341.908 + 341.908i 0.700632 + 0.700632i
\(489\) −189.219 + 189.219i −0.386951 + 0.386951i
\(490\) 0 0
\(491\) 400.698i 0.816085i −0.912963 0.408042i \(-0.866212\pi\)
0.912963 0.408042i \(-0.133788\pi\)
\(492\) −66.9431 66.9431i −0.136063 0.136063i
\(493\) −127.698 −0.259021
\(494\) −42.5658 + 21.7061i −0.0861657 + 0.0439394i
\(495\) 0 0
\(496\) −4.28540 4.28540i −0.00863992 0.00863992i
\(497\) 838.851i 1.68783i
\(498\) 215.873 0.433479
\(499\) −102.671 102.671i −0.205754 0.205754i 0.596706 0.802460i \(-0.296476\pi\)
−0.802460 + 0.596706i \(0.796476\pi\)
\(500\) 0 0
\(501\) 571.127 571.127i 1.13997 1.13997i
\(502\) −76.6185 76.6185i −0.152627 0.152627i
\(503\) 46.2719i 0.0919918i 0.998942 + 0.0459959i \(0.0146461\pi\)
−0.998942 + 0.0459959i \(0.985354\pi\)
\(504\) 324.658i 0.644162i
\(505\) 0 0
\(506\) 52.6847i 0.104120i
\(507\) 569.355 + 413.088i 1.12299 + 0.814768i
\(508\) 336.320i 0.662046i
\(509\) 372.280 + 372.280i 0.731396 + 0.731396i 0.970896 0.239500i \(-0.0769837\pi\)
−0.239500 + 0.970896i \(0.576984\pi\)
\(510\) 0 0
\(511\) 289.737i 0.566999i
\(512\) −324.897 + 324.897i −0.634565 + 0.634565i
\(513\) 8.89039 8.89039i 0.0173302 0.0173302i
\(514\) −90.9939 + 90.9939i −0.177031 + 0.177031i
\(515\) 0 0
\(516\) 421.868 0.817574
\(517\) −397.917 −0.769665
\(518\) 129.015 + 129.015i 0.249064 + 0.249064i
\(519\) 330.408i 0.636624i
\(520\) 0 0
\(521\) 27.1224 0.0520584 0.0260292 0.999661i \(-0.491714\pi\)
0.0260292 + 0.999661i \(0.491714\pi\)
\(522\) 28.1139 28.1139i 0.0538580 0.0538580i
\(523\) 473.851i 0.906024i −0.891504 0.453012i \(-0.850349\pi\)
0.891504 0.453012i \(-0.149651\pi\)
\(524\) 856.846i 1.63520i
\(525\) 0 0
\(526\) −196.996 196.996i −0.374517 0.374517i
\(527\) −11.2762 11.2762i −0.0213969 0.0213969i
\(528\) −185.075 185.075i −0.350520 0.350520i
\(529\) −456.526 −0.862998
\(530\) 0 0
\(531\) 485.088 485.088i 0.913536 0.913536i
\(532\) −96.3246 −0.181061
\(533\) −84.5964 27.4562i −0.158718 0.0515126i
\(534\) 43.0092 0.0805416
\(535\) 0 0
\(536\) 332.722 0.620751
\(537\) −1324.97 −2.46736
\(538\) −129.048 + 129.048i −0.239867 + 0.239867i
\(539\) −37.4121 37.4121i −0.0694102 0.0694102i
\(540\) 0 0
\(541\) 531.379 531.379i 0.982216 0.982216i −0.0176283 0.999845i \(-0.505612\pi\)
0.999845 + 0.0176283i \(0.00561156\pi\)
\(542\) 45.4128i 0.0837874i
\(543\) 991.223 1.82546
\(544\) −480.770 + 480.770i −0.883768 + 0.883768i
\(545\) 0 0
\(546\) −130.884 256.664i −0.239714 0.470081i
\(547\) 716.223i 1.30937i −0.755903 0.654683i \(-0.772802\pi\)
0.755903 0.654683i \(-0.227198\pi\)
\(548\) −582.701 + 582.701i −1.06332 + 1.06332i
\(549\) 668.666 1.21797
\(550\) 0 0
\(551\) −18.3772 18.3772i −0.0333525 0.0333525i
\(552\) 150.828 150.828i 0.273240 0.273240i
\(553\) −86.0569 86.0569i −0.155618 0.155618i
\(554\) 65.1182 65.1182i 0.117542 0.117542i
\(555\) 0 0
\(556\) 450.346i 0.809975i
\(557\) −248.577 248.577i −0.446278 0.446278i 0.447837 0.894115i \(-0.352194\pi\)
−0.894115 + 0.447837i \(0.852194\pi\)
\(558\) 4.96512 0.00889806
\(559\) 353.072 180.046i 0.631614 0.322086i
\(560\) 0 0
\(561\) −486.986 486.986i −0.868069 0.868069i
\(562\) 203.220i 0.361601i
\(563\) −708.329 −1.25813 −0.629066 0.777352i \(-0.716563\pi\)
−0.629066 + 0.777352i \(0.716563\pi\)
\(564\) 517.063 + 517.063i 0.916778 + 0.916778i
\(565\) 0 0
\(566\) −157.606 + 157.606i −0.278455 + 0.278455i
\(567\) 396.831 + 396.831i 0.699878 + 0.699878i
\(568\) 779.421i 1.37222i
\(569\) 349.394i 0.614050i 0.951701 + 0.307025i \(0.0993335\pi\)
−0.951701 + 0.307025i \(0.900667\pi\)
\(570\) 0 0
\(571\) 906.285i 1.58719i 0.608447 + 0.793594i \(0.291793\pi\)
−0.608447 + 0.793594i \(0.708207\pi\)
\(572\) −309.548 100.465i −0.541168 0.175639i
\(573\) 15.4256i 0.0269208i
\(574\) 25.7587 + 25.7587i 0.0448758 + 0.0448758i
\(575\) 0 0
\(576\) 66.3772i 0.115238i
\(577\) −357.842 + 357.842i −0.620177 + 0.620177i −0.945577 0.325400i \(-0.894501\pi\)
0.325400 + 0.945577i \(0.394501\pi\)
\(578\) −112.649 + 112.649i −0.194895 + 0.194895i
\(579\) 179.544 179.544i 0.310093 0.310093i
\(580\) 0 0
\(581\) 408.846 0.703694
\(582\) −587.083 −1.00873
\(583\) 190.680 + 190.680i 0.327066 + 0.327066i
\(584\) 269.210i 0.460976i
\(585\) 0 0
\(586\) −279.127 −0.476327
\(587\) −405.311 + 405.311i −0.690479 + 0.690479i −0.962337 0.271858i \(-0.912362\pi\)
0.271858 + 0.962337i \(0.412362\pi\)
\(588\) 97.2285i 0.165355i
\(589\) 3.24555i 0.00551028i
\(590\) 0 0
\(591\) −524.840 524.840i −0.888053 0.888053i
\(592\) −202.344 202.344i −0.341798 0.341798i
\(593\) −550.285 550.285i −0.927967 0.927967i 0.0696070 0.997574i \(-0.477825\pi\)
−0.997574 + 0.0696070i \(0.977825\pi\)
\(594\) −17.3986 −0.0292906
\(595\) 0 0
\(596\) 120.413 120.413i 0.202035 0.202035i
\(597\) −633.670 −1.06142
\(598\) 28.0783 86.5132i 0.0469537 0.144671i
\(599\) −235.228 −0.392702 −0.196351 0.980534i \(-0.562909\pi\)
−0.196351 + 0.980534i \(0.562909\pi\)
\(600\) 0 0
\(601\) −559.298 −0.930612 −0.465306 0.885150i \(-0.654056\pi\)
−0.465306 + 0.885150i \(0.654056\pi\)
\(602\) −162.329 −0.269649
\(603\) 325.351 325.351i 0.539554 0.539554i
\(604\) −249.932 249.932i −0.413795 0.413795i
\(605\) 0 0
\(606\) 253.789 253.789i 0.418794 0.418794i
\(607\) 507.912i 0.836757i −0.908273 0.418379i \(-0.862598\pi\)
0.908273 0.418379i \(-0.137402\pi\)
\(608\) −138.377 −0.227594
\(609\) 110.811 110.811i 0.181956 0.181956i
\(610\) 0 0
\(611\) 653.416 + 212.070i 1.06942 + 0.347086i
\(612\) 608.131i 0.993678i
\(613\) −231.540 + 231.540i −0.377715 + 0.377715i −0.870277 0.492562i \(-0.836060\pi\)
0.492562 + 0.870277i \(0.336060\pi\)
\(614\) −255.334 −0.415853
\(615\) 0 0
\(616\) 207.658 + 207.658i 0.337107 + 0.337107i
\(617\) 271.412 271.412i 0.439890 0.439890i −0.452085 0.891975i \(-0.649320\pi\)
0.891975 + 0.452085i \(0.149320\pi\)
\(618\) 85.7103 + 85.7103i 0.138690 + 0.138690i
\(619\) 235.048 235.048i 0.379723 0.379723i −0.491279 0.871002i \(-0.663471\pi\)
0.871002 + 0.491279i \(0.163471\pi\)
\(620\) 0 0
\(621\) 23.9338i 0.0385408i
\(622\) −198.566 198.566i −0.319238 0.319238i
\(623\) 81.4562 0.130748
\(624\) 205.274 + 402.546i 0.328965 + 0.645105i
\(625\) 0 0
\(626\) 254.840 + 254.840i 0.407092 + 0.407092i
\(627\) 140.167i 0.223551i
\(628\) −184.367 −0.293578
\(629\) −532.427 532.427i −0.846466 0.846466i
\(630\) 0 0
\(631\) −95.4630 + 95.4630i −0.151288 + 0.151288i −0.778693 0.627405i \(-0.784117\pi\)
0.627405 + 0.778693i \(0.284117\pi\)
\(632\) −79.9602 79.9602i −0.126519 0.126519i
\(633\) 198.018i 0.312824i
\(634\) 177.991i 0.280744i
\(635\) 0 0
\(636\) 495.548i 0.779164i
\(637\) 41.4954 + 81.3729i 0.0651419 + 0.127744i
\(638\) 35.9644i 0.0563706i
\(639\) −762.153 762.153i −1.19273 1.19273i
\(640\) 0 0
\(641\) 904.710i 1.41140i −0.708508 0.705702i \(-0.750632\pi\)
0.708508 0.705702i \(-0.249368\pi\)
\(642\) −10.7153 + 10.7153i −0.0166905 + 0.0166905i
\(643\) −108.312 + 108.312i −0.168447 + 0.168447i −0.786297 0.617849i \(-0.788004\pi\)
0.617849 + 0.786297i \(0.288004\pi\)
\(644\) 129.658 129.658i 0.201332 0.201332i
\(645\) 0 0
\(646\) −80.7630 −0.125020
\(647\) −306.474 −0.473685 −0.236842 0.971548i \(-0.576112\pi\)
−0.236842 + 0.971548i \(0.576112\pi\)
\(648\) 368.717 + 368.717i 0.569008 + 0.569008i
\(649\) 620.544i 0.956154i
\(650\) 0 0
\(651\) 19.5701 0.0300616
\(652\) −151.136 + 151.136i −0.231804 + 0.231804i
\(653\) 1009.69i 1.54624i 0.634262 + 0.773118i \(0.281304\pi\)
−0.634262 + 0.773118i \(0.718696\pi\)
\(654\) 584.271i 0.893381i
\(655\) 0 0
\(656\) −40.3993 40.3993i −0.0615843 0.0615843i
\(657\) 263.246 + 263.246i 0.400678 + 0.400678i
\(658\) −198.958 198.958i −0.302368 0.302368i
\(659\) 211.009 0.320196 0.160098 0.987101i \(-0.448819\pi\)
0.160098 + 0.987101i \(0.448819\pi\)
\(660\) 0 0
\(661\) −61.5922 + 61.5922i −0.0931803 + 0.0931803i −0.752160 0.658980i \(-0.770988\pi\)
0.658980 + 0.752160i \(0.270988\pi\)
\(662\) 227.786 0.344087
\(663\) 540.138 + 1059.22i 0.814687 + 1.59761i
\(664\) 379.881 0.572110
\(665\) 0 0
\(666\) 234.438 0.352010
\(667\) 49.4733 0.0741729
\(668\) 456.179 456.179i 0.682902 0.682902i
\(669\) −159.107 159.107i −0.237828 0.237828i
\(670\) 0 0
\(671\) −427.693 + 427.693i −0.637396 + 0.637396i
\(672\) 834.390i 1.24165i
\(673\) 105.500 0.156760 0.0783801 0.996924i \(-0.475025\pi\)
0.0783801 + 0.996924i \(0.475025\pi\)
\(674\) −4.25658 + 4.25658i −0.00631541 + 0.00631541i
\(675\) 0 0
\(676\) 454.764 + 329.947i 0.672727 + 0.488088i
\(677\) 215.969i 0.319009i −0.987197 0.159505i \(-0.949010\pi\)
0.987197 0.159505i \(-0.0509897\pi\)
\(678\) −165.798 + 165.798i −0.244540 + 0.244540i
\(679\) −1111.89 −1.63754
\(680\) 0 0
\(681\) −186.189 186.189i −0.273405 0.273405i
\(682\) −3.17579 + 3.17579i −0.00465659 + 0.00465659i
\(683\) −672.956 672.956i −0.985294 0.985294i 0.0145993 0.999893i \(-0.495353\pi\)
−0.999893 + 0.0145993i \(0.995353\pi\)
\(684\) −87.5174 + 87.5174i −0.127949 + 0.127949i
\(685\) 0 0
\(686\) 298.315i 0.434862i
\(687\) 697.738 + 697.738i 1.01563 + 1.01563i
\(688\) 254.592 0.370047
\(689\) −211.491 414.737i −0.306954 0.601940i
\(690\) 0 0
\(691\) −563.105 563.105i −0.814913 0.814913i 0.170453 0.985366i \(-0.445477\pi\)
−0.985366 + 0.170453i \(0.945477\pi\)
\(692\) 263.908i 0.381370i
\(693\) 406.114 0.586023
\(694\) 89.9363 + 89.9363i 0.129591 + 0.129591i
\(695\) 0 0
\(696\) 102.961 102.961i 0.147932 0.147932i
\(697\) −106.302 106.302i −0.152514 0.152514i
\(698\) 256.188i 0.367031i
\(699\) 1218.67i 1.74345i
\(700\) 0 0
\(701\) 179.934i 0.256682i −0.991730 0.128341i \(-0.959035\pi\)
0.991730 0.128341i \(-0.0409651\pi\)
\(702\) 28.5701 + 9.27258i 0.0406982 + 0.0132088i
\(703\) 153.246i 0.217988i
\(704\) −42.4562 42.4562i −0.0603071 0.0603071i
\(705\) 0 0
\(706\) 385.504i 0.546040i
\(707\) 480.658 480.658i 0.679855 0.679855i
\(708\) 806.350 806.350i 1.13891 1.13891i
\(709\) 291.315 291.315i 0.410882 0.410882i −0.471164 0.882046i \(-0.656166\pi\)
0.882046 + 0.471164i \(0.156166\pi\)
\(710\) 0 0
\(711\) −156.377 −0.219940
\(712\) 75.6854 0.106300
\(713\) 4.36868 + 4.36868i 0.00612718 + 0.00612718i
\(714\) 486.986i 0.682054i
\(715\) 0 0
\(716\) −1058.30 −1.47808
\(717\) 0.0636984 0.0636984i 8.88401e−5 8.88401e-5i
\(718\) 154.333i 0.214949i
\(719\) 487.565i 0.678116i −0.940766 0.339058i \(-0.889892\pi\)
0.940766 0.339058i \(-0.110108\pi\)
\(720\) 0 0
\(721\) 162.329 + 162.329i 0.225144 + 0.225144i
\(722\) 198.168 + 198.168i 0.274471 + 0.274471i
\(723\) 999.767 + 999.767i 1.38280 + 1.38280i
\(724\) 791.725 1.09354
\(725\) 0 0
\(726\) 155.528 155.528i 0.214227 0.214227i
\(727\) 277.337 0.381482 0.190741 0.981640i \(-0.438911\pi\)
0.190741 + 0.981640i \(0.438911\pi\)
\(728\) −230.322 451.664i −0.316376 0.620418i
\(729\) 615.780 0.844691
\(730\) 0 0
\(731\) 669.907 0.916426
\(732\) 1111.51 1.51845
\(733\) −235.559 + 235.559i −0.321363 + 0.321363i −0.849290 0.527927i \(-0.822970\pi\)
0.527927 + 0.849290i \(0.322970\pi\)
\(734\) −164.123 164.123i −0.223601 0.223601i
\(735\) 0 0
\(736\) 186.263 186.263i 0.253074 0.253074i
\(737\) 416.202i 0.564725i
\(738\) 46.8071 0.0634243
\(739\) 667.732 667.732i 0.903561 0.903561i −0.0921811 0.995742i \(-0.529384\pi\)
0.995742 + 0.0921811i \(0.0293839\pi\)
\(740\) 0 0
\(741\) −74.7018 + 230.167i −0.100812 + 0.310616i
\(742\) 190.680i 0.256981i
\(743\) 335.358 335.358i 0.451356 0.451356i −0.444448 0.895804i \(-0.646600\pi\)
0.895804 + 0.444448i \(0.146600\pi\)
\(744\) 18.1836 0.0244404
\(745\) 0 0
\(746\) −377.088 377.088i −0.505479 0.505479i
\(747\) 371.465 371.465i 0.497275 0.497275i
\(748\) −388.973 388.973i −0.520017 0.520017i
\(749\) −20.2939 + 20.2939i −0.0270947 + 0.0270947i
\(750\) 0 0
\(751\) 1300.24i 1.73134i 0.500615 + 0.865670i \(0.333107\pi\)
−0.500615 + 0.865670i \(0.666893\pi\)
\(752\) 312.041 + 312.041i 0.414948 + 0.414948i
\(753\) −548.763 −0.728769
\(754\) 19.1672 59.0569i 0.0254207 0.0783249i
\(755\) 0 0
\(756\) 42.8181 + 42.8181i 0.0566378 + 0.0566378i
\(757\) 1155.45i 1.52636i 0.646188 + 0.763178i \(0.276362\pi\)
−0.646188 + 0.763178i \(0.723638\pi\)
\(758\) −498.969 −0.658270
\(759\) 188.671 + 188.671i 0.248579 + 0.248579i
\(760\) 0 0
\(761\) −205.412 + 205.412i −0.269924 + 0.269924i −0.829069 0.559146i \(-0.811129\pi\)
0.559146 + 0.829069i \(0.311129\pi\)
\(762\) −244.698 244.698i −0.321125 0.321125i
\(763\) 1106.57i 1.45028i
\(764\) 12.3210i 0.0161269i
\(765\) 0 0
\(766\) 154.280i 0.201410i
\(767\) 330.719 1018.99i 0.431185 1.32854i
\(768\) 313.048i 0.407614i
\(769\) −62.0527 62.0527i −0.0806927 0.0806927i 0.665608 0.746301i \(-0.268172\pi\)
−0.746301 + 0.665608i \(0.768172\pi\)
\(770\) 0 0
\(771\) 651.724i 0.845297i
\(772\) 143.408 143.408i 0.185761 0.185761i
\(773\) −318.813 + 318.813i −0.412436 + 0.412436i −0.882586 0.470150i \(-0.844200\pi\)
0.470150 + 0.882586i \(0.344200\pi\)
\(774\) −147.487 + 147.487i −0.190551 + 0.190551i
\(775\) 0 0
\(776\) −1033.12 −1.33134
\(777\) 924.043 1.18925
\(778\) −296.579 296.579i −0.381207 0.381207i
\(779\) 30.5964i 0.0392766i
\(780\) 0 0
\(781\) 974.977 1.24837
\(782\) 108.711 108.711i 0.139017 0.139017i
\(783\) 16.3381i 0.0208660i
\(784\) 58.6761i 0.0748420i
\(785\) 0 0
\(786\) 623.419 + 623.419i 0.793154 + 0.793154i
\(787\) 634.566 + 634.566i 0.806310 + 0.806310i 0.984073 0.177763i \(-0.0568862\pi\)
−0.177763 + 0.984073i \(0.556886\pi\)
\(788\) −419.207 419.207i −0.531989 0.531989i
\(789\) −1410.94 −1.78826
\(790\) 0 0
\(791\) −314.009 + 314.009i −0.396977 + 0.396977i
\(792\) 377.342 0.476442
\(793\) 930.250 474.372i 1.17308 0.598200i
\(794\) 165.115 0.207953
\(795\) 0 0
\(796\) −506.135 −0.635847
\(797\) −407.026 −0.510698 −0.255349 0.966849i \(-0.582190\pi\)
−0.255349 + 0.966849i \(0.582190\pi\)
\(798\) 70.0833 70.0833i 0.0878237 0.0878237i
\(799\) 821.072 + 821.072i 1.02762 + 1.02762i
\(800\) 0 0
\(801\) 74.0085 74.0085i 0.0923952 0.0923952i
\(802\) 167.715i 0.209120i
\(803\) −336.754 −0.419370
\(804\) 540.824 540.824i 0.672666 0.672666i
\(805\) 0 0
\(806\) 6.90748 3.52241i 0.00857008 0.00437023i
\(807\) 924.280i 1.14533i
\(808\) 446.605 446.605i 0.552729 0.552729i
\(809\) 647.641 0.800545 0.400272 0.916396i \(-0.368916\pi\)
0.400272 + 0.916396i \(0.368916\pi\)
\(810\) 0 0
\(811\) 850.386 + 850.386i 1.04856 + 1.04856i 0.998759 + 0.0498055i \(0.0158601\pi\)
0.0498055 + 0.998759i \(0.484140\pi\)
\(812\) 88.5089 88.5089i 0.109001 0.109001i
\(813\) 162.630 + 162.630i 0.200036 + 0.200036i
\(814\) −149.952 + 149.952i −0.184216 + 0.184216i
\(815\) 0 0
\(816\) 763.777i 0.936001i
\(817\) 96.4078 + 96.4078i 0.118002 + 0.118002i
\(818\) 106.767 0.130521
\(819\) −666.877 216.438i −0.814257 0.264272i
\(820\) 0 0
\(821\) 330.186 + 330.186i 0.402176 + 0.402176i 0.878999 0.476824i \(-0.158212\pi\)
−0.476824 + 0.878999i \(0.658212\pi\)
\(822\) 847.917i 1.03153i
\(823\) −507.579 −0.616742 −0.308371 0.951266i \(-0.599784\pi\)
−0.308371 + 0.951266i \(0.599784\pi\)
\(824\) 150.828 + 150.828i 0.183044 + 0.183044i
\(825\) 0 0
\(826\) −310.272 + 310.272i −0.375632 + 0.375632i
\(827\) −488.452 488.452i −0.590631 0.590631i 0.347171 0.937802i \(-0.387142\pi\)
−0.937802 + 0.347171i \(0.887142\pi\)
\(828\) 235.606i 0.284548i
\(829\) 1391.89i 1.67900i 0.543361 + 0.839499i \(0.317152\pi\)
−0.543361 + 0.839499i \(0.682848\pi\)
\(830\) 0 0
\(831\) 466.394i 0.561245i
\(832\) 47.0900 + 92.3441i 0.0565986 + 0.110991i
\(833\) 154.394i 0.185347i
\(834\) 327.660 + 327.660i 0.392878 + 0.392878i
\(835\) 0 0
\(836\) 111.956i 0.133919i
\(837\) −1.44271 + 1.44271i −0.00172367 + 0.00172367i
\(838\) −48.3698 + 48.3698i −0.0577205 + 0.0577205i
\(839\) 128.794 128.794i 0.153508 0.153508i −0.626174 0.779683i \(-0.715380\pi\)
0.779683 + 0.626174i \(0.215380\pi\)
\(840\) 0 0
\(841\) −807.228 −0.959843
\(842\) −79.3993 −0.0942984
\(843\) −727.759 727.759i −0.863296 0.863296i
\(844\) 158.164i 0.187398i
\(845\) 0 0
\(846\) −361.535 −0.427346
\(847\) 294.559 294.559i 0.347768 0.347768i
\(848\) 299.057i 0.352661i
\(849\) 1128.82i 1.32958i
\(850\) 0 0
\(851\) 206.276 + 206.276i 0.242393 + 0.242393i
\(852\) −1266.91 1266.91i −1.48698 1.48698i
\(853\) 485.546 + 485.546i 0.569221 + 0.569221i 0.931910 0.362689i \(-0.118141\pi\)
−0.362689 + 0.931910i \(0.618141\pi\)
\(854\) −427.693 −0.500811
\(855\) 0 0
\(856\) −18.8562 + 18.8562i −0.0220283 + 0.0220283i
\(857\) −1245.24 −1.45302 −0.726509 0.687157i \(-0.758859\pi\)
−0.726509 + 0.687157i \(0.758859\pi\)
\(858\) 298.315 152.123i 0.347687 0.177300i
\(859\) −1194.94 −1.39108 −0.695540 0.718487i \(-0.744835\pi\)
−0.695540 + 0.718487i \(0.744835\pi\)
\(860\) 0 0
\(861\) 184.491 0.214275
\(862\) −546.227 −0.633674
\(863\) −604.195 + 604.195i −0.700111 + 0.700111i −0.964434 0.264324i \(-0.914851\pi\)
0.264324 + 0.964434i \(0.414851\pi\)
\(864\) 61.5114 + 61.5114i 0.0711937 + 0.0711937i
\(865\) 0 0
\(866\) 70.9804 70.9804i 0.0819635 0.0819635i
\(867\) 806.824i 0.930593i
\(868\) 15.6313 0.0180084
\(869\) 100.022 100.022i 0.115100 0.115100i
\(870\) 0 0
\(871\) 221.815 683.443i 0.254667 0.784664i
\(872\) 1028.17i 1.17909i
\(873\) −1010.23 + 1010.23i −1.15719 + 1.15719i
\(874\) 31.2897 0.0358005
\(875\) 0 0
\(876\) 437.587 + 437.587i 0.499529 + 0.499529i
\(877\) 1065.53 1065.53i 1.21497 1.21497i 0.245603 0.969370i \(-0.421014\pi\)
0.969370 0.245603i \(-0.0789861\pi\)
\(878\) 18.1836 + 18.1836i 0.0207103 + 0.0207103i
\(879\) −999.594 + 999.594i −1.13719 + 1.13719i
\(880\) 0 0
\(881\) 821.315i 0.932253i 0.884718 + 0.466126i \(0.154351\pi\)
−0.884718 + 0.466126i \(0.845649\pi\)
\(882\) −33.9915 33.9915i −0.0385391 0.0385391i
\(883\) 1091.97 1.23666 0.618329 0.785920i \(-0.287810\pi\)
0.618329 + 0.785920i \(0.287810\pi\)
\(884\) 431.427 + 846.033i 0.488039 + 0.957051i
\(885\) 0 0
\(886\) 329.722 + 329.722i 0.372147 + 0.372147i
\(887\) 1478.73i 1.66711i 0.552436 + 0.833555i \(0.313698\pi\)
−0.552436 + 0.833555i \(0.686302\pi\)
\(888\) 858.579 0.966868
\(889\) −463.438 463.438i −0.521303 0.521303i
\(890\) 0 0
\(891\) −461.228 + 461.228i −0.517652 + 0.517652i
\(892\) −127.084 127.084i −0.142471 0.142471i
\(893\) 236.325i 0.264641i
\(894\) 175.219i 0.195994i
\(895\) 0 0
\(896\) 844.315i 0.942316i
\(897\) −209.263 410.368i −0.233292 0.457489i
\(898\) 617.021i 0.687106i
\(899\) 2.98221 + 2.98221i 0.00331726 + 0.00331726i
\(900\) 0 0
\(901\) 786.907i 0.873371i
\(902\) −29.9388 + 29.9388i −0.0331916 + 0.0331916i
\(903\) −581.322 + 581.322i −0.643768 + 0.643768i
\(904\) −291.762 + 291.762i −0.322746 + 0.322746i
\(905\) 0 0
\(906\) 363.688 0.401422
\(907\) −1460.57 −1.61033 −0.805167 0.593048i \(-0.797925\pi\)
−0.805167 + 0.593048i \(0.797925\pi\)
\(908\) −148.715 148.715i −0.163783 0.163783i
\(909\) 873.421i 0.960859i
\(910\) 0 0
\(911\) 287.689 0.315795 0.157897 0.987456i \(-0.449528\pi\)
0.157897 + 0.987456i \(0.449528\pi\)
\(912\) −109.917 + 109.917i −0.120523 + 0.120523i
\(913\) 475.193i 0.520474i
\(914\) 269.755i 0.295137i
\(915\) 0 0
\(916\) 557.308 + 557.308i 0.608415 + 0.608415i
\(917\) 1180.71 + 1180.71i 1.28758 + 1.28758i
\(918\) 35.9007 + 35.9007i 0.0391075 + 0.0391075i
\(919\) −1696.20 −1.84570 −0.922851 0.385156i \(-0.874148\pi\)
−0.922851 + 0.385156i \(0.874148\pi\)
\(920\) 0 0
\(921\) −914.386 + 914.386i −0.992818 + 0.992818i
\(922\) 243.785 0.264409
\(923\) −1601.00 519.614i −1.73457 0.562962i
\(924\) 675.074 0.730600
\(925\) 0 0
\(926\) 148.359 0.160215
\(927\) 294.974 0.318202
\(928\) 127.149 127.149i 0.137015 0.137015i
\(929\) −912.403 912.403i −0.982134 0.982134i 0.0177088 0.999843i \(-0.494363\pi\)
−0.999843 + 0.0177088i \(0.994363\pi\)
\(930\) 0 0
\(931\) −22.2192 + 22.2192i −0.0238660 + 0.0238660i
\(932\) 973.394i 1.04441i
\(933\) −1422.18 −1.52431
\(934\) −399.670 + 399.670i −0.427913 + 0.427913i
\(935\) 0 0
\(936\) −619.631 201.105i −0.661999 0.214855i
\(937\) 1041.30i 1.11131i −0.831413 0.555655i \(-0.812467\pi\)
0.831413 0.555655i \(-0.187533\pi\)
\(938\) −208.101 + 208.101i −0.221856 + 0.221856i
\(939\) 1825.23 1.94380
\(940\) 0 0
\(941\) −502.392 502.392i −0.533891 0.533891i 0.387837 0.921728i \(-0.373222\pi\)
−0.921728 + 0.387837i \(0.873222\pi\)
\(942\) 134.141 134.141i 0.142400 0.142400i
\(943\) 41.1843 + 41.1843i 0.0436737 + 0.0436737i
\(944\) 486.622 486.622i 0.515489 0.515489i
\(945\) 0 0
\(946\) 188.671i 0.199441i
\(947\) −683.569 683.569i −0.721826 0.721826i 0.247151 0.968977i \(-0.420506\pi\)
−0.968977 + 0.247151i \(0.920506\pi\)
\(948\) −259.942 −0.274201
\(949\) 552.982 + 179.473i 0.582700 + 0.189118i
\(950\) 0 0
\(951\) −637.412 637.412i −0.670255 0.670255i
\(952\) 856.973i 0.900182i
\(953\) 694.290 0.728531 0.364265 0.931295i \(-0.381320\pi\)
0.364265 + 0.931295i \(0.381320\pi\)
\(954\) 173.246 + 173.246i 0.181599 + 0.181599i
\(955\) 0 0
\(956\) 0.0508781 0.0508781i 5.32198e−5 5.32198e-5i
\(957\) 128.794 + 128.794i 0.134581 + 0.134581i
\(958\) 370.351i 0.386588i
\(959\) 1605.89i 1.67455i
\(960\) 0 0
\(961\) 960.473i 0.999452i
\(962\) 326.151 166.318i 0.339035 0.172888i
\(963\) 36.8769i 0.0382937i
\(964\) 798.549 + 798.549i 0.828370 + 0.828370i
\(965\) 0 0
\(966\) 188.671i 0.195312i
\(967\) 616.081 616.081i 0.637106 0.637106i −0.312735 0.949841i \(-0.601245\pi\)
0.949841 + 0.312735i \(0.101245\pi\)
\(968\) 273.691 273.691i 0.282738 0.282738i
\(969\) −289.223 + 289.223i −0.298476 + 0.298476i
\(970\) 0 0
\(971\) −473.890 −0.488044 −0.244022 0.969770i \(-0.578467\pi\)
−0.244022 + 0.969770i \(0.578467\pi\)
\(972\) 1114.54 1.14665
\(973\) 620.563 + 620.563i 0.637784 + 0.637784i
\(974\) 647.465i 0.664748i
\(975\) 0 0
\(976\) 670.781 0.687276
\(977\) −9.56087 + 9.56087i −0.00978594 + 0.00978594i −0.711983 0.702197i \(-0.752203\pi\)
0.702197 + 0.711983i \(0.252203\pi\)
\(978\) 219.925i 0.224872i
\(979\) 94.6748i 0.0967056i
\(980\) 0 0
\(981\) 1005.39 + 1005.39i 1.02486 + 1.02486i
\(982\) 232.861 + 232.861i 0.237129 + 0.237129i
\(983\) −695.475 695.475i −0.707503 0.707503i 0.258507 0.966009i \(-0.416770\pi\)
−0.966009 + 0.258507i \(0.916770\pi\)
\(984\) 171.421 0.174208
\(985\) 0 0
\(986\) 74.2100 74.2100i 0.0752637 0.0752637i
\(987\) −1425.00 −1.44376
\(988\) −59.6669 + 183.842i −0.0603916 + 0.186075i
\(989\) −259.540 −0.262426
\(990\) 0 0
\(991\) −1625.34 −1.64010 −0.820051 0.572291i \(-0.806055\pi\)
−0.820051 + 0.572291i \(0.806055\pi\)
\(992\) 22.4555 0.0226366
\(993\) 815.732 815.732i 0.821483 0.821483i
\(994\) 487.489 + 487.489i 0.490431 + 0.490431i
\(995\) 0 0
\(996\) 617.478 617.478i 0.619957 0.619957i
\(997\) 31.3986i 0.0314931i −0.999876 0.0157465i \(-0.994988\pi\)
0.999876 0.0157465i \(-0.00501248\pi\)
\(998\) 119.332 0.119572
\(999\) −68.1206 + 68.1206i −0.0681888 + 0.0681888i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.3.g.b.99.1 4
5.2 odd 4 325.3.j.a.151.1 4
5.3 odd 4 13.3.d.a.8.2 yes 4
5.4 even 2 325.3.g.a.99.2 4
13.5 odd 4 325.3.g.a.174.2 4
15.8 even 4 117.3.j.a.73.1 4
20.3 even 4 208.3.t.c.177.2 4
65.3 odd 12 169.3.f.f.150.1 8
65.8 even 4 169.3.d.d.70.1 4
65.18 even 4 13.3.d.a.5.2 4
65.23 odd 12 169.3.f.d.150.2 8
65.28 even 12 169.3.f.f.19.2 8
65.33 even 12 169.3.f.d.80.2 8
65.38 odd 4 169.3.d.d.99.1 4
65.43 odd 12 169.3.f.d.89.1 8
65.44 odd 4 inner 325.3.g.b.174.1 4
65.48 odd 12 169.3.f.f.89.2 8
65.57 even 4 325.3.j.a.226.1 4
65.58 even 12 169.3.f.f.80.1 8
65.63 even 12 169.3.f.d.19.1 8
195.83 odd 4 117.3.j.a.109.1 4
260.83 odd 4 208.3.t.c.161.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
13.3.d.a.5.2 4 65.18 even 4
13.3.d.a.8.2 yes 4 5.3 odd 4
117.3.j.a.73.1 4 15.8 even 4
117.3.j.a.109.1 4 195.83 odd 4
169.3.d.d.70.1 4 65.8 even 4
169.3.d.d.99.1 4 65.38 odd 4
169.3.f.d.19.1 8 65.63 even 12
169.3.f.d.80.2 8 65.33 even 12
169.3.f.d.89.1 8 65.43 odd 12
169.3.f.d.150.2 8 65.23 odd 12
169.3.f.f.19.2 8 65.28 even 12
169.3.f.f.80.1 8 65.58 even 12
169.3.f.f.89.2 8 65.48 odd 12
169.3.f.f.150.1 8 65.3 odd 12
208.3.t.c.161.2 4 260.83 odd 4
208.3.t.c.177.2 4 20.3 even 4
325.3.g.a.99.2 4 5.4 even 2
325.3.g.a.174.2 4 13.5 odd 4
325.3.g.b.99.1 4 1.1 even 1 trivial
325.3.g.b.174.1 4 65.44 odd 4 inner
325.3.j.a.151.1 4 5.2 odd 4
325.3.j.a.226.1 4 65.57 even 4