Properties

Label 325.2.x.c.93.3
Level $325$
Weight $2$
Character 325.93
Analytic conductor $2.595$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [325,2,Mod(7,325)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(325, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([3, 11])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("325.7"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 325.x (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.59513806569\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(10\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 93.3
Character \(\chi\) \(=\) 325.93
Dual form 325.2.x.c.7.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.52518 + 0.880562i) q^{2} +(-0.845033 + 3.15371i) q^{3} +(0.550780 - 0.953979i) q^{4} +(-1.48821 - 5.55407i) q^{6} +(0.694909 - 1.20362i) q^{7} -1.58226i q^{8} +(-6.63370 - 3.82997i) q^{9} +(0.949498 - 3.54358i) q^{11} +(2.54314 + 2.54314i) q^{12} +(-1.51879 - 3.27006i) q^{13} +2.44764i q^{14} +(2.49484 + 4.32119i) q^{16} +(-3.92917 + 1.05282i) q^{17} +13.4901 q^{18} +(-2.25062 + 0.603051i) q^{19} +(3.20863 + 3.20863i) q^{21} +(1.67219 + 6.24068i) q^{22} +(-5.51848 - 1.47867i) q^{23} +(4.99000 + 1.33707i) q^{24} +(5.19592 + 3.65003i) q^{26} +(10.7583 - 10.7583i) q^{27} +(-0.765484 - 1.32586i) q^{28} +(-2.47021 + 1.42618i) q^{29} +(0.220086 - 0.220086i) q^{31} +(-4.86960 - 2.81146i) q^{32} +(10.3730 + 5.98888i) q^{33} +(5.06561 - 5.06561i) q^{34} +(-7.30742 + 4.21894i) q^{36} +(3.03968 + 5.26488i) q^{37} +(2.90157 - 2.90157i) q^{38} +(11.5962 - 2.02651i) q^{39} +(-10.9769 - 2.94124i) q^{41} +(-7.71914 - 2.06834i) q^{42} +(-1.43468 - 5.35430i) q^{43} +(-2.85753 - 2.85753i) q^{44} +(9.71874 - 2.60413i) q^{46} -5.06887 q^{47} +(-15.7360 + 4.21645i) q^{48} +(2.53420 + 4.38937i) q^{49} -13.2811i q^{51} +(-3.95609 - 0.352188i) q^{52} +(-0.586010 - 0.586010i) q^{53} +(-6.93496 + 25.8816i) q^{54} +(-1.90444 - 1.09953i) q^{56} -7.60737i q^{57} +(2.51168 - 4.35035i) q^{58} +(-0.878129 - 3.27722i) q^{59} +(-3.03437 + 5.25569i) q^{61} +(-0.141871 + 0.529470i) q^{62} +(-9.21963 + 5.32296i) q^{63} -0.0766898 q^{64} -21.0943 q^{66} +(1.14393 - 0.660446i) q^{67} +(-1.15974 + 4.32821i) q^{68} +(9.32660 - 16.1541i) q^{69} +(1.41960 + 5.29800i) q^{71} +(-6.06002 + 10.4963i) q^{72} +2.15999i q^{73} +(-9.27212 - 5.35326i) q^{74} +(-0.664297 + 2.47919i) q^{76} +(-3.60529 - 3.60529i) q^{77} +(-15.9018 + 13.3020i) q^{78} -3.44072i q^{79} +(13.3474 + 23.1184i) q^{81} +(19.3316 - 5.17990i) q^{82} +1.38257 q^{83} +(4.82822 - 1.29372i) q^{84} +(6.90294 + 6.90294i) q^{86} +(-2.41033 - 8.99549i) q^{87} +(-5.60687 - 1.50236i) q^{88} +(-1.09501 - 0.293408i) q^{89} +(-4.99132 - 0.444348i) q^{91} +(-4.45010 + 4.45010i) q^{92} +(0.508107 + 0.880067i) q^{93} +(7.73094 - 4.46346i) q^{94} +(12.9815 - 12.9815i) q^{96} +(13.7196 + 7.92101i) q^{97} +(-7.73023 - 4.46305i) q^{98} +(-19.8705 + 19.8705i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 24 q^{4} - 12 q^{6} - 24 q^{9} + 8 q^{11} - 32 q^{16} + 24 q^{19} + 32 q^{21} - 56 q^{24} + 76 q^{26} + 36 q^{29} + 8 q^{31} - 44 q^{34} - 60 q^{36} - 44 q^{39} - 52 q^{41} + 80 q^{44} - 60 q^{46}+ \cdots - 208 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/325\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{1}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.52518 + 0.880562i −1.07846 + 0.622652i −0.930482 0.366338i \(-0.880611\pi\)
−0.147983 + 0.988990i \(0.547278\pi\)
\(3\) −0.845033 + 3.15371i −0.487880 + 1.82079i 0.0788467 + 0.996887i \(0.474876\pi\)
−0.566727 + 0.823906i \(0.691790\pi\)
\(4\) 0.550780 0.953979i 0.275390 0.476990i
\(5\) 0 0
\(6\) −1.48821 5.55407i −0.607558 2.26744i
\(7\) 0.694909 1.20362i 0.262651 0.454925i −0.704295 0.709908i \(-0.748737\pi\)
0.966945 + 0.254983i \(0.0820699\pi\)
\(8\) 1.58226i 0.559415i
\(9\) −6.63370 3.82997i −2.21123 1.27666i
\(10\) 0 0
\(11\) 0.949498 3.54358i 0.286285 1.06843i −0.661611 0.749847i \(-0.730127\pi\)
0.947896 0.318581i \(-0.103206\pi\)
\(12\) 2.54314 + 2.54314i 0.734142 + 0.734142i
\(13\) −1.51879 3.27006i −0.421237 0.906951i
\(14\) 2.44764i 0.654160i
\(15\) 0 0
\(16\) 2.49484 + 4.32119i 0.623711 + 1.08030i
\(17\) −3.92917 + 1.05282i −0.952963 + 0.255346i −0.701619 0.712552i \(-0.747539\pi\)
−0.251344 + 0.967898i \(0.580872\pi\)
\(18\) 13.4901 3.17965
\(19\) −2.25062 + 0.603051i −0.516327 + 0.138349i −0.507567 0.861612i \(-0.669455\pi\)
−0.00875965 + 0.999962i \(0.502788\pi\)
\(20\) 0 0
\(21\) 3.20863 + 3.20863i 0.700181 + 0.700181i
\(22\) 1.67219 + 6.24068i 0.356511 + 1.33052i
\(23\) −5.51848 1.47867i −1.15068 0.308325i −0.367444 0.930045i \(-0.619767\pi\)
−0.783239 + 0.621721i \(0.786434\pi\)
\(24\) 4.99000 + 1.33707i 1.01858 + 0.272927i
\(25\) 0 0
\(26\) 5.19592 + 3.65003i 1.01900 + 0.715830i
\(27\) 10.7583 10.7583i 2.07043 2.07043i
\(28\) −0.765484 1.32586i −0.144663 0.250563i
\(29\) −2.47021 + 1.42618i −0.458707 + 0.264835i −0.711500 0.702686i \(-0.751984\pi\)
0.252793 + 0.967520i \(0.418651\pi\)
\(30\) 0 0
\(31\) 0.220086 0.220086i 0.0395287 0.0395287i −0.687066 0.726595i \(-0.741102\pi\)
0.726595 + 0.687066i \(0.241102\pi\)
\(32\) −4.86960 2.81146i −0.860832 0.497001i
\(33\) 10.3730 + 5.98888i 1.80571 + 1.04253i
\(34\) 5.06561 5.06561i 0.868745 0.868745i
\(35\) 0 0
\(36\) −7.30742 + 4.21894i −1.21790 + 0.703157i
\(37\) 3.03968 + 5.26488i 0.499721 + 0.865542i 1.00000 0.000322437i \(-0.000102635\pi\)
−0.500279 + 0.865864i \(0.666769\pi\)
\(38\) 2.90157 2.90157i 0.470696 0.470696i
\(39\) 11.5962 2.02651i 1.85688 0.324502i
\(40\) 0 0
\(41\) −10.9769 2.94124i −1.71430 0.459345i −0.737827 0.674990i \(-0.764148\pi\)
−0.976472 + 0.215645i \(0.930815\pi\)
\(42\) −7.71914 2.06834i −1.19109 0.319151i
\(43\) −1.43468 5.35430i −0.218787 0.816524i −0.984799 0.173698i \(-0.944428\pi\)
0.766012 0.642826i \(-0.222238\pi\)
\(44\) −2.85753 2.85753i −0.430789 0.430789i
\(45\) 0 0
\(46\) 9.71874 2.60413i 1.43295 0.383958i
\(47\) −5.06887 −0.739371 −0.369686 0.929157i \(-0.620535\pi\)
−0.369686 + 0.929157i \(0.620535\pi\)
\(48\) −15.7360 + 4.21645i −2.27130 + 0.608592i
\(49\) 2.53420 + 4.38937i 0.362029 + 0.627053i
\(50\) 0 0
\(51\) 13.2811i 1.85973i
\(52\) −3.95609 0.352188i −0.548611 0.0488397i
\(53\) −0.586010 0.586010i −0.0804946 0.0804946i 0.665713 0.746208i \(-0.268127\pi\)
−0.746208 + 0.665713i \(0.768127\pi\)
\(54\) −6.93496 + 25.8816i −0.943728 + 3.52204i
\(55\) 0 0
\(56\) −1.90444 1.09953i −0.254492 0.146931i
\(57\) 7.60737i 1.00762i
\(58\) 2.51168 4.35035i 0.329799 0.571229i
\(59\) −0.878129 3.27722i −0.114323 0.426658i 0.884913 0.465757i \(-0.154218\pi\)
−0.999235 + 0.0390991i \(0.987551\pi\)
\(60\) 0 0
\(61\) −3.03437 + 5.25569i −0.388512 + 0.672922i −0.992250 0.124261i \(-0.960344\pi\)
0.603738 + 0.797183i \(0.293677\pi\)
\(62\) −0.141871 + 0.529470i −0.0180177 + 0.0672428i
\(63\) −9.21963 + 5.32296i −1.16156 + 0.670630i
\(64\) −0.0766898 −0.00958623
\(65\) 0 0
\(66\) −21.0943 −2.59653
\(67\) 1.14393 0.660446i 0.139753 0.0806864i −0.428493 0.903545i \(-0.640955\pi\)
0.568246 + 0.822859i \(0.307622\pi\)
\(68\) −1.15974 + 4.32821i −0.140639 + 0.524873i
\(69\) 9.32660 16.1541i 1.12279 1.94473i
\(70\) 0 0
\(71\) 1.41960 + 5.29800i 0.168475 + 0.628758i 0.997571 + 0.0696517i \(0.0221888\pi\)
−0.829096 + 0.559106i \(0.811145\pi\)
\(72\) −6.06002 + 10.4963i −0.714181 + 1.23700i
\(73\) 2.15999i 0.252808i 0.991979 + 0.126404i \(0.0403435\pi\)
−0.991979 + 0.126404i \(0.959656\pi\)
\(74\) −9.27212 5.35326i −1.07786 0.622304i
\(75\) 0 0
\(76\) −0.664297 + 2.47919i −0.0762000 + 0.284382i
\(77\) −3.60529 3.60529i −0.410861 0.410861i
\(78\) −15.9018 + 13.3020i −1.80053 + 1.50615i
\(79\) 3.44072i 0.387111i −0.981089 0.193555i \(-0.937998\pi\)
0.981089 0.193555i \(-0.0620020\pi\)
\(80\) 0 0
\(81\) 13.3474 + 23.1184i 1.48305 + 2.56871i
\(82\) 19.3316 5.17990i 2.13482 0.572024i
\(83\) 1.38257 0.151757 0.0758783 0.997117i \(-0.475824\pi\)
0.0758783 + 0.997117i \(0.475824\pi\)
\(84\) 4.82822 1.29372i 0.526802 0.141156i
\(85\) 0 0
\(86\) 6.90294 + 6.90294i 0.744364 + 0.744364i
\(87\) −2.41033 8.99549i −0.258415 0.964418i
\(88\) −5.60687 1.50236i −0.597695 0.160152i
\(89\) −1.09501 0.293408i −0.116071 0.0311012i 0.200316 0.979731i \(-0.435803\pi\)
−0.316387 + 0.948630i \(0.602470\pi\)
\(90\) 0 0
\(91\) −4.99132 0.444348i −0.523232 0.0465804i
\(92\) −4.45010 + 4.45010i −0.463955 + 0.463955i
\(93\) 0.508107 + 0.880067i 0.0526882 + 0.0912587i
\(94\) 7.73094 4.46346i 0.797385 0.460371i
\(95\) 0 0
\(96\) 12.9815 12.9815i 1.32492 1.32492i
\(97\) 13.7196 + 7.92101i 1.39301 + 0.804256i 0.993648 0.112536i \(-0.0358973\pi\)
0.399365 + 0.916792i \(0.369231\pi\)
\(98\) −7.73023 4.46305i −0.780871 0.450836i
\(99\) −19.8705 + 19.8705i −1.99706 + 1.99706i
\(100\) 0 0
\(101\) −2.26191 + 1.30591i −0.225068 + 0.129943i −0.608295 0.793711i \(-0.708146\pi\)
0.383227 + 0.923654i \(0.374813\pi\)
\(102\) 11.6948 + 20.2560i 1.15796 + 2.00565i
\(103\) −0.960893 + 0.960893i −0.0946796 + 0.0946796i −0.752860 0.658181i \(-0.771326\pi\)
0.658181 + 0.752860i \(0.271326\pi\)
\(104\) −5.17409 + 2.40313i −0.507362 + 0.235646i
\(105\) 0 0
\(106\) 1.40979 + 0.377751i 0.136931 + 0.0366905i
\(107\) −15.0689 4.03770i −1.45677 0.390339i −0.558394 0.829576i \(-0.688582\pi\)
−0.898372 + 0.439236i \(0.855249\pi\)
\(108\) −4.33773 16.1886i −0.417398 1.55775i
\(109\) −9.51962 9.51962i −0.911814 0.911814i 0.0846007 0.996415i \(-0.473039\pi\)
−0.996415 + 0.0846007i \(0.973039\pi\)
\(110\) 0 0
\(111\) −19.1725 + 5.13726i −1.81978 + 0.487607i
\(112\) 6.93475 0.655272
\(113\) 11.0602 2.96358i 1.04046 0.278790i 0.302154 0.953259i \(-0.402294\pi\)
0.738303 + 0.674469i \(0.235627\pi\)
\(114\) 6.69877 + 11.6026i 0.627397 + 1.08668i
\(115\) 0 0
\(116\) 3.14204i 0.291731i
\(117\) −2.44901 + 27.5095i −0.226411 + 2.54325i
\(118\) 4.22510 + 4.22510i 0.388952 + 0.388952i
\(119\) −1.46322 + 5.46082i −0.134133 + 0.500593i
\(120\) 0 0
\(121\) −2.12911 1.22924i −0.193555 0.111749i
\(122\) 10.6878i 0.967630i
\(123\) 18.5516 32.1324i 1.67274 2.89728i
\(124\) −0.0887386 0.331177i −0.00796896 0.0297406i
\(125\) 0 0
\(126\) 9.37439 16.2369i 0.835137 1.44650i
\(127\) 5.02598 18.7572i 0.445983 1.66443i −0.267343 0.963601i \(-0.586146\pi\)
0.713327 0.700832i \(-0.247188\pi\)
\(128\) 9.85617 5.69046i 0.871170 0.502970i
\(129\) 18.0983 1.59346
\(130\) 0 0
\(131\) 4.21678 0.368422 0.184211 0.982887i \(-0.441027\pi\)
0.184211 + 0.982887i \(0.441027\pi\)
\(132\) 11.4265 6.59711i 0.994552 0.574205i
\(133\) −0.838130 + 3.12794i −0.0726751 + 0.271227i
\(134\) −1.16313 + 2.01460i −0.100479 + 0.174035i
\(135\) 0 0
\(136\) 1.66583 + 6.21698i 0.142844 + 0.533101i
\(137\) 5.61121 9.71890i 0.479398 0.830342i −0.520323 0.853970i \(-0.674188\pi\)
0.999721 + 0.0236280i \(0.00752173\pi\)
\(138\) 32.8506i 2.79643i
\(139\) 1.44435 + 0.833895i 0.122508 + 0.0707301i 0.560002 0.828491i \(-0.310800\pi\)
−0.437494 + 0.899221i \(0.644134\pi\)
\(140\) 0 0
\(141\) 4.28336 15.9857i 0.360724 1.34624i
\(142\) −6.83036 6.83036i −0.573191 0.573191i
\(143\) −13.0298 + 2.27704i −1.08961 + 0.190415i
\(144\) 38.2207i 3.18506i
\(145\) 0 0
\(146\) −1.90201 3.29437i −0.157411 0.272644i
\(147\) −15.9843 + 4.28297i −1.31836 + 0.353253i
\(148\) 6.69679 0.550473
\(149\) 11.6304 3.11636i 0.952802 0.255302i 0.251251 0.967922i \(-0.419158\pi\)
0.701551 + 0.712620i \(0.252491\pi\)
\(150\) 0 0
\(151\) −6.13780 6.13780i −0.499487 0.499487i 0.411791 0.911278i \(-0.364903\pi\)
−0.911278 + 0.411791i \(0.864903\pi\)
\(152\) 0.954185 + 3.56107i 0.0773946 + 0.288841i
\(153\) 30.0972 + 8.06451i 2.43321 + 0.651977i
\(154\) 8.67341 + 2.32403i 0.698923 + 0.187276i
\(155\) 0 0
\(156\) 4.45372 12.1787i 0.356583 0.975078i
\(157\) −9.72344 + 9.72344i −0.776015 + 0.776015i −0.979151 0.203135i \(-0.934887\pi\)
0.203135 + 0.979151i \(0.434887\pi\)
\(158\) 3.02977 + 5.24771i 0.241035 + 0.417485i
\(159\) 2.34330 1.35290i 0.185836 0.107292i
\(160\) 0 0
\(161\) −5.61460 + 5.61460i −0.442492 + 0.442492i
\(162\) −40.7144 23.5065i −3.19883 1.84684i
\(163\) 3.45081 + 1.99232i 0.270288 + 0.156051i 0.629019 0.777390i \(-0.283457\pi\)
−0.358730 + 0.933441i \(0.616790\pi\)
\(164\) −8.85173 + 8.85173i −0.691204 + 0.691204i
\(165\) 0 0
\(166\) −2.10866 + 1.21744i −0.163664 + 0.0944915i
\(167\) −2.72761 4.72436i −0.211069 0.365582i 0.740980 0.671527i \(-0.234361\pi\)
−0.952049 + 0.305945i \(0.901028\pi\)
\(168\) 5.07691 5.07691i 0.391692 0.391692i
\(169\) −8.38655 + 9.93307i −0.645119 + 0.764082i
\(170\) 0 0
\(171\) 17.2396 + 4.61933i 1.31834 + 0.353249i
\(172\) −5.89809 1.58039i −0.449725 0.120503i
\(173\) 5.25347 + 19.6062i 0.399414 + 1.49063i 0.814131 + 0.580682i \(0.197214\pi\)
−0.414717 + 0.909951i \(0.636119\pi\)
\(174\) 11.5973 + 11.5973i 0.879188 + 0.879188i
\(175\) 0 0
\(176\) 17.6813 4.73770i 1.33278 0.357117i
\(177\) 11.0774 0.832631
\(178\) 1.92845 0.516728i 0.144544 0.0387304i
\(179\) −0.485197 0.840386i −0.0362654 0.0628134i 0.847323 0.531078i \(-0.178213\pi\)
−0.883588 + 0.468264i \(0.844879\pi\)
\(180\) 0 0
\(181\) 18.2170i 1.35406i −0.735956 0.677029i \(-0.763267\pi\)
0.735956 0.677029i \(-0.236733\pi\)
\(182\) 8.00393 3.71746i 0.593291 0.275556i
\(183\) −14.0107 14.0107i −1.03570 1.03570i
\(184\) −2.33965 + 8.73170i −0.172481 + 0.643709i
\(185\) 0 0
\(186\) −1.54991 0.894840i −0.113645 0.0656128i
\(187\) 14.9229i 1.09127i
\(188\) −2.79183 + 4.83560i −0.203615 + 0.352672i
\(189\) −5.47282 20.4249i −0.398089 1.48569i
\(190\) 0 0
\(191\) −8.18780 + 14.1817i −0.592449 + 1.02615i 0.401453 + 0.915880i \(0.368505\pi\)
−0.993901 + 0.110272i \(0.964828\pi\)
\(192\) 0.0648054 0.241857i 0.00467693 0.0174545i
\(193\) −8.91585 + 5.14757i −0.641777 + 0.370530i −0.785299 0.619117i \(-0.787491\pi\)
0.143522 + 0.989647i \(0.454157\pi\)
\(194\) −27.8998 −2.00309
\(195\) 0 0
\(196\) 5.58316 0.398797
\(197\) −10.7321 + 6.19621i −0.764633 + 0.441461i −0.830957 0.556337i \(-0.812206\pi\)
0.0663234 + 0.997798i \(0.478873\pi\)
\(198\) 12.8088 47.8032i 0.910284 3.39723i
\(199\) 2.14630 3.71750i 0.152147 0.263527i −0.779869 0.625942i \(-0.784715\pi\)
0.932017 + 0.362416i \(0.118048\pi\)
\(200\) 0 0
\(201\) 1.11620 + 4.16571i 0.0787305 + 0.293826i
\(202\) 2.29988 3.98350i 0.161819 0.280278i
\(203\) 3.96425i 0.278236i
\(204\) −12.6699 7.31496i −0.887070 0.512150i
\(205\) 0 0
\(206\) 0.619407 2.31166i 0.0431561 0.161061i
\(207\) 30.9447 + 30.9447i 2.15081 + 2.15081i
\(208\) 10.3414 14.7213i 0.717048 1.02074i
\(209\) 8.54782i 0.591265i
\(210\) 0 0
\(211\) −13.4327 23.2662i −0.924747 1.60171i −0.791968 0.610562i \(-0.790943\pi\)
−0.132778 0.991146i \(-0.542390\pi\)
\(212\) −0.881803 + 0.236279i −0.0605625 + 0.0162277i
\(213\) −17.9080 −1.22703
\(214\) 26.5382 7.11089i 1.81412 0.486091i
\(215\) 0 0
\(216\) −17.0224 17.0224i −1.15823 1.15823i
\(217\) −0.111960 0.417839i −0.00760032 0.0283648i
\(218\) 22.9017 + 6.13650i 1.55110 + 0.415616i
\(219\) −6.81198 1.82526i −0.460311 0.123340i
\(220\) 0 0
\(221\) 9.41035 + 11.2496i 0.633009 + 0.756729i
\(222\) 24.7179 24.7179i 1.65895 1.65895i
\(223\) 9.93870 + 17.2143i 0.665545 + 1.15276i 0.979137 + 0.203199i \(0.0651340\pi\)
−0.313593 + 0.949558i \(0.601533\pi\)
\(224\) −6.76785 + 3.90742i −0.452196 + 0.261076i
\(225\) 0 0
\(226\) −14.2592 + 14.2592i −0.948507 + 0.948507i
\(227\) 9.67768 + 5.58741i 0.642330 + 0.370849i 0.785512 0.618847i \(-0.212400\pi\)
−0.143181 + 0.989696i \(0.545733\pi\)
\(228\) −7.25728 4.18999i −0.480625 0.277489i
\(229\) −12.7032 + 12.7032i −0.839450 + 0.839450i −0.988786 0.149336i \(-0.952286\pi\)
0.149336 + 0.988786i \(0.452286\pi\)
\(230\) 0 0
\(231\) 14.4166 8.32344i 0.948545 0.547642i
\(232\) 2.25659 + 3.90853i 0.148152 + 0.256608i
\(233\) −0.0102716 + 0.0102716i −0.000672916 + 0.000672916i −0.707443 0.706770i \(-0.750151\pi\)
0.706770 + 0.707443i \(0.250151\pi\)
\(234\) −20.4887 44.1134i −1.33938 2.88378i
\(235\) 0 0
\(236\) −3.61006 0.967312i −0.234995 0.0629666i
\(237\) 10.8510 + 2.90752i 0.704849 + 0.188864i
\(238\) −2.57692 9.61719i −0.167037 0.623390i
\(239\) 8.78399 + 8.78399i 0.568189 + 0.568189i 0.931621 0.363432i \(-0.118395\pi\)
−0.363432 + 0.931621i \(0.618395\pi\)
\(240\) 0 0
\(241\) 21.5510 5.77458i 1.38822 0.371973i 0.514122 0.857717i \(-0.328118\pi\)
0.874101 + 0.485743i \(0.161451\pi\)
\(242\) 4.32969 0.278323
\(243\) −40.0994 + 10.7446i −2.57238 + 0.689267i
\(244\) 3.34254 + 5.78946i 0.213985 + 0.370632i
\(245\) 0 0
\(246\) 65.3435i 4.16615i
\(247\) 5.39022 + 6.44373i 0.342972 + 0.410005i
\(248\) −0.348235 0.348235i −0.0221129 0.0221129i
\(249\) −1.16832 + 4.36021i −0.0740390 + 0.276317i
\(250\) 0 0
\(251\) 1.04874 + 0.605490i 0.0661959 + 0.0382182i 0.532733 0.846284i \(-0.321165\pi\)
−0.466537 + 0.884502i \(0.654498\pi\)
\(252\) 11.7271i 0.738739i
\(253\) −10.4796 + 18.1512i −0.658846 + 1.14115i
\(254\) 8.85137 + 33.0338i 0.555385 + 2.07272i
\(255\) 0 0
\(256\) −9.94492 + 17.2251i −0.621558 + 1.07657i
\(257\) −3.30128 + 12.3205i −0.205928 + 0.768535i 0.783236 + 0.621724i \(0.213567\pi\)
−0.989165 + 0.146811i \(0.953099\pi\)
\(258\) −27.6031 + 15.9366i −1.71849 + 0.992172i
\(259\) 8.44921 0.525008
\(260\) 0 0
\(261\) 21.8489 1.35241
\(262\) −6.43135 + 3.71314i −0.397330 + 0.229399i
\(263\) 3.06032 11.4213i 0.188707 0.704266i −0.805099 0.593140i \(-0.797888\pi\)
0.993806 0.111125i \(-0.0354455\pi\)
\(264\) 9.47599 16.4129i 0.583207 1.01014i
\(265\) 0 0
\(266\) −1.47605 5.50870i −0.0905025 0.337760i
\(267\) 1.85064 3.20541i 0.113258 0.196168i
\(268\) 1.45504i 0.0888809i
\(269\) −14.0608 8.11799i −0.857300 0.494963i 0.00580692 0.999983i \(-0.498152\pi\)
−0.863107 + 0.505021i \(0.831485\pi\)
\(270\) 0 0
\(271\) 0.567117 2.11651i 0.0344499 0.128569i −0.946559 0.322530i \(-0.895467\pi\)
0.981009 + 0.193961i \(0.0621335\pi\)
\(272\) −14.3521 14.3521i −0.870222 0.870222i
\(273\) 5.61917 15.3657i 0.340088 0.929972i
\(274\) 19.7641i 1.19399i
\(275\) 0 0
\(276\) −10.2738 17.7948i −0.618411 1.07112i
\(277\) −18.0331 + 4.83197i −1.08351 + 0.290325i −0.756031 0.654535i \(-0.772864\pi\)
−0.327475 + 0.944860i \(0.606198\pi\)
\(278\) −2.93719 −0.176161
\(279\) −2.30291 + 0.617063i −0.137872 + 0.0369426i
\(280\) 0 0
\(281\) 7.76642 + 7.76642i 0.463306 + 0.463306i 0.899737 0.436432i \(-0.143758\pi\)
−0.436432 + 0.899737i \(0.643758\pi\)
\(282\) 7.54354 + 28.1529i 0.449211 + 1.67648i
\(283\) −9.43309 2.52759i −0.560739 0.150250i −0.0326932 0.999465i \(-0.510408\pi\)
−0.528046 + 0.849216i \(0.677075\pi\)
\(284\) 5.83607 + 1.56377i 0.346307 + 0.0927927i
\(285\) 0 0
\(286\) 17.8677 14.9464i 1.05654 0.883801i
\(287\) −11.1681 + 11.1681i −0.659229 + 0.659229i
\(288\) 21.5356 + 37.3008i 1.26900 + 2.19797i
\(289\) −0.392513 + 0.226617i −0.0230890 + 0.0133304i
\(290\) 0 0
\(291\) −36.5740 + 36.5740i −2.14401 + 2.14401i
\(292\) 2.06059 + 1.18968i 0.120587 + 0.0696208i
\(293\) −29.2511 16.8881i −1.70887 0.986615i −0.935968 0.352086i \(-0.885473\pi\)
−0.772899 0.634529i \(-0.781194\pi\)
\(294\) 20.6074 20.6074i 1.20185 1.20185i
\(295\) 0 0
\(296\) 8.33044 4.80958i 0.484197 0.279551i
\(297\) −27.9078 48.3377i −1.61937 2.80484i
\(298\) −14.9943 + 14.9943i −0.868598 + 0.868598i
\(299\) 3.54608 + 20.2916i 0.205075 + 1.17349i
\(300\) 0 0
\(301\) −7.44150 1.99395i −0.428921 0.114929i
\(302\) 14.7660 + 3.95652i 0.849685 + 0.227672i
\(303\) −2.20708 8.23693i −0.126793 0.473199i
\(304\) −8.22083 8.22083i −0.471497 0.471497i
\(305\) 0 0
\(306\) −53.0049 + 14.2026i −3.03009 + 0.811909i
\(307\) −16.4317 −0.937804 −0.468902 0.883250i \(-0.655350\pi\)
−0.468902 + 0.883250i \(0.655350\pi\)
\(308\) −5.42510 + 1.45365i −0.309124 + 0.0828295i
\(309\) −2.21839 3.84236i −0.126200 0.218584i
\(310\) 0 0
\(311\) 1.31200i 0.0743968i −0.999308 0.0371984i \(-0.988157\pi\)
0.999308 0.0371984i \(-0.0118434\pi\)
\(312\) −3.20648 18.3483i −0.181531 1.03877i
\(313\) 19.5519 + 19.5519i 1.10514 + 1.10514i 0.993780 + 0.111361i \(0.0355211\pi\)
0.111361 + 0.993780i \(0.464479\pi\)
\(314\) 6.26789 23.3921i 0.353718 1.32009i
\(315\) 0 0
\(316\) −3.28237 1.89508i −0.184648 0.106607i
\(317\) 34.9576i 1.96342i −0.190394 0.981708i \(-0.560977\pi\)
0.190394 0.981708i \(-0.439023\pi\)
\(318\) −2.38263 + 4.12684i −0.133611 + 0.231422i
\(319\) 2.70831 + 10.1075i 0.151636 + 0.565914i
\(320\) 0 0
\(321\) 25.4674 44.1109i 1.42145 2.46203i
\(322\) 3.61926 13.5073i 0.201694 0.752731i
\(323\) 8.20814 4.73897i 0.456713 0.263683i
\(324\) 29.4060 1.63367
\(325\) 0 0
\(326\) −7.01746 −0.388661
\(327\) 38.0665 21.9777i 2.10508 1.21537i
\(328\) −4.65382 + 17.3683i −0.256964 + 0.959004i
\(329\) −3.52240 + 6.10098i −0.194196 + 0.336358i
\(330\) 0 0
\(331\) −0.658550 2.45774i −0.0361972 0.135090i 0.945463 0.325730i \(-0.105610\pi\)
−0.981660 + 0.190641i \(0.938943\pi\)
\(332\) 0.761491 1.31894i 0.0417923 0.0723863i
\(333\) 46.5676i 2.55189i
\(334\) 8.32019 + 4.80366i 0.455260 + 0.262845i
\(335\) 0 0
\(336\) −5.86009 + 21.8702i −0.319694 + 1.19312i
\(337\) −8.33325 8.33325i −0.453941 0.453941i 0.442719 0.896660i \(-0.354014\pi\)
−0.896660 + 0.442719i \(0.854014\pi\)
\(338\) 4.04430 22.5346i 0.219981 1.22572i
\(339\) 37.3850i 2.03047i
\(340\) 0 0
\(341\) −0.570921 0.988864i −0.0309171 0.0535500i
\(342\) −30.3610 + 8.13522i −1.64174 + 0.439902i
\(343\) 16.7729 0.905651
\(344\) −8.47192 + 2.27005i −0.456776 + 0.122393i
\(345\) 0 0
\(346\) −25.2770 25.2770i −1.35890 1.35890i
\(347\) 2.77743 + 10.3655i 0.149100 + 0.556449i 0.999539 + 0.0303747i \(0.00967005\pi\)
−0.850438 + 0.526075i \(0.823663\pi\)
\(348\) −9.90908 2.65513i −0.531182 0.142330i
\(349\) −23.0049 6.16415i −1.23143 0.329960i −0.416291 0.909231i \(-0.636670\pi\)
−0.815135 + 0.579272i \(0.803337\pi\)
\(350\) 0 0
\(351\) −51.5197 18.8406i −2.74992 1.00564i
\(352\) −14.5863 + 14.5863i −0.777453 + 0.777453i
\(353\) 12.9342 + 22.4026i 0.688416 + 1.19237i 0.972350 + 0.233527i \(0.0750268\pi\)
−0.283935 + 0.958844i \(0.591640\pi\)
\(354\) −16.8951 + 9.75437i −0.897963 + 0.518439i
\(355\) 0 0
\(356\) −0.883016 + 0.883016i −0.0467998 + 0.0467998i
\(357\) −15.9854 9.22915i −0.846035 0.488458i
\(358\) 1.48003 + 0.854493i 0.0782218 + 0.0451614i
\(359\) 19.3811 19.3811i 1.02289 1.02289i 0.0231615 0.999732i \(-0.492627\pi\)
0.999732 0.0231615i \(-0.00737320\pi\)
\(360\) 0 0
\(361\) −11.7529 + 6.78553i −0.618573 + 0.357133i
\(362\) 16.0412 + 27.7842i 0.843107 + 1.46030i
\(363\) 5.67583 5.67583i 0.297904 0.297904i
\(364\) −3.17302 + 4.51688i −0.166311 + 0.236749i
\(365\) 0 0
\(366\) 33.7062 + 9.03156i 1.76185 + 0.472087i
\(367\) −23.2524 6.23046i −1.21376 0.325227i −0.405527 0.914083i \(-0.632912\pi\)
−0.808238 + 0.588856i \(0.799579\pi\)
\(368\) −7.37811 27.5355i −0.384611 1.43539i
\(369\) 61.5524 + 61.5524i 3.20429 + 3.20429i
\(370\) 0 0
\(371\) −1.11255 + 0.298108i −0.0577609 + 0.0154770i
\(372\) 1.11942 0.0580393
\(373\) −22.4401 + 6.01280i −1.16190 + 0.311331i −0.787725 0.616027i \(-0.788741\pi\)
−0.374177 + 0.927357i \(0.622075\pi\)
\(374\) −13.1406 22.7602i −0.679483 1.17690i
\(375\) 0 0
\(376\) 8.02030i 0.413615i
\(377\) 8.41542 + 5.91167i 0.433416 + 0.304467i
\(378\) 26.3324 + 26.3324i 1.35439 + 1.35439i
\(379\) 7.19748 26.8614i 0.369710 1.37978i −0.491212 0.871040i \(-0.663446\pi\)
0.860922 0.508736i \(-0.169887\pi\)
\(380\) 0 0
\(381\) 54.9076 + 31.7009i 2.81300 + 1.62409i
\(382\) 28.8395i 1.47556i
\(383\) 8.43549 14.6107i 0.431034 0.746572i −0.565929 0.824454i \(-0.691482\pi\)
0.996963 + 0.0778820i \(0.0248157\pi\)
\(384\) 9.61725 + 35.8921i 0.490778 + 1.83161i
\(385\) 0 0
\(386\) 9.06551 15.7019i 0.461423 0.799207i
\(387\) −10.9896 + 41.0136i −0.558631 + 2.08484i
\(388\) 15.1129 8.72547i 0.767244 0.442968i
\(389\) 15.9554 0.808973 0.404487 0.914544i \(-0.367450\pi\)
0.404487 + 0.914544i \(0.367450\pi\)
\(390\) 0 0
\(391\) 23.2398 1.17529
\(392\) 6.94514 4.00978i 0.350783 0.202524i
\(393\) −3.56332 + 13.2985i −0.179746 + 0.670820i
\(394\) 10.9123 18.9006i 0.549753 0.952201i
\(395\) 0 0
\(396\) 8.01176 + 29.9003i 0.402606 + 1.50255i
\(397\) 8.30391 14.3828i 0.416761 0.721852i −0.578850 0.815434i \(-0.696498\pi\)
0.995612 + 0.0935822i \(0.0298318\pi\)
\(398\) 7.55981i 0.378939i
\(399\) −9.15637 5.28643i −0.458392 0.264653i
\(400\) 0 0
\(401\) −4.73738 + 17.6802i −0.236574 + 0.882905i 0.740859 + 0.671660i \(0.234418\pi\)
−0.977433 + 0.211245i \(0.932248\pi\)
\(402\) −5.37057 5.37057i −0.267859 0.267859i
\(403\) −1.05396 0.385430i −0.0525015 0.0191996i
\(404\) 2.87708i 0.143140i
\(405\) 0 0
\(406\) −3.49077 6.04620i −0.173244 0.300068i
\(407\) 21.5427 5.77235i 1.06783 0.286125i
\(408\) −21.0142 −1.04036
\(409\) 11.9171 3.19317i 0.589261 0.157892i 0.0481458 0.998840i \(-0.484669\pi\)
0.541116 + 0.840948i \(0.318002\pi\)
\(410\) 0 0
\(411\) 25.9089 + 25.9089i 1.27799 + 1.27799i
\(412\) 0.387431 + 1.44591i 0.0190874 + 0.0712350i
\(413\) −4.55474 1.22044i −0.224124 0.0600538i
\(414\) −74.4449 19.9475i −3.65877 0.980364i
\(415\) 0 0
\(416\) −1.79775 + 20.1939i −0.0881418 + 0.990087i
\(417\) −3.85038 + 3.85038i −0.188554 + 0.188554i
\(418\) −7.52689 13.0370i −0.368152 0.637658i
\(419\) 15.6063 9.01028i 0.762416 0.440181i −0.0677464 0.997703i \(-0.521581\pi\)
0.830163 + 0.557521i \(0.188248\pi\)
\(420\) 0 0
\(421\) 12.6982 12.6982i 0.618871 0.618871i −0.326371 0.945242i \(-0.605826\pi\)
0.945242 + 0.326371i \(0.105826\pi\)
\(422\) 40.9746 + 23.6567i 1.99461 + 1.15159i
\(423\) 33.6254 + 19.4136i 1.63492 + 0.943923i
\(424\) −0.927222 + 0.927222i −0.0450299 + 0.0450299i
\(425\) 0 0
\(426\) 27.3128 15.7691i 1.32331 0.764014i
\(427\) 4.21722 + 7.30445i 0.204086 + 0.353487i
\(428\) −12.1515 + 12.1515i −0.587367 + 0.587367i
\(429\) 3.82949 43.0163i 0.184890 2.07685i
\(430\) 0 0
\(431\) −7.07051 1.89454i −0.340574 0.0912566i 0.0844781 0.996425i \(-0.473078\pi\)
−0.425052 + 0.905169i \(0.639744\pi\)
\(432\) 73.3288 + 19.6484i 3.52803 + 0.945334i
\(433\) 2.29626 + 8.56975i 0.110351 + 0.411836i 0.998897 0.0469516i \(-0.0149506\pi\)
−0.888546 + 0.458787i \(0.848284\pi\)
\(434\) 0.538692 + 0.538692i 0.0258581 + 0.0258581i
\(435\) 0 0
\(436\) −14.3247 + 3.83830i −0.686031 + 0.183821i
\(437\) 13.3117 0.636785
\(438\) 11.9967 3.21452i 0.573226 0.153596i
\(439\) −11.8892 20.5927i −0.567440 0.982835i −0.996818 0.0797100i \(-0.974601\pi\)
0.429378 0.903125i \(-0.358733\pi\)
\(440\) 0 0
\(441\) 38.8237i 1.84875i
\(442\) −24.2584 8.87123i −1.15386 0.421961i
\(443\) 5.18634 + 5.18634i 0.246410 + 0.246410i 0.819496 0.573085i \(-0.194254\pi\)
−0.573085 + 0.819496i \(0.694254\pi\)
\(444\) −5.65901 + 21.1197i −0.268565 + 1.00230i
\(445\) 0 0
\(446\) −30.3166 17.5033i −1.43553 0.828805i
\(447\) 39.3124i 1.85941i
\(448\) −0.0532924 + 0.0923052i −0.00251783 + 0.00436101i
\(449\) −8.47234 31.6192i −0.399834 1.49220i −0.813388 0.581722i \(-0.802379\pi\)
0.413553 0.910480i \(-0.364288\pi\)
\(450\) 0 0
\(451\) −20.8450 + 36.1047i −0.981555 + 1.70010i
\(452\) 3.26456 12.1835i 0.153552 0.573063i
\(453\) 24.5434 14.1702i 1.15315 0.665772i
\(454\) −19.6803 −0.923640
\(455\) 0 0
\(456\) −12.0369 −0.563678
\(457\) 15.6189 9.01757i 0.730621 0.421824i −0.0880283 0.996118i \(-0.528057\pi\)
0.818649 + 0.574294i \(0.194723\pi\)
\(458\) 8.18868 30.5606i 0.382632 1.42800i
\(459\) −30.9445 + 53.5975i −1.44437 + 2.50172i
\(460\) 0 0
\(461\) 0.541259 + 2.02001i 0.0252090 + 0.0940811i 0.977384 0.211471i \(-0.0678255\pi\)
−0.952175 + 0.305553i \(0.901159\pi\)
\(462\) −14.6586 + 25.3895i −0.681981 + 1.18123i
\(463\) 36.2345i 1.68396i −0.539509 0.841980i \(-0.681390\pi\)
0.539509 0.841980i \(-0.318610\pi\)
\(464\) −12.3256 7.11618i −0.572201 0.330360i
\(465\) 0 0
\(466\) 0.00662125 0.0247108i 0.000306723 0.00114471i
\(467\) −28.6381 28.6381i −1.32521 1.32521i −0.909493 0.415719i \(-0.863530\pi\)
−0.415719 0.909493i \(-0.636470\pi\)
\(468\) 24.8946 + 17.4880i 1.15075 + 0.808383i
\(469\) 1.83580i 0.0847694i
\(470\) 0 0
\(471\) −22.4482 38.8815i −1.03436 1.79157i
\(472\) −5.18543 + 1.38943i −0.238679 + 0.0639538i
\(473\) −20.3356 −0.935032
\(474\) −19.1100 + 5.12050i −0.877751 + 0.235193i
\(475\) 0 0
\(476\) 4.40360 + 4.40360i 0.201839 + 0.201839i
\(477\) 1.64301 + 6.13181i 0.0752284 + 0.280756i
\(478\) −21.1320 5.66230i −0.966555 0.258988i
\(479\) 32.0790 + 8.59555i 1.46573 + 0.392741i 0.901464 0.432854i \(-0.142493\pi\)
0.564264 + 0.825594i \(0.309160\pi\)
\(480\) 0 0
\(481\) 12.5998 17.9362i 0.574503 0.817820i
\(482\) −27.7843 + 27.7843i −1.26554 + 1.26554i
\(483\) −12.9623 22.4513i −0.589804 1.02157i
\(484\) −2.34534 + 1.35408i −0.106606 + 0.0615492i
\(485\) 0 0
\(486\) 51.6975 51.6975i 2.34505 2.34505i
\(487\) 18.1501 + 10.4790i 0.822460 + 0.474847i 0.851264 0.524738i \(-0.175837\pi\)
−0.0288042 + 0.999585i \(0.509170\pi\)
\(488\) 8.31589 + 4.80118i 0.376443 + 0.217339i
\(489\) −9.19925 + 9.19925i −0.416004 + 0.416004i
\(490\) 0 0
\(491\) 20.3975 11.7765i 0.920527 0.531466i 0.0367236 0.999325i \(-0.488308\pi\)
0.883803 + 0.467859i \(0.154975\pi\)
\(492\) −20.4357 35.3957i −0.921314 1.59576i
\(493\) 8.20437 8.20437i 0.369506 0.369506i
\(494\) −13.8952 5.08142i −0.625173 0.228624i
\(495\) 0 0
\(496\) 1.50012 + 0.401955i 0.0673572 + 0.0180483i
\(497\) 7.36326 + 1.97298i 0.330287 + 0.0885002i
\(498\) −2.05755 7.67888i −0.0922010 0.344099i
\(499\) −18.2233 18.2233i −0.815789 0.815789i 0.169706 0.985495i \(-0.445718\pi\)
−0.985495 + 0.169706i \(0.945718\pi\)
\(500\) 0 0
\(501\) 17.2042 4.60984i 0.768625 0.205952i
\(502\) −2.13269 −0.0951865
\(503\) −9.77054 + 2.61801i −0.435647 + 0.116731i −0.469976 0.882679i \(-0.655737\pi\)
0.0343287 + 0.999411i \(0.489071\pi\)
\(504\) 8.42233 + 14.5879i 0.375160 + 0.649797i
\(505\) 0 0
\(506\) 36.9117i 1.64093i
\(507\) −24.2391 34.8425i −1.07649 1.54741i
\(508\) −15.1258 15.1258i −0.671098 0.671098i
\(509\) 0.411564 1.53598i 0.0182422 0.0680810i −0.956205 0.292699i \(-0.905447\pi\)
0.974447 + 0.224618i \(0.0721134\pi\)
\(510\) 0 0
\(511\) 2.59980 + 1.50100i 0.115008 + 0.0664002i
\(512\) 12.2666i 0.542114i
\(513\) −17.7249 + 30.7005i −0.782576 + 1.35546i
\(514\) −5.81397 21.6980i −0.256443 0.957059i
\(515\) 0 0
\(516\) 9.96816 17.2654i 0.438824 0.760065i
\(517\) −4.81289 + 17.9619i −0.211671 + 0.789965i
\(518\) −12.8866 + 7.44005i −0.566203 + 0.326897i
\(519\) −66.2716 −2.90900
\(520\) 0 0
\(521\) −27.2541 −1.19402 −0.597012 0.802232i \(-0.703646\pi\)
−0.597012 + 0.802232i \(0.703646\pi\)
\(522\) −33.3234 + 19.2393i −1.45853 + 0.842081i
\(523\) −5.33334 + 19.9043i −0.233211 + 0.870354i 0.745737 + 0.666241i \(0.232098\pi\)
−0.978947 + 0.204113i \(0.934569\pi\)
\(524\) 2.32252 4.02272i 0.101460 0.175733i
\(525\) 0 0
\(526\) 5.38960 + 20.1143i 0.234998 + 0.877024i
\(527\) −0.633045 + 1.09647i −0.0275759 + 0.0477628i
\(528\) 59.7652i 2.60095i
\(529\) 8.34861 + 4.82007i 0.362983 + 0.209568i
\(530\) 0 0
\(531\) −6.72641 + 25.1033i −0.291901 + 1.08939i
\(532\) 2.52237 + 2.52237i 0.109359 + 0.109359i
\(533\) 7.05353 + 40.3621i 0.305523 + 1.74828i
\(534\) 6.51843i 0.282080i
\(535\) 0 0
\(536\) −1.04500 1.80999i −0.0451372 0.0781799i
\(537\) 3.06034 0.820015i 0.132063 0.0353863i
\(538\) 28.5936 1.23276
\(539\) 17.9603 4.81245i 0.773604 0.207287i
\(540\) 0 0
\(541\) −26.3998 26.3998i −1.13502 1.13502i −0.989331 0.145684i \(-0.953462\pi\)
−0.145684 0.989331i \(-0.546538\pi\)
\(542\) 0.998764 + 3.72744i 0.0429006 + 0.160107i
\(543\) 57.4510 + 15.3940i 2.46546 + 0.660618i
\(544\) 22.0934 + 5.91991i 0.947248 + 0.253814i
\(545\) 0 0
\(546\) 4.96018 + 28.3834i 0.212276 + 1.21470i
\(547\) −8.78649 + 8.78649i −0.375683 + 0.375683i −0.869542 0.493859i \(-0.835586\pi\)
0.493859 + 0.869542i \(0.335586\pi\)
\(548\) −6.18109 10.7060i −0.264043 0.457336i
\(549\) 40.2582 23.2431i 1.71818 0.991992i
\(550\) 0 0
\(551\) 4.69944 4.69944i 0.200203 0.200203i
\(552\) −25.5601 14.7571i −1.08791 0.628106i
\(553\) −4.14131 2.39098i −0.176106 0.101675i
\(554\) 23.2489 23.2489i 0.987752 0.987752i
\(555\) 0 0
\(556\) 1.59104 0.918586i 0.0674750 0.0389567i
\(557\) 8.16044 + 14.1343i 0.345769 + 0.598889i 0.985493 0.169715i \(-0.0542848\pi\)
−0.639724 + 0.768604i \(0.720951\pi\)
\(558\) 2.96899 2.96899i 0.125687 0.125687i
\(559\) −15.3299 + 12.8236i −0.648386 + 0.542379i
\(560\) 0 0
\(561\) −47.0626 12.6104i −1.98698 0.532411i
\(562\) −18.6840 5.00636i −0.788137 0.211181i
\(563\) 3.02058 + 11.2729i 0.127302 + 0.475098i 0.999911 0.0133211i \(-0.00424036\pi\)
−0.872609 + 0.488419i \(0.837574\pi\)
\(564\) −12.8909 12.8909i −0.542803 0.542803i
\(565\) 0 0
\(566\) 16.6128 4.45140i 0.698290 0.187106i
\(567\) 37.1010 1.55809
\(568\) 8.38284 2.24618i 0.351736 0.0942475i
\(569\) −1.62041 2.80663i −0.0679311 0.117660i 0.830059 0.557675i \(-0.188306\pi\)
−0.897990 + 0.440015i \(0.854973\pi\)
\(570\) 0 0
\(571\) 35.5421i 1.48739i 0.668520 + 0.743694i \(0.266928\pi\)
−0.668520 + 0.743694i \(0.733072\pi\)
\(572\) −5.00430 + 13.6843i −0.209240 + 0.572169i
\(573\) −37.8059 37.8059i −1.57936 1.57936i
\(574\) 7.19911 26.8674i 0.300485 1.12143i
\(575\) 0 0
\(576\) 0.508738 + 0.293720i 0.0211974 + 0.0122383i
\(577\) 16.1725i 0.673272i 0.941635 + 0.336636i \(0.109289\pi\)
−0.941635 + 0.336636i \(0.890711\pi\)
\(578\) 0.399102 0.691264i 0.0166004 0.0287528i
\(579\) −8.69973 32.4678i −0.361549 1.34932i
\(580\) 0 0
\(581\) 0.960759 1.66408i 0.0398590 0.0690378i
\(582\) 23.5762 87.9876i 0.977265 3.64720i
\(583\) −2.63298 + 1.52015i −0.109047 + 0.0629584i
\(584\) 3.41768 0.141424
\(585\) 0 0
\(586\) 59.4842 2.45727
\(587\) 13.7794 7.95555i 0.568737 0.328361i −0.187908 0.982187i \(-0.560171\pi\)
0.756645 + 0.653826i \(0.226837\pi\)
\(588\) −4.71795 + 17.6076i −0.194565 + 0.726127i
\(589\) −0.362606 + 0.628053i −0.0149409 + 0.0258785i
\(590\) 0 0
\(591\) −10.4720 39.0820i −0.430760 1.60762i
\(592\) −15.1671 + 26.2701i −0.623362 + 1.07970i
\(593\) 6.24369i 0.256397i −0.991748 0.128199i \(-0.959080\pi\)
0.991748 0.128199i \(-0.0409195\pi\)
\(594\) 85.1288 + 49.1491i 3.49288 + 2.01661i
\(595\) 0 0
\(596\) 3.43286 12.8116i 0.140616 0.524784i
\(597\) 9.91021 + 9.91021i 0.405598 + 0.405598i
\(598\) −23.2764 27.8257i −0.951842 1.13788i
\(599\) 18.0428i 0.737210i 0.929586 + 0.368605i \(0.120165\pi\)
−0.929586 + 0.368605i \(0.879835\pi\)
\(600\) 0 0
\(601\) 17.1374 + 29.6828i 0.699048 + 1.21079i 0.968797 + 0.247856i \(0.0797259\pi\)
−0.269749 + 0.962931i \(0.586941\pi\)
\(602\) 13.1054 3.51159i 0.534137 0.143122i
\(603\) −10.1180 −0.412035
\(604\) −9.23591 + 2.47475i −0.375804 + 0.100696i
\(605\) 0 0
\(606\) 10.6193 + 10.6193i 0.431380 + 0.431380i
\(607\) −4.91988 18.3613i −0.199692 0.745260i −0.991002 0.133846i \(-0.957267\pi\)
0.791310 0.611415i \(-0.209399\pi\)
\(608\) 12.6551 + 3.39091i 0.513230 + 0.137520i
\(609\) −12.5021 3.34992i −0.506610 0.135746i
\(610\) 0 0
\(611\) 7.69856 + 16.5755i 0.311450 + 0.670573i
\(612\) 24.2703 24.2703i 0.981069 0.981069i
\(613\) −8.98095 15.5555i −0.362737 0.628279i 0.625673 0.780085i \(-0.284824\pi\)
−0.988410 + 0.151806i \(0.951491\pi\)
\(614\) 25.0612 14.4691i 1.01139 0.583925i
\(615\) 0 0
\(616\) −5.70453 + 5.70453i −0.229842 + 0.229842i
\(617\) −16.3673 9.44966i −0.658922 0.380429i 0.132944 0.991124i \(-0.457557\pi\)
−0.791866 + 0.610695i \(0.790890\pi\)
\(618\) 6.76687 + 3.90686i 0.272204 + 0.157157i
\(619\) −26.9541 + 26.9541i −1.08338 + 1.08338i −0.0871850 + 0.996192i \(0.527787\pi\)
−0.996192 + 0.0871850i \(0.972213\pi\)
\(620\) 0 0
\(621\) −75.2773 + 43.4614i −3.02077 + 1.74405i
\(622\) 1.15530 + 2.00104i 0.0463233 + 0.0802343i
\(623\) −1.11408 + 1.11408i −0.0446349 + 0.0446349i
\(624\) 37.6877 + 45.0537i 1.50872 + 1.80359i
\(625\) 0 0
\(626\) −47.0369 12.6035i −1.87997 0.503737i
\(627\) −26.9573 7.22319i −1.07657 0.288466i
\(628\) 3.92048 + 14.6314i 0.156444 + 0.583858i
\(629\) −17.4864 17.4864i −0.697227 0.697227i
\(630\) 0 0
\(631\) 10.7162 2.87140i 0.426606 0.114309i −0.0391265 0.999234i \(-0.512458\pi\)
0.465733 + 0.884926i \(0.345791\pi\)
\(632\) −5.44412 −0.216556
\(633\) 84.7257 22.7022i 3.36754 0.902331i
\(634\) 30.7824 + 53.3166i 1.22252 + 2.11747i
\(635\) 0 0
\(636\) 2.98061i 0.118189i
\(637\) 10.5046 14.9535i 0.416206 0.592480i
\(638\) −13.0310 13.0310i −0.515901 0.515901i
\(639\) 10.8740 40.5824i 0.430170 1.60541i
\(640\) 0 0
\(641\) 19.7159 + 11.3830i 0.778731 + 0.449600i 0.835980 0.548760i \(-0.184900\pi\)
−0.0572496 + 0.998360i \(0.518233\pi\)
\(642\) 89.7027i 3.54028i
\(643\) 17.2987 29.9622i 0.682195 1.18160i −0.292115 0.956383i \(-0.594359\pi\)
0.974310 0.225212i \(-0.0723076\pi\)
\(644\) 2.26380 + 8.44862i 0.0892063 + 0.332922i
\(645\) 0 0
\(646\) −8.34592 + 14.4556i −0.328366 + 0.568746i
\(647\) −10.1776 + 37.9832i −0.400122 + 1.49328i 0.412756 + 0.910842i \(0.364566\pi\)
−0.812878 + 0.582434i \(0.802100\pi\)
\(648\) 36.5794 21.1191i 1.43698 0.829638i
\(649\) −12.4469 −0.488582
\(650\) 0 0
\(651\) 1.41235 0.0553544
\(652\) 3.80127 2.19467i 0.148869 0.0859497i
\(653\) −2.46961 + 9.21671i −0.0966433 + 0.360678i −0.997263 0.0739293i \(-0.976446\pi\)
0.900620 + 0.434607i \(0.143113\pi\)
\(654\) −38.7054 + 67.0398i −1.51350 + 2.62146i
\(655\) 0 0
\(656\) −14.6759 54.7711i −0.572997 2.13845i
\(657\) 8.27270 14.3287i 0.322749 0.559017i
\(658\) 12.4068i 0.483667i
\(659\) 15.6774 + 9.05138i 0.610707 + 0.352592i 0.773242 0.634111i \(-0.218634\pi\)
−0.162535 + 0.986703i \(0.551967\pi\)
\(660\) 0 0
\(661\) 4.48311 16.7312i 0.174373 0.650768i −0.822285 0.569076i \(-0.807301\pi\)
0.996658 0.0816920i \(-0.0260324\pi\)
\(662\) 3.16860 + 3.16860i 0.123151 + 0.123151i
\(663\) −43.4299 + 20.1712i −1.68668 + 0.783385i
\(664\) 2.18759i 0.0848949i
\(665\) 0 0
\(666\) 41.0056 + 71.0239i 1.58894 + 2.75212i
\(667\) 15.7407 4.21770i 0.609482 0.163310i
\(668\) −6.00925 −0.232505
\(669\) −62.6875 + 16.7971i −2.42364 + 0.649412i
\(670\) 0 0
\(671\) 15.7428 + 15.7428i 0.607744 + 0.607744i
\(672\) −6.60380 24.6457i −0.254747 0.950729i
\(673\) −10.2742 2.75296i −0.396040 0.106119i 0.0553019 0.998470i \(-0.482388\pi\)
−0.451342 + 0.892351i \(0.649055\pi\)
\(674\) 20.0476 + 5.37175i 0.772207 + 0.206912i
\(675\) 0 0
\(676\) 4.85679 + 13.4715i 0.186800 + 0.518136i
\(677\) −4.88408 + 4.88408i −0.187710 + 0.187710i −0.794706 0.606995i \(-0.792375\pi\)
0.606995 + 0.794706i \(0.292375\pi\)
\(678\) −32.9198 57.0188i −1.26428 2.18979i
\(679\) 19.0677 11.0088i 0.731752 0.422477i
\(680\) 0 0
\(681\) −25.7990 + 25.7990i −0.988620 + 0.988620i
\(682\) 1.74151 + 1.00546i 0.0666860 + 0.0385012i
\(683\) −40.5438 23.4080i −1.55137 0.895681i −0.998031 0.0627219i \(-0.980022\pi\)
−0.553334 0.832959i \(-0.686645\pi\)
\(684\) 13.9020 13.9020i 0.531555 0.531555i
\(685\) 0 0
\(686\) −25.5816 + 14.7696i −0.976712 + 0.563905i
\(687\) −29.3275 50.7967i −1.11891 1.93802i
\(688\) 19.5577 19.5577i 0.745630 0.745630i
\(689\) −1.02626 + 2.80631i −0.0390973 + 0.106912i
\(690\) 0 0
\(691\) 30.4266 + 8.15279i 1.15748 + 0.310147i 0.785960 0.618277i \(-0.212169\pi\)
0.371523 + 0.928424i \(0.378836\pi\)
\(692\) 21.5974 + 5.78701i 0.821011 + 0.219989i
\(693\) 10.1083 + 37.7246i 0.383982 + 1.43304i
\(694\) −13.3635 13.3635i −0.507273 0.507273i
\(695\) 0 0
\(696\) −14.2332 + 3.81379i −0.539510 + 0.144561i
\(697\) 46.2265 1.75095
\(698\) 40.5146 10.8558i 1.53350 0.410900i
\(699\) −0.0237138 0.0410735i −0.000896938 0.00155354i
\(700\) 0 0
\(701\) 5.09953i 0.192607i 0.995352 + 0.0963034i \(0.0307019\pi\)
−0.995352 + 0.0963034i \(0.969298\pi\)
\(702\) 95.1671 16.6311i 3.59185 0.627699i
\(703\) −10.0161 10.0161i −0.377766 0.377766i
\(704\) −0.0728169 + 0.271756i −0.00274439 + 0.0102422i
\(705\) 0 0
\(706\) −39.4538 22.7787i −1.48486 0.857286i
\(707\) 3.62996i 0.136519i
\(708\) 6.10123 10.5676i 0.229298 0.397156i
\(709\) 11.1632 + 41.6615i 0.419241 + 1.56463i 0.776186 + 0.630504i \(0.217152\pi\)
−0.356945 + 0.934125i \(0.616182\pi\)
\(710\) 0 0
\(711\) −13.1778 + 22.8247i −0.494208 + 0.855993i
\(712\) −0.464249 + 1.73260i −0.0173985 + 0.0649319i
\(713\) −1.53998 + 0.889107i −0.0576726 + 0.0332973i
\(714\) 32.5074 1.21656
\(715\) 0 0
\(716\) −1.06895 −0.0399485
\(717\) −35.1249 + 20.2793i −1.31176 + 0.757346i
\(718\) −12.4933 + 46.6258i −0.466248 + 1.74006i
\(719\) 26.2618 45.4868i 0.979400 1.69637i 0.314824 0.949150i \(-0.398054\pi\)
0.664576 0.747221i \(-0.268612\pi\)
\(720\) 0 0
\(721\) 0.488814 + 1.82428i 0.0182044 + 0.0679397i
\(722\) 11.9502 20.6983i 0.444739 0.770311i
\(723\) 72.8453i 2.70915i
\(724\) −17.3786 10.0336i −0.645872 0.372894i
\(725\) 0 0
\(726\) −3.65873 + 13.6546i −0.135788 + 0.506769i
\(727\) 3.04083 + 3.04083i 0.112778 + 0.112778i 0.761244 0.648466i \(-0.224589\pi\)
−0.648466 + 0.761244i \(0.724589\pi\)
\(728\) −0.703077 + 7.89758i −0.0260578 + 0.292704i
\(729\) 55.4569i 2.05396i
\(730\) 0 0
\(731\) 11.2742 + 19.5275i 0.416991 + 0.722250i
\(732\) −21.0828 + 5.64912i −0.779243 + 0.208797i
\(733\) 25.6949 0.949061 0.474531 0.880239i \(-0.342618\pi\)
0.474531 + 0.880239i \(0.342618\pi\)
\(734\) 40.9504 10.9726i 1.51151 0.405007i
\(735\) 0 0
\(736\) 22.7156 + 22.7156i 0.837307 + 0.837307i
\(737\) −1.25419 4.68068i −0.0461985 0.172415i
\(738\) −148.079 39.6777i −5.45087 1.46056i
\(739\) −16.5169 4.42570i −0.607586 0.162802i −0.0581076 0.998310i \(-0.518507\pi\)
−0.549478 + 0.835508i \(0.685173\pi\)
\(740\) 0 0
\(741\) −24.8766 + 11.5540i −0.913863 + 0.424447i
\(742\) 1.43434 1.43434i 0.0526563 0.0526563i
\(743\) 9.18480 + 15.9085i 0.336958 + 0.583628i 0.983859 0.178946i \(-0.0572688\pi\)
−0.646901 + 0.762574i \(0.723935\pi\)
\(744\) 1.39250 0.803960i 0.0510515 0.0294746i
\(745\) 0 0
\(746\) 28.9305 28.9305i 1.05922 1.05922i
\(747\) −9.17154 5.29519i −0.335569 0.193741i
\(748\) 14.2362 + 8.21926i 0.520526 + 0.300526i
\(749\) −15.3314 + 15.3314i −0.560196 + 0.560196i
\(750\) 0 0
\(751\) −28.0217 + 16.1783i −1.02252 + 0.590355i −0.914834 0.403830i \(-0.867679\pi\)
−0.107690 + 0.994184i \(0.534346\pi\)
\(752\) −12.6460 21.9036i −0.461154 0.798742i
\(753\) −2.79576 + 2.79576i −0.101883 + 0.101883i
\(754\) −18.0406 1.60605i −0.657000 0.0584890i
\(755\) 0 0
\(756\) −22.4992 6.02865i −0.818288 0.219260i
\(757\) 0.589155 + 0.157864i 0.0214132 + 0.00573766i 0.269510 0.962998i \(-0.413138\pi\)
−0.248097 + 0.968735i \(0.579805\pi\)
\(758\) 12.6757 + 47.3062i 0.460401 + 1.71824i
\(759\) −48.3879 48.3879i −1.75637 1.75637i
\(760\) 0 0
\(761\) 11.9275 3.19596i 0.432371 0.115854i −0.0360677 0.999349i \(-0.511483\pi\)
0.468439 + 0.883496i \(0.344817\pi\)
\(762\) −111.659 −4.04496
\(763\) −18.0732 + 4.84271i −0.654295 + 0.175318i
\(764\) 9.01936 + 15.6220i 0.326309 + 0.565184i
\(765\) 0 0
\(766\) 29.7119i 1.07353i
\(767\) −9.38300 + 7.84894i −0.338801 + 0.283409i
\(768\) −45.9191 45.9191i −1.65696 1.65696i
\(769\) −12.1625 + 45.3911i −0.438591 + 1.63684i 0.293733 + 0.955888i \(0.405102\pi\)
−0.732324 + 0.680956i \(0.761564\pi\)
\(770\) 0 0
\(771\) −36.0657 20.8225i −1.29887 0.749905i
\(772\) 11.3407i 0.408161i
\(773\) −17.0750 + 29.5748i −0.614145 + 1.06373i 0.376389 + 0.926462i \(0.377166\pi\)
−0.990534 + 0.137269i \(0.956168\pi\)
\(774\) −19.3540 72.2301i −0.695665 2.59626i
\(775\) 0 0
\(776\) 12.5331 21.7080i 0.449913 0.779272i
\(777\) −7.13986 + 26.6463i −0.256141 + 0.955931i
\(778\) −24.3349 + 14.0498i −0.872449 + 0.503709i
\(779\) 26.4784 0.948688
\(780\) 0 0
\(781\) 20.1218 0.720014
\(782\) −35.4449 + 20.4641i −1.26751 + 0.731795i
\(783\) −11.2320 + 41.9184i −0.401399 + 1.49804i
\(784\) −12.6449 + 21.9016i −0.451603 + 0.782199i
\(785\) 0 0
\(786\) −6.27545 23.4203i −0.223838 0.835374i
\(787\) −4.35267 + 7.53904i −0.155156 + 0.268738i −0.933116 0.359576i \(-0.882921\pi\)
0.777960 + 0.628314i \(0.216255\pi\)
\(788\) 13.6510i 0.486296i
\(789\) 33.4332 + 19.3027i 1.19026 + 0.687194i
\(790\) 0 0
\(791\) 4.11883 15.3717i 0.146449 0.546554i
\(792\) 31.4403 + 31.4403i 1.11718 + 1.11718i
\(793\) 21.7950 + 1.94028i 0.773962 + 0.0689014i
\(794\) 29.2484i 1.03799i
\(795\) 0 0
\(796\) −2.36428 4.09505i −0.0837997 0.145145i
\(797\) 28.2754 7.57637i 1.00157 0.268369i 0.279464 0.960156i \(-0.409843\pi\)
0.722101 + 0.691787i \(0.243176\pi\)
\(798\) 18.6201 0.659145
\(799\) 19.9164 5.33659i 0.704593 0.188795i
\(800\) 0 0
\(801\) 6.14025 + 6.14025i 0.216955 + 0.216955i
\(802\) −8.34312 31.1370i −0.294606 1.09948i
\(803\) 7.65409 + 2.05091i 0.270107 + 0.0723750i
\(804\) 4.58878 + 1.22956i 0.161834 + 0.0433632i
\(805\) 0 0
\(806\) 1.94687 0.340228i 0.0685756 0.0119840i
\(807\) 37.4836 37.4836i 1.31948 1.31948i
\(808\) 2.06630 + 3.57894i 0.0726922 + 0.125907i
\(809\) −29.2507 + 16.8879i −1.02840 + 0.593748i −0.916526 0.399975i \(-0.869019\pi\)
−0.111875 + 0.993722i \(0.535686\pi\)
\(810\) 0 0
\(811\) 34.8970 34.8970i 1.22540 1.22540i 0.259712 0.965686i \(-0.416372\pi\)
0.965686 0.259712i \(-0.0836277\pi\)
\(812\) 3.78182 + 2.18343i 0.132716 + 0.0766235i
\(813\) 6.19561 + 3.57704i 0.217290 + 0.125452i
\(814\) −27.7735 + 27.7735i −0.973462 + 0.973462i
\(815\) 0 0
\(816\) 57.3902 33.1342i 2.00906 1.15993i
\(817\) 6.45783 + 11.1853i 0.225931 + 0.391324i
\(818\) −15.3639 + 15.3639i −0.537186 + 0.537186i
\(819\) 31.4091 + 22.0643i 1.09752 + 0.770988i
\(820\) 0 0
\(821\) −20.4287 5.47385i −0.712966 0.191039i −0.115935 0.993257i \(-0.536986\pi\)
−0.597031 + 0.802218i \(0.703653\pi\)
\(822\) −62.3301 16.7013i −2.17401 0.582525i
\(823\) −13.3506 49.8251i −0.465373 1.73679i −0.655651 0.755064i \(-0.727606\pi\)
0.190278 0.981730i \(-0.439061\pi\)
\(824\) 1.52039 + 1.52039i 0.0529652 + 0.0529652i
\(825\) 0 0
\(826\) 8.02146 2.14934i 0.279102 0.0747852i
\(827\) 2.11823 0.0736582 0.0368291 0.999322i \(-0.488274\pi\)
0.0368291 + 0.999322i \(0.488274\pi\)
\(828\) 46.5643 12.4769i 1.61822 0.433601i
\(829\) −6.39435 11.0753i −0.222085 0.384662i 0.733356 0.679845i \(-0.237953\pi\)
−0.955441 + 0.295183i \(0.904620\pi\)
\(830\) 0 0
\(831\) 60.9544i 2.11448i
\(832\) 0.116476 + 0.250780i 0.00403807 + 0.00869424i
\(833\) −14.5785 14.5785i −0.505115 0.505115i
\(834\) 2.48202 9.26302i 0.0859453 0.320752i
\(835\) 0 0
\(836\) 8.15445 + 4.70797i 0.282027 + 0.162829i
\(837\) 4.73549i 0.163683i
\(838\) −15.8682 + 27.4846i −0.548159 + 0.949439i
\(839\) 8.24394 + 30.7668i 0.284612 + 1.06219i 0.949122 + 0.314908i \(0.101974\pi\)
−0.664510 + 0.747280i \(0.731360\pi\)
\(840\) 0 0
\(841\) −10.4320 + 18.0688i −0.359725 + 0.623062i
\(842\) −8.18545 + 30.5485i −0.282089 + 1.05277i
\(843\) −31.0559 + 17.9301i −1.06962 + 0.617546i
\(844\) −29.5939 −1.01866
\(845\) 0 0
\(846\) −68.3796 −2.35094
\(847\) −2.95907 + 1.70842i −0.101675 + 0.0587020i
\(848\) 1.07026 3.99426i 0.0367529 0.137164i
\(849\) 15.9425 27.6133i 0.547147 0.947686i
\(850\) 0 0
\(851\) −8.98940 33.5489i −0.308152 1.15004i
\(852\) −9.86335 + 17.0838i −0.337913 + 0.585282i
\(853\) 37.3304i 1.27817i −0.769137 0.639083i \(-0.779314\pi\)
0.769137 0.639083i \(-0.220686\pi\)
\(854\) −12.8640 7.42706i −0.440198 0.254149i
\(855\) 0 0
\(856\) −6.38871 + 23.8430i −0.218362 + 0.814937i
\(857\) 8.71215 + 8.71215i 0.297601 + 0.297601i 0.840074 0.542472i \(-0.182512\pi\)
−0.542472 + 0.840074i \(0.682512\pi\)
\(858\) 32.0379 + 68.9796i 1.09375 + 2.35493i
\(859\) 3.04501i 0.103895i −0.998650 0.0519473i \(-0.983457\pi\)
0.998650 0.0519473i \(-0.0165428\pi\)
\(860\) 0 0
\(861\) −25.7834 44.6581i −0.878695 1.52194i
\(862\) 12.4520 3.33652i 0.424118 0.113642i
\(863\) −23.2413 −0.791142 −0.395571 0.918435i \(-0.629453\pi\)
−0.395571 + 0.918435i \(0.629453\pi\)
\(864\) −82.6350 + 22.1420i −2.81130 + 0.753285i
\(865\) 0 0
\(866\) −11.0484 11.0484i −0.375440 0.375440i
\(867\) −0.382998 1.42937i −0.0130073 0.0485439i
\(868\) −0.460275 0.123330i −0.0156228 0.00418611i
\(869\) −12.1924 3.26696i −0.413600 0.110824i
\(870\) 0 0
\(871\) −3.89708 2.73763i −0.132048 0.0927609i
\(872\) −15.0626 + 15.0626i −0.510082 + 0.510082i
\(873\) −60.6744 105.091i −2.05352 3.55680i
\(874\) −20.3027 + 11.7218i −0.686750 + 0.396495i
\(875\) 0 0
\(876\) −5.49316 + 5.49316i −0.185597 + 0.185597i
\(877\) 21.6468 + 12.4978i 0.730961 + 0.422021i 0.818774 0.574116i \(-0.194654\pi\)
−0.0878124 + 0.996137i \(0.527988\pi\)
\(878\) 36.2663 + 20.9383i 1.22393 + 0.706635i
\(879\) 77.9783 77.9783i 2.63014 2.63014i
\(880\) 0 0
\(881\) −26.3994 + 15.2417i −0.889417 + 0.513505i −0.873752 0.486372i \(-0.838320\pi\)
−0.0156653 + 0.999877i \(0.504987\pi\)
\(882\) 34.1867 + 59.2131i 1.15113 + 1.99381i
\(883\) 40.0008 40.0008i 1.34613 1.34613i 0.456315 0.889818i \(-0.349169\pi\)
0.889818 0.456315i \(-0.150831\pi\)
\(884\) 15.9149 2.78123i 0.535276 0.0935429i
\(885\) 0 0
\(886\) −12.4770 3.34320i −0.419173 0.112317i
\(887\) 43.7550 + 11.7241i 1.46915 + 0.393657i 0.902639 0.430398i \(-0.141627\pi\)
0.566509 + 0.824055i \(0.308294\pi\)
\(888\) 8.12851 + 30.3360i 0.272775 + 1.01801i
\(889\) −19.0839 19.0839i −0.640053 0.640053i
\(890\) 0 0
\(891\) 94.5952 25.3467i 3.16906 0.849147i
\(892\) 21.8962 0.733138
\(893\) 11.4081 3.05679i 0.381757 0.102291i
\(894\) −34.6170 59.9584i −1.15777 2.00531i
\(895\) 0 0
\(896\) 15.8174i 0.528422i
\(897\) −66.9901 5.96375i −2.23674 0.199124i
\(898\) 40.7645 + 40.7645i 1.36033 + 1.36033i
\(899\) −0.229778 + 0.857542i −0.00766351 + 0.0286006i
\(900\) 0 0
\(901\) 2.91949 + 1.68557i 0.0972623 + 0.0561544i
\(902\) 73.4214i 2.44467i
\(903\) 12.5766 21.7834i 0.418524 0.724905i
\(904\) −4.68916 17.5002i −0.155959 0.582047i
\(905\) 0 0
\(906\) −24.9554 + 43.2241i −0.829089 + 1.43602i
\(907\) 13.1976 49.2541i 0.438219 1.63545i −0.295026 0.955489i \(-0.595328\pi\)
0.733245 0.679965i \(-0.238005\pi\)
\(908\) 10.6605 6.15487i 0.353783 0.204257i
\(909\) 20.0064 0.663571
\(910\) 0 0
\(911\) −42.2460 −1.39967 −0.699836 0.714304i \(-0.746743\pi\)
−0.699836 + 0.714304i \(0.746743\pi\)
\(912\) 32.8729 18.9792i 1.08853 0.628464i
\(913\) 1.31275 4.89924i 0.0434456 0.162141i
\(914\) −15.8811 + 27.5068i −0.525299 + 0.909845i
\(915\) 0 0
\(916\) 5.12191 + 19.1152i 0.169233 + 0.631585i
\(917\) 2.93028 5.07539i 0.0967663 0.167604i
\(918\) 108.994i 3.59735i
\(919\) 51.0057 + 29.4481i 1.68252 + 0.971405i 0.959976 + 0.280082i \(0.0903615\pi\)
0.722546 + 0.691323i \(0.242972\pi\)
\(920\) 0 0
\(921\) 13.8853 51.8206i 0.457536 1.70755i
\(922\) −2.60426 2.60426i −0.0857667 0.0857667i
\(923\) 15.1687 12.6887i 0.499284 0.417654i
\(924\) 18.3376i 0.603261i
\(925\) 0 0
\(926\) 31.9067 + 55.2641i 1.04852 + 1.81609i
\(927\) 10.0545 2.69409i 0.330232 0.0884854i
\(928\) 16.0386 0.526493
\(929\) −13.3277 + 3.57114i −0.437267 + 0.117165i −0.470736 0.882274i \(-0.656011\pi\)
0.0334683 + 0.999440i \(0.489345\pi\)
\(930\) 0 0
\(931\) −8.35053 8.35053i −0.273678 0.273678i
\(932\) 0.00414150 + 0.0154563i 0.000135659 + 0.000506288i
\(933\) 4.13767 + 1.10869i 0.135461 + 0.0362967i
\(934\) 68.8958 + 18.4606i 2.25434 + 0.604048i
\(935\) 0 0
\(936\) 43.5273 + 3.87499i 1.42273 + 0.126658i
\(937\) 8.81699 8.81699i 0.288038 0.288038i −0.548266 0.836304i \(-0.684712\pi\)
0.836304 + 0.548266i \(0.184712\pi\)
\(938\) 1.61654 + 2.79992i 0.0527818 + 0.0914207i
\(939\) −78.1831 + 45.1390i −2.55141 + 1.47306i
\(940\) 0 0
\(941\) −22.1697 + 22.1697i −0.722711 + 0.722711i −0.969157 0.246446i \(-0.920737\pi\)
0.246446 + 0.969157i \(0.420737\pi\)
\(942\) 68.4752 + 39.5342i 2.23104 + 1.28809i
\(943\) 56.2265 + 32.4624i 1.83099 + 1.05712i
\(944\) 11.9707 11.9707i 0.389614 0.389614i
\(945\) 0 0
\(946\) 31.0154 17.9068i 1.00840 0.582199i
\(947\) 5.23299 + 9.06381i 0.170049 + 0.294534i 0.938437 0.345451i \(-0.112274\pi\)
−0.768388 + 0.639985i \(0.778941\pi\)
\(948\) 8.75023 8.75023i 0.284194 0.284194i
\(949\) 7.06329 3.28057i 0.229284 0.106492i
\(950\) 0 0
\(951\) 110.246 + 29.5403i 3.57497 + 0.957911i
\(952\) 8.64046 + 2.31521i 0.280039 + 0.0750362i
\(953\) 2.94307 + 10.9837i 0.0953353 + 0.355796i 0.997070 0.0764935i \(-0.0243724\pi\)
−0.901735 + 0.432290i \(0.857706\pi\)
\(954\) −7.90533 7.90533i −0.255945 0.255945i
\(955\) 0 0
\(956\) 13.2178 3.54169i 0.427494 0.114547i
\(957\) −34.1648 −1.10439
\(958\) −56.4952 + 15.1378i −1.82528 + 0.489081i
\(959\) −7.79856 13.5075i −0.251828 0.436180i
\(960\) 0 0
\(961\) 30.9031i 0.996875i
\(962\) −3.42306 + 38.4508i −0.110364 + 1.23970i
\(963\) 84.4983 + 84.4983i 2.72292 + 2.72292i
\(964\) 6.36105 23.7398i 0.204876 0.764606i
\(965\) 0 0
\(966\) 39.5396 + 22.8282i 1.27216 + 0.734485i
\(967\) 21.5436i 0.692795i −0.938088 0.346398i \(-0.887405\pi\)
0.938088 0.346398i \(-0.112595\pi\)
\(968\) −1.94498 + 3.36881i −0.0625141 + 0.108278i
\(969\) 8.00917 + 29.8906i 0.257292 + 0.960226i
\(970\) 0 0
\(971\) 11.5450 19.9965i 0.370497 0.641719i −0.619145 0.785276i \(-0.712521\pi\)
0.989642 + 0.143557i \(0.0458541\pi\)
\(972\) −11.8358 + 44.1720i −0.379635 + 1.41682i
\(973\) 2.00738 1.15896i 0.0643537 0.0371546i
\(974\) −36.9095 −1.18266
\(975\) 0 0
\(976\) −30.2811 −0.969275
\(977\) 5.83384 3.36817i 0.186641 0.107757i −0.403768 0.914861i \(-0.632300\pi\)
0.590409 + 0.807104i \(0.298966\pi\)
\(978\) 5.92999 22.1310i 0.189620 0.707672i
\(979\) −2.07943 + 3.60167i −0.0664587 + 0.115110i
\(980\) 0 0
\(981\) 26.6905 + 99.6102i 0.852161 + 3.18031i
\(982\) −20.7399 + 35.9226i −0.661837 + 1.14633i
\(983\) 12.0774i 0.385209i −0.981276 0.192604i \(-0.938307\pi\)
0.981276 0.192604i \(-0.0616934\pi\)
\(984\) −50.8419 29.3536i −1.62078 0.935758i
\(985\) 0 0
\(986\) −5.28867 + 19.7376i −0.168426 + 0.628573i
\(987\) −16.2642 16.2642i −0.517694 0.517694i
\(988\) 9.11602 1.59308i 0.290019 0.0506827i
\(989\) 31.6691i 1.00702i
\(990\) 0 0
\(991\) 5.00080 + 8.66164i 0.158856 + 0.275146i 0.934456 0.356078i \(-0.115886\pi\)
−0.775601 + 0.631224i \(0.782553\pi\)
\(992\) −1.69050 + 0.452967i −0.0536733 + 0.0143817i
\(993\) 8.30749 0.263630
\(994\) −12.9676 + 3.47466i −0.411308 + 0.110210i
\(995\) 0 0
\(996\) 3.51607 + 3.51607i 0.111411 + 0.111411i
\(997\) −3.81848 14.2508i −0.120932 0.451326i 0.878730 0.477320i \(-0.158392\pi\)
−0.999662 + 0.0259937i \(0.991725\pi\)
\(998\) 43.8406 + 11.7471i 1.38775 + 0.371847i
\(999\) 89.3428 + 23.9393i 2.82668 + 0.757407i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.2.x.c.93.3 yes 40
5.2 odd 4 325.2.s.c.132.3 40
5.3 odd 4 325.2.s.c.132.8 yes 40
5.4 even 2 inner 325.2.x.c.93.8 yes 40
13.7 odd 12 325.2.s.c.293.3 yes 40
65.7 even 12 inner 325.2.x.c.7.3 yes 40
65.33 even 12 inner 325.2.x.c.7.8 yes 40
65.59 odd 12 325.2.s.c.293.8 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
325.2.s.c.132.3 40 5.2 odd 4
325.2.s.c.132.8 yes 40 5.3 odd 4
325.2.s.c.293.3 yes 40 13.7 odd 12
325.2.s.c.293.8 yes 40 65.59 odd 12
325.2.x.c.7.3 yes 40 65.7 even 12 inner
325.2.x.c.7.8 yes 40 65.33 even 12 inner
325.2.x.c.93.3 yes 40 1.1 even 1 trivial
325.2.x.c.93.8 yes 40 5.4 even 2 inner