Properties

Label 325.2.s.c.132.3
Level $325$
Weight $2$
Character 325.132
Analytic conductor $2.595$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [325,2,Mod(32,325)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(325, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([3, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("325.32"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 325.s (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.59513806569\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(10\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 132.3
Character \(\chi\) \(=\) 325.132
Dual form 325.2.s.c.293.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.880562 - 1.52518i) q^{2} +(3.15371 + 0.845033i) q^{3} +(-0.550780 + 0.953979i) q^{4} +(-1.48821 - 5.55407i) q^{6} +(1.20362 + 0.694909i) q^{7} -1.58226 q^{8} +(6.63370 + 3.82997i) q^{9} +(0.949498 - 3.54358i) q^{11} +(-2.54314 + 2.54314i) q^{12} +(-3.27006 + 1.51879i) q^{13} -2.44764i q^{14} +(2.49484 + 4.32119i) q^{16} +(-1.05282 - 3.92917i) q^{17} -13.4901i q^{18} +(2.25062 - 0.603051i) q^{19} +(3.20863 + 3.20863i) q^{21} +(-6.24068 + 1.67219i) q^{22} +(-1.47867 + 5.51848i) q^{23} +(-4.99000 - 1.33707i) q^{24} +(5.19592 + 3.65003i) q^{26} +(10.7583 + 10.7583i) q^{27} +(-1.32586 + 0.765484i) q^{28} +(2.47021 - 1.42618i) q^{29} +(0.220086 - 0.220086i) q^{31} +(2.81146 - 4.86960i) q^{32} +(5.98888 - 10.3730i) q^{33} +(-5.06561 + 5.06561i) q^{34} +(-7.30742 + 4.21894i) q^{36} +(-5.26488 + 3.03968i) q^{37} +(-2.90157 - 2.90157i) q^{38} +(-11.5962 + 2.02651i) q^{39} +(-10.9769 - 2.94124i) q^{41} +(2.06834 - 7.71914i) q^{42} +(-5.35430 + 1.43468i) q^{43} +(2.85753 + 2.85753i) q^{44} +(9.71874 - 2.60413i) q^{46} -5.06887i q^{47} +(4.21645 + 15.7360i) q^{48} +(-2.53420 - 4.38937i) q^{49} -13.2811i q^{51} +(0.352188 - 3.95609i) q^{52} +(-0.586010 + 0.586010i) q^{53} +(6.93496 - 25.8816i) q^{54} +(-1.90444 - 1.09953i) q^{56} +7.60737 q^{57} +(-4.35035 - 2.51168i) q^{58} +(0.878129 + 3.27722i) q^{59} +(-3.03437 + 5.25569i) q^{61} +(-0.529470 - 0.141871i) q^{62} +(5.32296 + 9.21963i) q^{63} +0.0766898 q^{64} -21.0943 q^{66} +(0.660446 + 1.14393i) q^{67} +(4.32821 + 1.15974i) q^{68} +(-9.32660 + 16.1541i) q^{69} +(1.41960 + 5.29800i) q^{71} +(-10.4963 - 6.06002i) q^{72} +2.15999 q^{73} +(9.27212 + 5.35326i) q^{74} +(-0.664297 + 2.47919i) q^{76} +(3.60529 - 3.60529i) q^{77} +(13.3020 + 15.9018i) q^{78} +3.44072i q^{79} +(13.3474 + 23.1184i) q^{81} +(5.17990 + 19.3316i) q^{82} -1.38257i q^{83} +(-4.82822 + 1.29372i) q^{84} +(6.90294 + 6.90294i) q^{86} +(8.99549 - 2.41033i) q^{87} +(-1.50236 + 5.60687i) q^{88} +(1.09501 + 0.293408i) q^{89} +(-4.99132 - 0.444348i) q^{91} +(-4.45010 - 4.45010i) q^{92} +(0.880067 - 0.508107i) q^{93} +(-7.73094 + 4.46346i) q^{94} +(12.9815 - 12.9815i) q^{96} +(-7.92101 + 13.7196i) q^{97} +(-4.46305 + 7.73023i) q^{98} +(19.8705 - 19.8705i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 24 q^{4} - 12 q^{6} + 24 q^{9} + 8 q^{11} - 32 q^{16} - 24 q^{19} + 32 q^{21} + 56 q^{24} + 76 q^{26} - 36 q^{29} + 8 q^{31} + 44 q^{34} - 60 q^{36} + 44 q^{39} - 52 q^{41} - 80 q^{44} - 60 q^{46}+ \cdots + 208 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/325\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.880562 1.52518i −0.622652 1.07846i −0.988990 0.147983i \(-0.952722\pi\)
0.366338 0.930482i \(-0.380611\pi\)
\(3\) 3.15371 + 0.845033i 1.82079 + 0.487880i 0.996887 0.0788467i \(-0.0251238\pi\)
0.823906 + 0.566727i \(0.191790\pi\)
\(4\) −0.550780 + 0.953979i −0.275390 + 0.476990i
\(5\) 0 0
\(6\) −1.48821 5.55407i −0.607558 2.26744i
\(7\) 1.20362 + 0.694909i 0.454925 + 0.262651i 0.709908 0.704295i \(-0.248737\pi\)
−0.254983 + 0.966945i \(0.582070\pi\)
\(8\) −1.58226 −0.559415
\(9\) 6.63370 + 3.82997i 2.21123 + 1.27666i
\(10\) 0 0
\(11\) 0.949498 3.54358i 0.286285 1.06843i −0.661611 0.749847i \(-0.730127\pi\)
0.947896 0.318581i \(-0.103206\pi\)
\(12\) −2.54314 + 2.54314i −0.734142 + 0.734142i
\(13\) −3.27006 + 1.51879i −0.906951 + 0.421237i
\(14\) 2.44764i 0.654160i
\(15\) 0 0
\(16\) 2.49484 + 4.32119i 0.623711 + 1.08030i
\(17\) −1.05282 3.92917i −0.255346 0.952963i −0.967898 0.251344i \(-0.919128\pi\)
0.712552 0.701619i \(-0.247539\pi\)
\(18\) 13.4901i 3.17965i
\(19\) 2.25062 0.603051i 0.516327 0.138349i 0.00875965 0.999962i \(-0.497212\pi\)
0.507567 + 0.861612i \(0.330545\pi\)
\(20\) 0 0
\(21\) 3.20863 + 3.20863i 0.700181 + 0.700181i
\(22\) −6.24068 + 1.67219i −1.33052 + 0.356511i
\(23\) −1.47867 + 5.51848i −0.308325 + 1.15068i 0.621721 + 0.783239i \(0.286434\pi\)
−0.930045 + 0.367444i \(0.880233\pi\)
\(24\) −4.99000 1.33707i −1.01858 0.272927i
\(25\) 0 0
\(26\) 5.19592 + 3.65003i 1.01900 + 0.715830i
\(27\) 10.7583 + 10.7583i 2.07043 + 2.07043i
\(28\) −1.32586 + 0.765484i −0.250563 + 0.144663i
\(29\) 2.47021 1.42618i 0.458707 0.264835i −0.252793 0.967520i \(-0.581349\pi\)
0.711500 + 0.702686i \(0.248016\pi\)
\(30\) 0 0
\(31\) 0.220086 0.220086i 0.0395287 0.0395287i −0.687066 0.726595i \(-0.741102\pi\)
0.726595 + 0.687066i \(0.241102\pi\)
\(32\) 2.81146 4.86960i 0.497001 0.860832i
\(33\) 5.98888 10.3730i 1.04253 1.80571i
\(34\) −5.06561 + 5.06561i −0.868745 + 0.868745i
\(35\) 0 0
\(36\) −7.30742 + 4.21894i −1.21790 + 0.703157i
\(37\) −5.26488 + 3.03968i −0.865542 + 0.499721i −0.865864 0.500279i \(-0.833231\pi\)
0.000322437 1.00000i \(0.499897\pi\)
\(38\) −2.90157 2.90157i −0.470696 0.470696i
\(39\) −11.5962 + 2.02651i −1.85688 + 0.324502i
\(40\) 0 0
\(41\) −10.9769 2.94124i −1.71430 0.459345i −0.737827 0.674990i \(-0.764148\pi\)
−0.976472 + 0.215645i \(0.930815\pi\)
\(42\) 2.06834 7.71914i 0.319151 1.19109i
\(43\) −5.35430 + 1.43468i −0.816524 + 0.218787i −0.642826 0.766012i \(-0.722238\pi\)
−0.173698 + 0.984799i \(0.555572\pi\)
\(44\) 2.85753 + 2.85753i 0.430789 + 0.430789i
\(45\) 0 0
\(46\) 9.71874 2.60413i 1.43295 0.383958i
\(47\) 5.06887i 0.739371i −0.929157 0.369686i \(-0.879465\pi\)
0.929157 0.369686i \(-0.120535\pi\)
\(48\) 4.21645 + 15.7360i 0.608592 + 2.27130i
\(49\) −2.53420 4.38937i −0.362029 0.627053i
\(50\) 0 0
\(51\) 13.2811i 1.85973i
\(52\) 0.352188 3.95609i 0.0488397 0.548611i
\(53\) −0.586010 + 0.586010i −0.0804946 + 0.0804946i −0.746208 0.665713i \(-0.768127\pi\)
0.665713 + 0.746208i \(0.268127\pi\)
\(54\) 6.93496 25.8816i 0.943728 3.52204i
\(55\) 0 0
\(56\) −1.90444 1.09953i −0.254492 0.146931i
\(57\) 7.60737 1.00762
\(58\) −4.35035 2.51168i −0.571229 0.329799i
\(59\) 0.878129 + 3.27722i 0.114323 + 0.426658i 0.999235 0.0390991i \(-0.0124488\pi\)
−0.884913 + 0.465757i \(0.845782\pi\)
\(60\) 0 0
\(61\) −3.03437 + 5.25569i −0.388512 + 0.672922i −0.992250 0.124261i \(-0.960344\pi\)
0.603738 + 0.797183i \(0.293677\pi\)
\(62\) −0.529470 0.141871i −0.0672428 0.0180177i
\(63\) 5.32296 + 9.21963i 0.670630 + 1.16156i
\(64\) 0.0766898 0.00958623
\(65\) 0 0
\(66\) −21.0943 −2.59653
\(67\) 0.660446 + 1.14393i 0.0806864 + 0.139753i 0.903545 0.428493i \(-0.140955\pi\)
−0.822859 + 0.568246i \(0.807622\pi\)
\(68\) 4.32821 + 1.15974i 0.524873 + 0.140639i
\(69\) −9.32660 + 16.1541i −1.12279 + 1.94473i
\(70\) 0 0
\(71\) 1.41960 + 5.29800i 0.168475 + 0.628758i 0.997571 + 0.0696517i \(0.0221888\pi\)
−0.829096 + 0.559106i \(0.811145\pi\)
\(72\) −10.4963 6.06002i −1.23700 0.714181i
\(73\) 2.15999 0.252808 0.126404 0.991979i \(-0.459656\pi\)
0.126404 + 0.991979i \(0.459656\pi\)
\(74\) 9.27212 + 5.35326i 1.07786 + 0.622304i
\(75\) 0 0
\(76\) −0.664297 + 2.47919i −0.0762000 + 0.284382i
\(77\) 3.60529 3.60529i 0.410861 0.410861i
\(78\) 13.3020 + 15.9018i 1.50615 + 1.80053i
\(79\) 3.44072i 0.387111i 0.981089 + 0.193555i \(0.0620020\pi\)
−0.981089 + 0.193555i \(0.937998\pi\)
\(80\) 0 0
\(81\) 13.3474 + 23.1184i 1.48305 + 2.56871i
\(82\) 5.17990 + 19.3316i 0.572024 + 2.13482i
\(83\) 1.38257i 0.151757i −0.997117 0.0758783i \(-0.975824\pi\)
0.997117 0.0758783i \(-0.0241760\pi\)
\(84\) −4.82822 + 1.29372i −0.526802 + 0.141156i
\(85\) 0 0
\(86\) 6.90294 + 6.90294i 0.744364 + 0.744364i
\(87\) 8.99549 2.41033i 0.964418 0.258415i
\(88\) −1.50236 + 5.60687i −0.160152 + 0.597695i
\(89\) 1.09501 + 0.293408i 0.116071 + 0.0311012i 0.316387 0.948630i \(-0.397530\pi\)
−0.200316 + 0.979731i \(0.564197\pi\)
\(90\) 0 0
\(91\) −4.99132 0.444348i −0.523232 0.0465804i
\(92\) −4.45010 4.45010i −0.463955 0.463955i
\(93\) 0.880067 0.508107i 0.0912587 0.0526882i
\(94\) −7.73094 + 4.46346i −0.797385 + 0.460371i
\(95\) 0 0
\(96\) 12.9815 12.9815i 1.32492 1.32492i
\(97\) −7.92101 + 13.7196i −0.804256 + 1.39301i 0.112536 + 0.993648i \(0.464103\pi\)
−0.916792 + 0.399365i \(0.869231\pi\)
\(98\) −4.46305 + 7.73023i −0.450836 + 0.780871i
\(99\) 19.8705 19.8705i 1.99706 1.99706i
\(100\) 0 0
\(101\) −2.26191 + 1.30591i −0.225068 + 0.129943i −0.608295 0.793711i \(-0.708146\pi\)
0.383227 + 0.923654i \(0.374813\pi\)
\(102\) −20.2560 + 11.6948i −2.00565 + 1.15796i
\(103\) 0.960893 + 0.960893i 0.0946796 + 0.0946796i 0.752860 0.658181i \(-0.228674\pi\)
−0.658181 + 0.752860i \(0.728674\pi\)
\(104\) 5.17409 2.40313i 0.507362 0.235646i
\(105\) 0 0
\(106\) 1.40979 + 0.377751i 0.136931 + 0.0366905i
\(107\) 4.03770 15.0689i 0.390339 1.45677i −0.439236 0.898372i \(-0.644751\pi\)
0.829576 0.558394i \(-0.188582\pi\)
\(108\) −16.1886 + 4.33773i −1.55775 + 0.417398i
\(109\) 9.51962 + 9.51962i 0.911814 + 0.911814i 0.996415 0.0846007i \(-0.0269615\pi\)
−0.0846007 + 0.996415i \(0.526961\pi\)
\(110\) 0 0
\(111\) −19.1725 + 5.13726i −1.81978 + 0.487607i
\(112\) 6.93475i 0.655272i
\(113\) −2.96358 11.0602i −0.278790 1.04046i −0.953259 0.302154i \(-0.902294\pi\)
0.674469 0.738303i \(-0.264373\pi\)
\(114\) −6.69877 11.6026i −0.627397 1.08668i
\(115\) 0 0
\(116\) 3.14204i 0.291731i
\(117\) −27.5095 2.44901i −2.54325 0.226411i
\(118\) 4.22510 4.22510i 0.388952 0.388952i
\(119\) 1.46322 5.46082i 0.134133 0.500593i
\(120\) 0 0
\(121\) −2.12911 1.22924i −0.193555 0.111749i
\(122\) 10.6878 0.967630
\(123\) −32.1324 18.5516i −2.89728 1.67274i
\(124\) 0.0887386 + 0.331177i 0.00796896 + 0.0297406i
\(125\) 0 0
\(126\) 9.37439 16.2369i 0.835137 1.44650i
\(127\) 18.7572 + 5.02598i 1.66443 + 0.445983i 0.963601 0.267343i \(-0.0861458\pi\)
0.700832 + 0.713327i \(0.252812\pi\)
\(128\) −5.69046 9.85617i −0.502970 0.871170i
\(129\) −18.0983 −1.59346
\(130\) 0 0
\(131\) 4.21678 0.368422 0.184211 0.982887i \(-0.441027\pi\)
0.184211 + 0.982887i \(0.441027\pi\)
\(132\) 6.59711 + 11.4265i 0.574205 + 0.994552i
\(133\) 3.12794 + 0.838130i 0.271227 + 0.0726751i
\(134\) 1.16313 2.01460i 0.100479 0.174035i
\(135\) 0 0
\(136\) 1.66583 + 6.21698i 0.142844 + 0.533101i
\(137\) 9.71890 + 5.61121i 0.830342 + 0.479398i 0.853970 0.520323i \(-0.174188\pi\)
−0.0236280 + 0.999721i \(0.507522\pi\)
\(138\) 32.8506 2.79643
\(139\) −1.44435 0.833895i −0.122508 0.0707301i 0.437494 0.899221i \(-0.355866\pi\)
−0.560002 + 0.828491i \(0.689200\pi\)
\(140\) 0 0
\(141\) 4.28336 15.9857i 0.360724 1.34624i
\(142\) 6.83036 6.83036i 0.573191 0.573191i
\(143\) 2.27704 + 13.0298i 0.190415 + 1.08961i
\(144\) 38.2207i 3.18506i
\(145\) 0 0
\(146\) −1.90201 3.29437i −0.157411 0.272644i
\(147\) −4.28297 15.9843i −0.353253 1.31836i
\(148\) 6.69679i 0.550473i
\(149\) −11.6304 + 3.11636i −0.952802 + 0.255302i −0.701551 0.712620i \(-0.747509\pi\)
−0.251251 + 0.967922i \(0.580842\pi\)
\(150\) 0 0
\(151\) −6.13780 6.13780i −0.499487 0.499487i 0.411791 0.911278i \(-0.364903\pi\)
−0.911278 + 0.411791i \(0.864903\pi\)
\(152\) −3.56107 + 0.954185i −0.288841 + 0.0773946i
\(153\) 8.06451 30.0972i 0.651977 2.43321i
\(154\) −8.67341 2.32403i −0.698923 0.187276i
\(155\) 0 0
\(156\) 4.45372 12.1787i 0.356583 0.975078i
\(157\) −9.72344 9.72344i −0.776015 0.776015i 0.203135 0.979151i \(-0.434887\pi\)
−0.979151 + 0.203135i \(0.934887\pi\)
\(158\) 5.24771 3.02977i 0.417485 0.241035i
\(159\) −2.34330 + 1.35290i −0.185836 + 0.107292i
\(160\) 0 0
\(161\) −5.61460 + 5.61460i −0.442492 + 0.442492i
\(162\) 23.5065 40.7144i 1.84684 3.19883i
\(163\) 1.99232 3.45081i 0.156051 0.270288i −0.777390 0.629019i \(-0.783457\pi\)
0.933441 + 0.358730i \(0.116790\pi\)
\(164\) 8.85173 8.85173i 0.691204 0.691204i
\(165\) 0 0
\(166\) −2.10866 + 1.21744i −0.163664 + 0.0944915i
\(167\) 4.72436 2.72761i 0.365582 0.211069i −0.305945 0.952049i \(-0.598972\pi\)
0.671527 + 0.740980i \(0.265639\pi\)
\(168\) −5.07691 5.07691i −0.391692 0.391692i
\(169\) 8.38655 9.93307i 0.645119 0.764082i
\(170\) 0 0
\(171\) 17.2396 + 4.61933i 1.31834 + 0.353249i
\(172\) 1.58039 5.89809i 0.120503 0.449725i
\(173\) 19.6062 5.25347i 1.49063 0.399414i 0.580682 0.814131i \(-0.302786\pi\)
0.909951 + 0.414717i \(0.136119\pi\)
\(174\) −11.5973 11.5973i −0.879188 0.879188i
\(175\) 0 0
\(176\) 17.6813 4.73770i 1.33278 0.357117i
\(177\) 11.0774i 0.832631i
\(178\) −0.516728 1.92845i −0.0387304 0.144544i
\(179\) 0.485197 + 0.840386i 0.0362654 + 0.0628134i 0.883588 0.468264i \(-0.155121\pi\)
−0.847323 + 0.531078i \(0.821787\pi\)
\(180\) 0 0
\(181\) 18.2170i 1.35406i −0.735956 0.677029i \(-0.763267\pi\)
0.735956 0.677029i \(-0.236733\pi\)
\(182\) 3.71746 + 8.00393i 0.275556 + 0.593291i
\(183\) −14.0107 + 14.0107i −1.03570 + 1.03570i
\(184\) 2.33965 8.73170i 0.172481 0.643709i
\(185\) 0 0
\(186\) −1.54991 0.894840i −0.113645 0.0656128i
\(187\) −14.9229 −1.09127
\(188\) 4.83560 + 2.79183i 0.352672 + 0.203615i
\(189\) 5.47282 + 20.4249i 0.398089 + 1.48569i
\(190\) 0 0
\(191\) −8.18780 + 14.1817i −0.592449 + 1.02615i 0.401453 + 0.915880i \(0.368505\pi\)
−0.993901 + 0.110272i \(0.964828\pi\)
\(192\) 0.241857 + 0.0648054i 0.0174545 + 0.00467693i
\(193\) 5.14757 + 8.91585i 0.370530 + 0.641777i 0.989647 0.143522i \(-0.0458426\pi\)
−0.619117 + 0.785299i \(0.712509\pi\)
\(194\) 27.8998 2.00309
\(195\) 0 0
\(196\) 5.58316 0.398797
\(197\) −6.19621 10.7321i −0.441461 0.764633i 0.556337 0.830957i \(-0.312206\pi\)
−0.997798 + 0.0663234i \(0.978873\pi\)
\(198\) −47.8032 12.8088i −3.39723 0.910284i
\(199\) −2.14630 + 3.71750i −0.152147 + 0.263527i −0.932017 0.362416i \(-0.881952\pi\)
0.779869 + 0.625942i \(0.215285\pi\)
\(200\) 0 0
\(201\) 1.11620 + 4.16571i 0.0787305 + 0.293826i
\(202\) 3.98350 + 2.29988i 0.280278 + 0.161819i
\(203\) 3.96425 0.278236
\(204\) 12.6699 + 7.31496i 0.887070 + 0.512150i
\(205\) 0 0
\(206\) 0.619407 2.31166i 0.0431561 0.161061i
\(207\) −30.9447 + 30.9447i −2.15081 + 2.15081i
\(208\) −14.7213 10.3414i −1.02074 0.717048i
\(209\) 8.54782i 0.591265i
\(210\) 0 0
\(211\) −13.4327 23.2662i −0.924747 1.60171i −0.791968 0.610562i \(-0.790943\pi\)
−0.132778 0.991146i \(-0.542390\pi\)
\(212\) −0.236279 0.881803i −0.0162277 0.0605625i
\(213\) 17.9080i 1.22703i
\(214\) −26.5382 + 7.11089i −1.81412 + 0.486091i
\(215\) 0 0
\(216\) −17.0224 17.0224i −1.15823 1.15823i
\(217\) 0.417839 0.111960i 0.0283648 0.00760032i
\(218\) 6.13650 22.9017i 0.415616 1.55110i
\(219\) 6.81198 + 1.82526i 0.460311 + 0.123340i
\(220\) 0 0
\(221\) 9.41035 + 11.2496i 0.633009 + 0.756729i
\(222\) 24.7179 + 24.7179i 1.65895 + 1.65895i
\(223\) 17.2143 9.93870i 1.15276 0.665545i 0.203199 0.979137i \(-0.434866\pi\)
0.949558 + 0.313593i \(0.101533\pi\)
\(224\) 6.76785 3.90742i 0.452196 0.261076i
\(225\) 0 0
\(226\) −14.2592 + 14.2592i −0.948507 + 0.948507i
\(227\) −5.58741 + 9.67768i −0.370849 + 0.642330i −0.989696 0.143181i \(-0.954267\pi\)
0.618847 + 0.785512i \(0.287600\pi\)
\(228\) −4.18999 + 7.25728i −0.277489 + 0.480625i
\(229\) 12.7032 12.7032i 0.839450 0.839450i −0.149336 0.988786i \(-0.547714\pi\)
0.988786 + 0.149336i \(0.0477136\pi\)
\(230\) 0 0
\(231\) 14.4166 8.32344i 0.948545 0.547642i
\(232\) −3.90853 + 2.25659i −0.256608 + 0.148152i
\(233\) 0.0102716 + 0.0102716i 0.000672916 + 0.000672916i 0.707443 0.706770i \(-0.249849\pi\)
−0.706770 + 0.707443i \(0.749849\pi\)
\(234\) 20.4887 + 44.1134i 1.33938 + 2.88378i
\(235\) 0 0
\(236\) −3.61006 0.967312i −0.234995 0.0629666i
\(237\) −2.90752 + 10.8510i −0.188864 + 0.704849i
\(238\) −9.61719 + 2.57692i −0.623390 + 0.167037i
\(239\) −8.78399 8.78399i −0.568189 0.568189i 0.363432 0.931621i \(-0.381605\pi\)
−0.931621 + 0.363432i \(0.881605\pi\)
\(240\) 0 0
\(241\) 21.5510 5.77458i 1.38822 0.371973i 0.514122 0.857717i \(-0.328118\pi\)
0.874101 + 0.485743i \(0.161451\pi\)
\(242\) 4.32969i 0.278323i
\(243\) 10.7446 + 40.0994i 0.689267 + 2.57238i
\(244\) −3.34254 5.78946i −0.213985 0.370632i
\(245\) 0 0
\(246\) 65.3435i 4.16615i
\(247\) −6.44373 + 5.39022i −0.410005 + 0.342972i
\(248\) −0.348235 + 0.348235i −0.0221129 + 0.0221129i
\(249\) 1.16832 4.36021i 0.0740390 0.276317i
\(250\) 0 0
\(251\) 1.04874 + 0.605490i 0.0661959 + 0.0382182i 0.532733 0.846284i \(-0.321165\pi\)
−0.466537 + 0.884502i \(0.654498\pi\)
\(252\) −11.7271 −0.738739
\(253\) 18.1512 + 10.4796i 1.14115 + 0.658846i
\(254\) −8.85137 33.0338i −0.555385 2.07272i
\(255\) 0 0
\(256\) −9.94492 + 17.2251i −0.621558 + 1.07657i
\(257\) −12.3205 3.30128i −0.768535 0.205928i −0.146811 0.989165i \(-0.546901\pi\)
−0.621724 + 0.783236i \(0.713567\pi\)
\(258\) 15.9366 + 27.6031i 0.992172 + 1.71849i
\(259\) −8.44921 −0.525008
\(260\) 0 0
\(261\) 21.8489 1.35241
\(262\) −3.71314 6.43135i −0.229399 0.397330i
\(263\) −11.4213 3.06032i −0.704266 0.188707i −0.111125 0.993806i \(-0.535445\pi\)
−0.593140 + 0.805099i \(0.702112\pi\)
\(264\) −9.47599 + 16.4129i −0.583207 + 1.01014i
\(265\) 0 0
\(266\) −1.47605 5.50870i −0.0905025 0.337760i
\(267\) 3.20541 + 1.85064i 0.196168 + 0.113258i
\(268\) −1.45504 −0.0888809
\(269\) 14.0608 + 8.11799i 0.857300 + 0.494963i 0.863107 0.505021i \(-0.168515\pi\)
−0.00580692 + 0.999983i \(0.501848\pi\)
\(270\) 0 0
\(271\) 0.567117 2.11651i 0.0344499 0.128569i −0.946559 0.322530i \(-0.895467\pi\)
0.981009 + 0.193961i \(0.0621335\pi\)
\(272\) 14.3521 14.3521i 0.870222 0.870222i
\(273\) −15.3657 5.61917i −0.929972 0.340088i
\(274\) 19.7641i 1.19399i
\(275\) 0 0
\(276\) −10.2738 17.7948i −0.618411 1.07112i
\(277\) −4.83197 18.0331i −0.290325 1.08351i −0.944860 0.327475i \(-0.893802\pi\)
0.654535 0.756031i \(-0.272864\pi\)
\(278\) 2.93719i 0.176161i
\(279\) 2.30291 0.617063i 0.137872 0.0369426i
\(280\) 0 0
\(281\) 7.76642 + 7.76642i 0.463306 + 0.463306i 0.899737 0.436432i \(-0.143758\pi\)
−0.436432 + 0.899737i \(0.643758\pi\)
\(282\) −28.1529 + 7.54354i −1.67648 + 0.449211i
\(283\) −2.52759 + 9.43309i −0.150250 + 0.560739i 0.849216 + 0.528046i \(0.177075\pi\)
−0.999465 + 0.0326932i \(0.989592\pi\)
\(284\) −5.83607 1.56377i −0.346307 0.0927927i
\(285\) 0 0
\(286\) 17.8677 14.9464i 1.05654 0.883801i
\(287\) −11.1681 11.1681i −0.659229 0.659229i
\(288\) 37.3008 21.5356i 2.19797 1.26900i
\(289\) 0.392513 0.226617i 0.0230890 0.0133304i
\(290\) 0 0
\(291\) −36.5740 + 36.5740i −2.14401 + 2.14401i
\(292\) −1.18968 + 2.06059i −0.0696208 + 0.120587i
\(293\) −16.8881 + 29.2511i −0.986615 + 1.70887i −0.352086 + 0.935968i \(0.614527\pi\)
−0.634529 + 0.772899i \(0.718806\pi\)
\(294\) −20.6074 + 20.6074i −1.20185 + 1.20185i
\(295\) 0 0
\(296\) 8.33044 4.80958i 0.484197 0.279551i
\(297\) 48.3377 27.9078i 2.80484 1.61937i
\(298\) 14.9943 + 14.9943i 0.868598 + 0.868598i
\(299\) −3.54608 20.2916i −0.205075 1.17349i
\(300\) 0 0
\(301\) −7.44150 1.99395i −0.428921 0.114929i
\(302\) −3.95652 + 14.7660i −0.227672 + 0.849685i
\(303\) −8.23693 + 2.20708i −0.473199 + 0.126793i
\(304\) 8.22083 + 8.22083i 0.471497 + 0.471497i
\(305\) 0 0
\(306\) −53.0049 + 14.2026i −3.03009 + 0.811909i
\(307\) 16.4317i 0.937804i −0.883250 0.468902i \(-0.844650\pi\)
0.883250 0.468902i \(-0.155350\pi\)
\(308\) 1.45365 + 5.42510i 0.0828295 + 0.309124i
\(309\) 2.21839 + 3.84236i 0.126200 + 0.218584i
\(310\) 0 0
\(311\) 1.31200i 0.0743968i −0.999308 0.0371984i \(-0.988157\pi\)
0.999308 0.0371984i \(-0.0118434\pi\)
\(312\) 18.3483 3.20648i 1.03877 0.181531i
\(313\) 19.5519 19.5519i 1.10514 1.10514i 0.111361 0.993780i \(-0.464479\pi\)
0.993780 0.111361i \(-0.0355211\pi\)
\(314\) −6.26789 + 23.3921i −0.353718 + 1.32009i
\(315\) 0 0
\(316\) −3.28237 1.89508i −0.184648 0.106607i
\(317\) 34.9576 1.96342 0.981708 0.190394i \(-0.0609767\pi\)
0.981708 + 0.190394i \(0.0609767\pi\)
\(318\) 4.12684 + 2.38263i 0.231422 + 0.133611i
\(319\) −2.70831 10.1075i −0.151636 0.565914i
\(320\) 0 0
\(321\) 25.4674 44.1109i 1.42145 2.46203i
\(322\) 13.5073 + 3.61926i 0.752731 + 0.201694i
\(323\) −4.73897 8.20814i −0.263683 0.456713i
\(324\) −29.4060 −1.63367
\(325\) 0 0
\(326\) −7.01746 −0.388661
\(327\) 21.9777 + 38.0665i 1.21537 + 2.10508i
\(328\) 17.3683 + 4.65382i 0.959004 + 0.256964i
\(329\) 3.52240 6.10098i 0.194196 0.336358i
\(330\) 0 0
\(331\) −0.658550 2.45774i −0.0361972 0.135090i 0.945463 0.325730i \(-0.105610\pi\)
−0.981660 + 0.190641i \(0.938943\pi\)
\(332\) 1.31894 + 0.761491i 0.0723863 + 0.0417923i
\(333\) −46.5676 −2.55189
\(334\) −8.32019 4.80366i −0.455260 0.262845i
\(335\) 0 0
\(336\) −5.86009 + 21.8702i −0.319694 + 1.19312i
\(337\) 8.33325 8.33325i 0.453941 0.453941i −0.442719 0.896660i \(-0.645986\pi\)
0.896660 + 0.442719i \(0.145986\pi\)
\(338\) −22.5346 4.04430i −1.22572 0.219981i
\(339\) 37.3850i 2.03047i
\(340\) 0 0
\(341\) −0.570921 0.988864i −0.0309171 0.0535500i
\(342\) −8.13522 30.3610i −0.439902 1.64174i
\(343\) 16.7729i 0.905651i
\(344\) 8.47192 2.27005i 0.456776 0.122393i
\(345\) 0 0
\(346\) −25.2770 25.2770i −1.35890 1.35890i
\(347\) −10.3655 + 2.77743i −0.556449 + 0.149100i −0.526075 0.850438i \(-0.676337\pi\)
−0.0303747 + 0.999539i \(0.509670\pi\)
\(348\) −2.65513 + 9.90908i −0.142330 + 0.531182i
\(349\) 23.0049 + 6.16415i 1.23143 + 0.329960i 0.815135 0.579272i \(-0.196663\pi\)
0.416291 + 0.909231i \(0.363330\pi\)
\(350\) 0 0
\(351\) −51.5197 18.8406i −2.74992 1.00564i
\(352\) −14.5863 14.5863i −0.777453 0.777453i
\(353\) 22.4026 12.9342i 1.19237 0.688416i 0.233527 0.972350i \(-0.424973\pi\)
0.958844 + 0.283935i \(0.0916398\pi\)
\(354\) 16.8951 9.75437i 0.897963 0.518439i
\(355\) 0 0
\(356\) −0.883016 + 0.883016i −0.0467998 + 0.0467998i
\(357\) 9.22915 15.9854i 0.488458 0.846035i
\(358\) 0.854493 1.48003i 0.0451614 0.0782218i
\(359\) −19.3811 + 19.3811i −1.02289 + 1.02289i −0.0231615 + 0.999732i \(0.507373\pi\)
−0.999732 + 0.0231615i \(0.992627\pi\)
\(360\) 0 0
\(361\) −11.7529 + 6.78553i −0.618573 + 0.357133i
\(362\) −27.7842 + 16.0412i −1.46030 + 0.843107i
\(363\) −5.67583 5.67583i −0.297904 0.297904i
\(364\) 3.17302 4.51688i 0.166311 0.236749i
\(365\) 0 0
\(366\) 33.7062 + 9.03156i 1.76185 + 0.472087i
\(367\) 6.23046 23.2524i 0.325227 1.21376i −0.588856 0.808238i \(-0.700421\pi\)
0.914083 0.405527i \(-0.132912\pi\)
\(368\) −27.5355 + 7.37811i −1.43539 + 0.384611i
\(369\) −61.5524 61.5524i −3.20429 3.20429i
\(370\) 0 0
\(371\) −1.11255 + 0.298108i −0.0577609 + 0.0154770i
\(372\) 1.11942i 0.0580393i
\(373\) 6.01280 + 22.4401i 0.311331 + 1.16190i 0.927357 + 0.374177i \(0.122075\pi\)
−0.616027 + 0.787725i \(0.711259\pi\)
\(374\) 13.1406 + 22.7602i 0.679483 + 1.17690i
\(375\) 0 0
\(376\) 8.02030i 0.413615i
\(377\) −5.91167 + 8.41542i −0.304467 + 0.433416i
\(378\) 26.3324 26.3324i 1.35439 1.35439i
\(379\) −7.19748 + 26.8614i −0.369710 + 1.37978i 0.491212 + 0.871040i \(0.336554\pi\)
−0.860922 + 0.508736i \(0.830113\pi\)
\(380\) 0 0
\(381\) 54.9076 + 31.7009i 2.81300 + 1.62409i
\(382\) 28.8395 1.47556
\(383\) −14.6107 8.43549i −0.746572 0.431034i 0.0778820 0.996963i \(-0.475184\pi\)
−0.824454 + 0.565929i \(0.808518\pi\)
\(384\) −9.61725 35.8921i −0.490778 1.83161i
\(385\) 0 0
\(386\) 9.06551 15.7019i 0.461423 0.799207i
\(387\) −41.0136 10.9896i −2.08484 0.558631i
\(388\) −8.72547 15.1129i −0.442968 0.767244i
\(389\) −15.9554 −0.808973 −0.404487 0.914544i \(-0.632550\pi\)
−0.404487 + 0.914544i \(0.632550\pi\)
\(390\) 0 0
\(391\) 23.2398 1.17529
\(392\) 4.00978 + 6.94514i 0.202524 + 0.350783i
\(393\) 13.2985 + 3.56332i 0.670820 + 0.179746i
\(394\) −10.9123 + 18.9006i −0.549753 + 0.952201i
\(395\) 0 0
\(396\) 8.01176 + 29.9003i 0.402606 + 1.50255i
\(397\) 14.3828 + 8.30391i 0.721852 + 0.416761i 0.815434 0.578850i \(-0.196498\pi\)
−0.0935822 + 0.995612i \(0.529832\pi\)
\(398\) 7.55981 0.378939
\(399\) 9.15637 + 5.28643i 0.458392 + 0.264653i
\(400\) 0 0
\(401\) −4.73738 + 17.6802i −0.236574 + 0.882905i 0.740859 + 0.671660i \(0.234418\pi\)
−0.977433 + 0.211245i \(0.932248\pi\)
\(402\) 5.37057 5.37057i 0.267859 0.267859i
\(403\) −0.385430 + 1.05396i −0.0191996 + 0.0525015i
\(404\) 2.87708i 0.143140i
\(405\) 0 0
\(406\) −3.49077 6.04620i −0.173244 0.300068i
\(407\) 5.77235 + 21.5427i 0.286125 + 1.06783i
\(408\) 21.0142i 1.04036i
\(409\) −11.9171 + 3.19317i −0.589261 + 0.157892i −0.541116 0.840948i \(-0.681998\pi\)
−0.0481458 + 0.998840i \(0.515331\pi\)
\(410\) 0 0
\(411\) 25.9089 + 25.9089i 1.27799 + 1.27799i
\(412\) −1.44591 + 0.387431i −0.0712350 + 0.0190874i
\(413\) −1.22044 + 4.55474i −0.0600538 + 0.224124i
\(414\) 74.4449 + 19.9475i 3.65877 + 0.980364i
\(415\) 0 0
\(416\) −1.79775 + 20.1939i −0.0881418 + 0.990087i
\(417\) −3.85038 3.85038i −0.188554 0.188554i
\(418\) −13.0370 + 7.52689i −0.637658 + 0.368152i
\(419\) −15.6063 + 9.01028i −0.762416 + 0.440181i −0.830163 0.557521i \(-0.811752\pi\)
0.0677464 + 0.997703i \(0.478419\pi\)
\(420\) 0 0
\(421\) 12.6982 12.6982i 0.618871 0.618871i −0.326371 0.945242i \(-0.605826\pi\)
0.945242 + 0.326371i \(0.105826\pi\)
\(422\) −23.6567 + 40.9746i −1.15159 + 1.99461i
\(423\) 19.4136 33.6254i 0.943923 1.63492i
\(424\) 0.927222 0.927222i 0.0450299 0.0450299i
\(425\) 0 0
\(426\) 27.3128 15.7691i 1.32331 0.764014i
\(427\) −7.30445 + 4.21722i −0.353487 + 0.204086i
\(428\) 12.1515 + 12.1515i 0.587367 + 0.587367i
\(429\) −3.82949 + 43.0163i −0.184890 + 2.07685i
\(430\) 0 0
\(431\) −7.07051 1.89454i −0.340574 0.0912566i 0.0844781 0.996425i \(-0.473078\pi\)
−0.425052 + 0.905169i \(0.639744\pi\)
\(432\) −19.6484 + 73.3288i −0.945334 + 3.52803i
\(433\) 8.56975 2.29626i 0.411836 0.110351i −0.0469516 0.998897i \(-0.514951\pi\)
0.458787 + 0.888546i \(0.348284\pi\)
\(434\) −0.538692 0.538692i −0.0258581 0.0258581i
\(435\) 0 0
\(436\) −14.3247 + 3.83830i −0.686031 + 0.183821i
\(437\) 13.3117i 0.636785i
\(438\) −3.21452 11.9967i −0.153596 0.573226i
\(439\) 11.8892 + 20.5927i 0.567440 + 0.982835i 0.996818 + 0.0797100i \(0.0253994\pi\)
−0.429378 + 0.903125i \(0.641267\pi\)
\(440\) 0 0
\(441\) 38.8237i 1.84875i
\(442\) 8.87123 24.2584i 0.421961 1.15386i
\(443\) 5.18634 5.18634i 0.246410 0.246410i −0.573085 0.819496i \(-0.694254\pi\)
0.819496 + 0.573085i \(0.194254\pi\)
\(444\) 5.65901 21.1197i 0.268565 1.00230i
\(445\) 0 0
\(446\) −30.3166 17.5033i −1.43553 0.828805i
\(447\) −39.3124 −1.85941
\(448\) 0.0923052 + 0.0532924i 0.00436101 + 0.00251783i
\(449\) 8.47234 + 31.6192i 0.399834 + 1.49220i 0.813388 + 0.581722i \(0.197621\pi\)
−0.413553 + 0.910480i \(0.635712\pi\)
\(450\) 0 0
\(451\) −20.8450 + 36.1047i −0.981555 + 1.70010i
\(452\) 12.1835 + 3.26456i 0.573063 + 0.153552i
\(453\) −14.1702 24.5434i −0.665772 1.15315i
\(454\) 19.6803 0.923640
\(455\) 0 0
\(456\) −12.0369 −0.563678
\(457\) 9.01757 + 15.6189i 0.421824 + 0.730621i 0.996118 0.0880283i \(-0.0280566\pi\)
−0.574294 + 0.818649i \(0.694723\pi\)
\(458\) −30.5606 8.18868i −1.42800 0.382632i
\(459\) 30.9445 53.5975i 1.44437 2.50172i
\(460\) 0 0
\(461\) 0.541259 + 2.02001i 0.0252090 + 0.0940811i 0.977384 0.211471i \(-0.0678255\pi\)
−0.952175 + 0.305553i \(0.901159\pi\)
\(462\) −25.3895 14.6586i −1.18123 0.681981i
\(463\) −36.2345 −1.68396 −0.841980 0.539509i \(-0.818610\pi\)
−0.841980 + 0.539509i \(0.818610\pi\)
\(464\) 12.3256 + 7.11618i 0.572201 + 0.330360i
\(465\) 0 0
\(466\) 0.00662125 0.0247108i 0.000306723 0.00114471i
\(467\) 28.6381 28.6381i 1.32521 1.32521i 0.415719 0.909493i \(-0.363530\pi\)
0.909493 0.415719i \(-0.136470\pi\)
\(468\) 17.4880 24.8946i 0.808383 1.15075i
\(469\) 1.83580i 0.0847694i
\(470\) 0 0
\(471\) −22.4482 38.8815i −1.03436 1.79157i
\(472\) −1.38943 5.18543i −0.0639538 0.238679i
\(473\) 20.3356i 0.935032i
\(474\) 19.1100 5.12050i 0.877751 0.235193i
\(475\) 0 0
\(476\) 4.40360 + 4.40360i 0.201839 + 0.201839i
\(477\) −6.13181 + 1.64301i −0.280756 + 0.0752284i
\(478\) −5.66230 + 21.1320i −0.258988 + 0.966555i
\(479\) −32.0790 8.59555i −1.46573 0.392741i −0.564264 0.825594i \(-0.690840\pi\)
−0.901464 + 0.432854i \(0.857507\pi\)
\(480\) 0 0
\(481\) 12.5998 17.9362i 0.574503 0.817820i
\(482\) −27.7843 27.7843i −1.26554 1.26554i
\(483\) −22.4513 + 12.9623i −1.02157 + 0.589804i
\(484\) 2.34534 1.35408i 0.106606 0.0615492i
\(485\) 0 0
\(486\) 51.6975 51.6975i 2.34505 2.34505i
\(487\) −10.4790 + 18.1501i −0.474847 + 0.822460i −0.999585 0.0288042i \(-0.990830\pi\)
0.524738 + 0.851264i \(0.324163\pi\)
\(488\) 4.80118 8.31589i 0.217339 0.376443i
\(489\) 9.19925 9.19925i 0.416004 0.416004i
\(490\) 0 0
\(491\) 20.3975 11.7765i 0.920527 0.531466i 0.0367236 0.999325i \(-0.488308\pi\)
0.883803 + 0.467859i \(0.154975\pi\)
\(492\) 35.3957 20.4357i 1.59576 0.921314i
\(493\) −8.20437 8.20437i −0.369506 0.369506i
\(494\) 13.8952 + 5.08142i 0.625173 + 0.228624i
\(495\) 0 0
\(496\) 1.50012 + 0.401955i 0.0673572 + 0.0180483i
\(497\) −1.97298 + 7.36326i −0.0885002 + 0.330287i
\(498\) −7.67888 + 2.05755i −0.344099 + 0.0922010i
\(499\) 18.2233 + 18.2233i 0.815789 + 0.815789i 0.985495 0.169706i \(-0.0542818\pi\)
−0.169706 + 0.985495i \(0.554282\pi\)
\(500\) 0 0
\(501\) 17.2042 4.60984i 0.768625 0.205952i
\(502\) 2.13269i 0.0951865i
\(503\) 2.61801 + 9.77054i 0.116731 + 0.435647i 0.999411 0.0343287i \(-0.0109293\pi\)
−0.882679 + 0.469976i \(0.844263\pi\)
\(504\) −8.42233 14.5879i −0.375160 0.649797i
\(505\) 0 0
\(506\) 36.9117i 1.64093i
\(507\) 34.8425 24.2391i 1.54741 1.07649i
\(508\) −15.1258 + 15.1258i −0.671098 + 0.671098i
\(509\) −0.411564 + 1.53598i −0.0182422 + 0.0680810i −0.974447 0.224618i \(-0.927887\pi\)
0.956205 + 0.292699i \(0.0945533\pi\)
\(510\) 0 0
\(511\) 2.59980 + 1.50100i 0.115008 + 0.0664002i
\(512\) 12.2666 0.542114
\(513\) 30.7005 + 17.7249i 1.35546 + 0.782576i
\(514\) 5.81397 + 21.6980i 0.256443 + 0.957059i
\(515\) 0 0
\(516\) 9.96816 17.2654i 0.438824 0.760065i
\(517\) −17.9619 4.81289i −0.789965 0.211671i
\(518\) 7.44005 + 12.8866i 0.326897 + 0.566203i
\(519\) 66.2716 2.90900
\(520\) 0 0
\(521\) −27.2541 −1.19402 −0.597012 0.802232i \(-0.703646\pi\)
−0.597012 + 0.802232i \(0.703646\pi\)
\(522\) −19.2393 33.3234i −0.842081 1.45853i
\(523\) 19.9043 + 5.33334i 0.870354 + 0.233211i 0.666241 0.745737i \(-0.267902\pi\)
0.204113 + 0.978947i \(0.434569\pi\)
\(524\) −2.32252 + 4.02272i −0.101460 + 0.175733i
\(525\) 0 0
\(526\) 5.38960 + 20.1143i 0.234998 + 0.877024i
\(527\) −1.09647 0.633045i −0.0477628 0.0275759i
\(528\) 59.7652 2.60095
\(529\) −8.34861 4.82007i −0.362983 0.209568i
\(530\) 0 0
\(531\) −6.72641 + 25.1033i −0.291901 + 1.08939i
\(532\) −2.52237 + 2.52237i −0.109359 + 0.109359i
\(533\) 40.3621 7.05353i 1.74828 0.305523i
\(534\) 6.51843i 0.282080i
\(535\) 0 0
\(536\) −1.04500 1.80999i −0.0451372 0.0781799i
\(537\) 0.820015 + 3.06034i 0.0353863 + 0.132063i
\(538\) 28.5936i 1.23276i
\(539\) −17.9603 + 4.81245i −0.773604 + 0.207287i
\(540\) 0 0
\(541\) −26.3998 26.3998i −1.13502 1.13502i −0.989331 0.145684i \(-0.953462\pi\)
−0.145684 0.989331i \(-0.546538\pi\)
\(542\) −3.72744 + 0.998764i −0.160107 + 0.0429006i
\(543\) 15.3940 57.4510i 0.660618 2.46546i
\(544\) −22.0934 5.91991i −0.947248 0.253814i
\(545\) 0 0
\(546\) 4.96018 + 28.3834i 0.212276 + 1.21470i
\(547\) −8.78649 8.78649i −0.375683 0.375683i 0.493859 0.869542i \(-0.335586\pi\)
−0.869542 + 0.493859i \(0.835586\pi\)
\(548\) −10.7060 + 6.18109i −0.457336 + 0.264043i
\(549\) −40.2582 + 23.2431i −1.71818 + 0.991992i
\(550\) 0 0
\(551\) 4.69944 4.69944i 0.200203 0.200203i
\(552\) 14.7571 25.5601i 0.628106 1.08791i
\(553\) −2.39098 + 4.14131i −0.101675 + 0.176106i
\(554\) −23.2489 + 23.2489i −0.987752 + 0.987752i
\(555\) 0 0
\(556\) 1.59104 0.918586i 0.0674750 0.0389567i
\(557\) −14.1343 + 8.16044i −0.598889 + 0.345769i −0.768604 0.639724i \(-0.779049\pi\)
0.169715 + 0.985493i \(0.445715\pi\)
\(558\) −2.96899 2.96899i −0.125687 0.125687i
\(559\) 15.3299 12.8236i 0.648386 0.542379i
\(560\) 0 0
\(561\) −47.0626 12.6104i −1.98698 0.532411i
\(562\) 5.00636 18.6840i 0.211181 0.788137i
\(563\) 11.2729 3.02058i 0.475098 0.127302i −0.0133211 0.999911i \(-0.504240\pi\)
0.488419 + 0.872609i \(0.337574\pi\)
\(564\) 12.8909 + 12.8909i 0.542803 + 0.542803i
\(565\) 0 0
\(566\) 16.6128 4.45140i 0.698290 0.187106i
\(567\) 37.1010i 1.55809i
\(568\) −2.24618 8.38284i −0.0942475 0.351736i
\(569\) 1.62041 + 2.80663i 0.0679311 + 0.117660i 0.897990 0.440015i \(-0.145027\pi\)
−0.830059 + 0.557675i \(0.811694\pi\)
\(570\) 0 0
\(571\) 35.5421i 1.48739i 0.668520 + 0.743694i \(0.266928\pi\)
−0.668520 + 0.743694i \(0.733072\pi\)
\(572\) −13.6843 5.00430i −0.572169 0.209240i
\(573\) −37.8059 + 37.8059i −1.57936 + 1.57936i
\(574\) −7.19911 + 26.8674i −0.300485 + 1.12143i
\(575\) 0 0
\(576\) 0.508738 + 0.293720i 0.0211974 + 0.0122383i
\(577\) −16.1725 −0.673272 −0.336636 0.941635i \(-0.609289\pi\)
−0.336636 + 0.941635i \(0.609289\pi\)
\(578\) −0.691264 0.399102i −0.0287528 0.0166004i
\(579\) 8.69973 + 32.4678i 0.361549 + 1.34932i
\(580\) 0 0
\(581\) 0.960759 1.66408i 0.0398590 0.0690378i
\(582\) 87.9876 + 23.5762i 3.64720 + 0.977265i
\(583\) 1.52015 + 2.63298i 0.0629584 + 0.109047i
\(584\) −3.41768 −0.141424
\(585\) 0 0
\(586\) 59.4842 2.45727
\(587\) 7.95555 + 13.7794i 0.328361 + 0.568737i 0.982187 0.187908i \(-0.0601706\pi\)
−0.653826 + 0.756645i \(0.726837\pi\)
\(588\) 17.6076 + 4.71795i 0.726127 + 0.194565i
\(589\) 0.362606 0.628053i 0.0149409 0.0258785i
\(590\) 0 0
\(591\) −10.4720 39.0820i −0.430760 1.60762i
\(592\) −26.2701 15.1671i −1.07970 0.623362i
\(593\) −6.24369 −0.256397 −0.128199 0.991748i \(-0.540920\pi\)
−0.128199 + 0.991748i \(0.540920\pi\)
\(594\) −85.1288 49.1491i −3.49288 2.01661i
\(595\) 0 0
\(596\) 3.43286 12.8116i 0.140616 0.524784i
\(597\) −9.91021 + 9.91021i −0.405598 + 0.405598i
\(598\) −27.8257 + 23.2764i −1.13788 + 0.951842i
\(599\) 18.0428i 0.737210i −0.929586 0.368605i \(-0.879835\pi\)
0.929586 0.368605i \(-0.120165\pi\)
\(600\) 0 0
\(601\) 17.1374 + 29.6828i 0.699048 + 1.21079i 0.968797 + 0.247856i \(0.0797259\pi\)
−0.269749 + 0.962931i \(0.586941\pi\)
\(602\) 3.51159 + 13.1054i 0.143122 + 0.534137i
\(603\) 10.1180i 0.412035i
\(604\) 9.23591 2.47475i 0.375804 0.100696i
\(605\) 0 0
\(606\) 10.6193 + 10.6193i 0.431380 + 0.431380i
\(607\) 18.3613 4.91988i 0.745260 0.199692i 0.133846 0.991002i \(-0.457267\pi\)
0.611415 + 0.791310i \(0.290601\pi\)
\(608\) 3.39091 12.6551i 0.137520 0.513230i
\(609\) 12.5021 + 3.34992i 0.506610 + 0.135746i
\(610\) 0 0
\(611\) 7.69856 + 16.5755i 0.311450 + 0.670573i
\(612\) 24.2703 + 24.2703i 0.981069 + 0.981069i
\(613\) −15.5555 + 8.98095i −0.628279 + 0.362737i −0.780085 0.625673i \(-0.784824\pi\)
0.151806 + 0.988410i \(0.451491\pi\)
\(614\) −25.0612 + 14.4691i −1.01139 + 0.583925i
\(615\) 0 0
\(616\) −5.70453 + 5.70453i −0.229842 + 0.229842i
\(617\) 9.44966 16.3673i 0.380429 0.658922i −0.610695 0.791866i \(-0.709110\pi\)
0.991124 + 0.132944i \(0.0424431\pi\)
\(618\) 3.90686 6.76687i 0.157157 0.272204i
\(619\) 26.9541 26.9541i 1.08338 1.08338i 0.0871850 0.996192i \(-0.472213\pi\)
0.996192 0.0871850i \(-0.0277871\pi\)
\(620\) 0 0
\(621\) −75.2773 + 43.4614i −3.02077 + 1.74405i
\(622\) −2.00104 + 1.15530i −0.0802343 + 0.0463233i
\(623\) 1.11408 + 1.11408i 0.0446349 + 0.0446349i
\(624\) −37.6877 45.0537i −1.50872 1.80359i
\(625\) 0 0
\(626\) −47.0369 12.6035i −1.87997 0.503737i
\(627\) 7.22319 26.9573i 0.288466 1.07657i
\(628\) 14.6314 3.92048i 0.583858 0.156444i
\(629\) 17.4864 + 17.4864i 0.697227 + 0.697227i
\(630\) 0 0
\(631\) 10.7162 2.87140i 0.426606 0.114309i −0.0391265 0.999234i \(-0.512458\pi\)
0.465733 + 0.884926i \(0.345791\pi\)
\(632\) 5.44412i 0.216556i
\(633\) −22.7022 84.7257i −0.902331 3.36754i
\(634\) −30.7824 53.3166i −1.22252 2.11747i
\(635\) 0 0
\(636\) 2.98061i 0.118189i
\(637\) 14.9535 + 10.5046i 0.592480 + 0.416206i
\(638\) −13.0310 + 13.0310i −0.515901 + 0.515901i
\(639\) −10.8740 + 40.5824i −0.430170 + 1.60541i
\(640\) 0 0
\(641\) 19.7159 + 11.3830i 0.778731 + 0.449600i 0.835980 0.548760i \(-0.184900\pi\)
−0.0572496 + 0.998360i \(0.518233\pi\)
\(642\) −89.7027 −3.54028
\(643\) −29.9622 17.2987i −1.18160 0.682195i −0.225212 0.974310i \(-0.572308\pi\)
−0.956383 + 0.292115i \(0.905641\pi\)
\(644\) −2.26380 8.44862i −0.0892063 0.332922i
\(645\) 0 0
\(646\) −8.34592 + 14.4556i −0.328366 + 0.568746i
\(647\) −37.9832 10.1776i −1.49328 0.400122i −0.582434 0.812878i \(-0.697900\pi\)
−0.910842 + 0.412756i \(0.864566\pi\)
\(648\) −21.1191 36.5794i −0.829638 1.43698i
\(649\) 12.4469 0.488582
\(650\) 0 0
\(651\) 1.41235 0.0553544
\(652\) 2.19467 + 3.80127i 0.0859497 + 0.148869i
\(653\) 9.21671 + 2.46961i 0.360678 + 0.0966433i 0.434607 0.900620i \(-0.356887\pi\)
−0.0739293 + 0.997263i \(0.523554\pi\)
\(654\) 38.7054 67.0398i 1.51350 2.62146i
\(655\) 0 0
\(656\) −14.6759 54.7711i −0.572997 2.13845i
\(657\) 14.3287 + 8.27270i 0.559017 + 0.322749i
\(658\) −12.4068 −0.483667
\(659\) −15.6774 9.05138i −0.610707 0.352592i 0.162535 0.986703i \(-0.448033\pi\)
−0.773242 + 0.634111i \(0.781366\pi\)
\(660\) 0 0
\(661\) 4.48311 16.7312i 0.174373 0.650768i −0.822285 0.569076i \(-0.807301\pi\)
0.996658 0.0816920i \(-0.0260324\pi\)
\(662\) −3.16860 + 3.16860i −0.123151 + 0.123151i
\(663\) 20.1712 + 43.4299i 0.783385 + 1.68668i
\(664\) 2.18759i 0.0848949i
\(665\) 0 0
\(666\) 41.0056 + 71.0239i 1.58894 + 2.75212i
\(667\) 4.21770 + 15.7407i 0.163310 + 0.609482i
\(668\) 6.00925i 0.232505i
\(669\) 62.6875 16.7971i 2.42364 0.649412i
\(670\) 0 0
\(671\) 15.7428 + 15.7428i 0.607744 + 0.607744i
\(672\) 24.6457 6.60380i 0.950729 0.254747i
\(673\) −2.75296 + 10.2742i −0.106119 + 0.396040i −0.998470 0.0553019i \(-0.982388\pi\)
0.892351 + 0.451342i \(0.149055\pi\)
\(674\) −20.0476 5.37175i −0.772207 0.206912i
\(675\) 0 0
\(676\) 4.85679 + 13.4715i 0.186800 + 0.518136i
\(677\) −4.88408 4.88408i −0.187710 0.187710i 0.606995 0.794706i \(-0.292375\pi\)
−0.794706 + 0.606995i \(0.792375\pi\)
\(678\) −57.0188 + 32.9198i −2.18979 + 1.26428i
\(679\) −19.0677 + 11.0088i −0.731752 + 0.422477i
\(680\) 0 0
\(681\) −25.7990 + 25.7990i −0.988620 + 0.988620i
\(682\) −1.00546 + 1.74151i −0.0385012 + 0.0666860i
\(683\) −23.4080 + 40.5438i −0.895681 + 1.55137i −0.0627219 + 0.998031i \(0.519978\pi\)
−0.832959 + 0.553334i \(0.813355\pi\)
\(684\) −13.9020 + 13.9020i −0.531555 + 0.531555i
\(685\) 0 0
\(686\) −25.5816 + 14.7696i −0.976712 + 0.563905i
\(687\) 50.7967 29.3275i 1.93802 1.11891i
\(688\) −19.5577 19.5577i −0.745630 0.745630i
\(689\) 1.02626 2.80631i 0.0390973 0.106912i
\(690\) 0 0
\(691\) 30.4266 + 8.15279i 1.15748 + 0.310147i 0.785960 0.618277i \(-0.212169\pi\)
0.371523 + 0.928424i \(0.378836\pi\)
\(692\) −5.78701 + 21.5974i −0.219989 + 0.821011i
\(693\) 37.7246 10.1083i 1.43304 0.383982i
\(694\) 13.3635 + 13.3635i 0.507273 + 0.507273i
\(695\) 0 0
\(696\) −14.2332 + 3.81379i −0.539510 + 0.144561i
\(697\) 46.2265i 1.75095i
\(698\) −10.8558 40.5146i −0.410900 1.53350i
\(699\) 0.0237138 + 0.0410735i 0.000896938 + 0.00155354i
\(700\) 0 0
\(701\) 5.09953i 0.192607i 0.995352 + 0.0963034i \(0.0307019\pi\)
−0.995352 + 0.0963034i \(0.969298\pi\)
\(702\) 16.6311 + 95.1671i 0.627699 + 3.59185i
\(703\) −10.0161 + 10.0161i −0.377766 + 0.377766i
\(704\) 0.0728169 0.271756i 0.00274439 0.0102422i
\(705\) 0 0
\(706\) −39.4538 22.7787i −1.48486 0.857286i
\(707\) −3.62996 −0.136519
\(708\) −10.5676 6.10123i −0.397156 0.229298i
\(709\) −11.1632 41.6615i −0.419241 1.56463i −0.776186 0.630504i \(-0.782848\pi\)
0.356945 0.934125i \(-0.383818\pi\)
\(710\) 0 0
\(711\) −13.1778 + 22.8247i −0.494208 + 0.855993i
\(712\) −1.73260 0.464249i −0.0649319 0.0173985i
\(713\) 0.889107 + 1.53998i 0.0332973 + 0.0576726i
\(714\) −32.5074 −1.21656
\(715\) 0 0
\(716\) −1.06895 −0.0399485
\(717\) −20.2793 35.1249i −0.757346 1.31176i
\(718\) 46.6258 + 12.4933i 1.74006 + 0.466248i
\(719\) −26.2618 + 45.4868i −0.979400 + 1.69637i −0.314824 + 0.949150i \(0.601946\pi\)
−0.664576 + 0.747221i \(0.731388\pi\)
\(720\) 0 0
\(721\) 0.488814 + 1.82428i 0.0182044 + 0.0679397i
\(722\) 20.6983 + 11.9502i 0.770311 + 0.444739i
\(723\) 72.8453 2.70915
\(724\) 17.3786 + 10.0336i 0.645872 + 0.372894i
\(725\) 0 0
\(726\) −3.65873 + 13.6546i −0.135788 + 0.506769i
\(727\) −3.04083 + 3.04083i −0.112778 + 0.112778i −0.761244 0.648466i \(-0.775411\pi\)
0.648466 + 0.761244i \(0.275411\pi\)
\(728\) 7.89758 + 0.703077i 0.292704 + 0.0260578i
\(729\) 55.4569i 2.05396i
\(730\) 0 0
\(731\) 11.2742 + 19.5275i 0.416991 + 0.722250i
\(732\) −5.64912 21.0828i −0.208797 0.779243i
\(733\) 25.6949i 0.949061i −0.880239 0.474531i \(-0.842618\pi\)
0.880239 0.474531i \(-0.157382\pi\)
\(734\) −40.9504 + 10.9726i −1.51151 + 0.405007i
\(735\) 0 0
\(736\) 22.7156 + 22.7156i 0.837307 + 0.837307i
\(737\) 4.68068 1.25419i 0.172415 0.0461985i
\(738\) −39.6777 + 148.079i −1.46056 + 5.45087i
\(739\) 16.5169 + 4.42570i 0.607586 + 0.162802i 0.549478 0.835508i \(-0.314827\pi\)
0.0581076 + 0.998310i \(0.481493\pi\)
\(740\) 0 0
\(741\) −24.8766 + 11.5540i −0.913863 + 0.424447i
\(742\) 1.43434 + 1.43434i 0.0526563 + 0.0526563i
\(743\) 15.9085 9.18480i 0.583628 0.336958i −0.178946 0.983859i \(-0.557269\pi\)
0.762574 + 0.646901i \(0.223935\pi\)
\(744\) −1.39250 + 0.803960i −0.0510515 + 0.0294746i
\(745\) 0 0
\(746\) 28.9305 28.9305i 1.05922 1.05922i
\(747\) 5.29519 9.17154i 0.193741 0.335569i
\(748\) 8.21926 14.2362i 0.300526 0.520526i
\(749\) 15.3314 15.3314i 0.560196 0.560196i
\(750\) 0 0
\(751\) −28.0217 + 16.1783i −1.02252 + 0.590355i −0.914834 0.403830i \(-0.867679\pi\)
−0.107690 + 0.994184i \(0.534346\pi\)
\(752\) 21.9036 12.6460i 0.798742 0.461154i
\(753\) 2.79576 + 2.79576i 0.101883 + 0.101883i
\(754\) 18.0406 + 1.60605i 0.657000 + 0.0584890i
\(755\) 0 0
\(756\) −22.4992 6.02865i −0.818288 0.219260i
\(757\) −0.157864 + 0.589155i −0.00573766 + 0.0214132i −0.968735 0.248097i \(-0.920195\pi\)
0.962998 + 0.269510i \(0.0868616\pi\)
\(758\) 47.3062 12.6757i 1.71824 0.460401i
\(759\) 48.3879 + 48.3879i 1.75637 + 1.75637i
\(760\) 0 0
\(761\) 11.9275 3.19596i 0.432371 0.115854i −0.0360677 0.999349i \(-0.511483\pi\)
0.468439 + 0.883496i \(0.344817\pi\)
\(762\) 111.659i 4.04496i
\(763\) 4.84271 + 18.0732i 0.175318 + 0.654295i
\(764\) −9.01936 15.6220i −0.326309 0.565184i
\(765\) 0 0
\(766\) 29.7119i 1.07353i
\(767\) −7.84894 9.38300i −0.283409 0.338801i
\(768\) −45.9191 + 45.9191i −1.65696 + 1.65696i
\(769\) 12.1625 45.3911i 0.438591 1.63684i −0.293733 0.955888i \(-0.594898\pi\)
0.732324 0.680956i \(-0.238436\pi\)
\(770\) 0 0
\(771\) −36.0657 20.8225i −1.29887 0.749905i
\(772\) −11.3407 −0.408161
\(773\) 29.5748 + 17.0750i 1.06373 + 0.614145i 0.926462 0.376389i \(-0.122834\pi\)
0.137269 + 0.990534i \(0.456168\pi\)
\(774\) 19.3540 + 72.2301i 0.695665 + 2.59626i
\(775\) 0 0
\(776\) 12.5331 21.7080i 0.449913 0.779272i
\(777\) −26.6463 7.13986i −0.955931 0.256141i
\(778\) 14.0498 + 24.3349i 0.503709 + 0.872449i
\(779\) −26.4784 −0.948688
\(780\) 0 0
\(781\) 20.1218 0.720014
\(782\) −20.4641 35.4449i −0.731795 1.26751i
\(783\) 41.9184 + 11.2320i 1.49804 + 0.401399i
\(784\) 12.6449 21.9016i 0.451603 0.782199i
\(785\) 0 0
\(786\) −6.27545 23.4203i −0.223838 0.835374i
\(787\) −7.53904 4.35267i −0.268738 0.155156i 0.359576 0.933116i \(-0.382921\pi\)
−0.628314 + 0.777960i \(0.716255\pi\)
\(788\) 13.6510 0.486296
\(789\) −33.4332 19.3027i −1.19026 0.687194i
\(790\) 0 0
\(791\) 4.11883 15.3717i 0.146449 0.546554i
\(792\) −31.4403 + 31.4403i −1.11718 + 1.11718i
\(793\) 1.94028 21.7950i 0.0689014 0.773962i
\(794\) 29.2484i 1.03799i
\(795\) 0 0
\(796\) −2.36428 4.09505i −0.0837997 0.145145i
\(797\) 7.57637 + 28.2754i 0.268369 + 1.00157i 0.960156 + 0.279464i \(0.0901568\pi\)
−0.691787 + 0.722101i \(0.743176\pi\)
\(798\) 18.6201i 0.659145i
\(799\) −19.9164 + 5.33659i −0.704593 + 0.188795i
\(800\) 0 0
\(801\) 6.14025 + 6.14025i 0.216955 + 0.216955i
\(802\) 31.1370 8.34312i 1.09948 0.294606i
\(803\) 2.05091 7.65409i 0.0723750 0.270107i
\(804\) −4.58878 1.22956i −0.161834 0.0433632i
\(805\) 0 0
\(806\) 1.94687 0.340228i 0.0685756 0.0119840i
\(807\) 37.4836 + 37.4836i 1.31948 + 1.31948i
\(808\) 3.57894 2.06630i 0.125907 0.0726922i
\(809\) 29.2507 16.8879i 1.02840 0.593748i 0.111875 0.993722i \(-0.464314\pi\)
0.916526 + 0.399975i \(0.130981\pi\)
\(810\) 0 0
\(811\) 34.8970 34.8970i 1.22540 1.22540i 0.259712 0.965686i \(-0.416372\pi\)
0.965686 0.259712i \(-0.0836277\pi\)
\(812\) −2.18343 + 3.78182i −0.0766235 + 0.132716i
\(813\) 3.57704 6.19561i 0.125452 0.217290i
\(814\) 27.7735 27.7735i 0.973462 0.973462i
\(815\) 0 0
\(816\) 57.3902 33.1342i 2.00906 1.15993i
\(817\) −11.1853 + 6.45783i −0.391324 + 0.225931i
\(818\) 15.3639 + 15.3639i 0.537186 + 0.537186i
\(819\) −31.4091 22.0643i −1.09752 0.770988i
\(820\) 0 0
\(821\) −20.4287 5.47385i −0.712966 0.191039i −0.115935 0.993257i \(-0.536986\pi\)
−0.597031 + 0.802218i \(0.703653\pi\)
\(822\) 16.7013 62.3301i 0.582525 2.17401i
\(823\) −49.8251 + 13.3506i −1.73679 + 0.465373i −0.981730 0.190278i \(-0.939061\pi\)
−0.755064 + 0.655651i \(0.772394\pi\)
\(824\) −1.52039 1.52039i −0.0529652 0.0529652i
\(825\) 0 0
\(826\) 8.02146 2.14934i 0.279102 0.0747852i
\(827\) 2.11823i 0.0736582i 0.999322 + 0.0368291i \(0.0117257\pi\)
−0.999322 + 0.0368291i \(0.988274\pi\)
\(828\) −12.4769 46.5643i −0.433601 1.61822i
\(829\) 6.39435 + 11.0753i 0.222085 + 0.384662i 0.955441 0.295183i \(-0.0953805\pi\)
−0.733356 + 0.679845i \(0.762047\pi\)
\(830\) 0 0
\(831\) 60.9544i 2.11448i
\(832\) −0.250780 + 0.116476i −0.00869424 + 0.00403807i
\(833\) −14.5785 + 14.5785i −0.505115 + 0.505115i
\(834\) −2.48202 + 9.26302i −0.0859453 + 0.320752i
\(835\) 0 0
\(836\) 8.15445 + 4.70797i 0.282027 + 0.162829i
\(837\) 4.73549 0.163683
\(838\) 27.4846 + 15.8682i 0.949439 + 0.548159i
\(839\) −8.24394 30.7668i −0.284612 1.06219i −0.949122 0.314908i \(-0.898026\pi\)
0.664510 0.747280i \(-0.268640\pi\)
\(840\) 0 0
\(841\) −10.4320 + 18.0688i −0.359725 + 0.623062i
\(842\) −30.5485 8.18545i −1.05277 0.282089i
\(843\) 17.9301 + 31.0559i 0.617546 + 1.06962i
\(844\) 29.5939 1.01866
\(845\) 0 0
\(846\) −68.3796 −2.35094
\(847\) −1.70842 2.95907i −0.0587020 0.101675i
\(848\) −3.99426 1.07026i −0.137164 0.0367529i
\(849\) −15.9425 + 27.6133i −0.547147 + 0.947686i
\(850\) 0 0
\(851\) −8.98940 33.5489i −0.308152 1.15004i
\(852\) −17.0838 9.86335i −0.585282 0.337913i
\(853\) −37.3304 −1.27817 −0.639083 0.769137i \(-0.720686\pi\)
−0.639083 + 0.769137i \(0.720686\pi\)
\(854\) 12.8640 + 7.42706i 0.440198 + 0.254149i
\(855\) 0 0
\(856\) −6.38871 + 23.8430i −0.218362 + 0.814937i
\(857\) −8.71215 + 8.71215i −0.297601 + 0.297601i −0.840074 0.542472i \(-0.817488\pi\)
0.542472 + 0.840074i \(0.317488\pi\)
\(858\) 68.9796 32.0379i 2.35493 1.09375i
\(859\) 3.04501i 0.103895i 0.998650 + 0.0519473i \(0.0165428\pi\)
−0.998650 + 0.0519473i \(0.983457\pi\)
\(860\) 0 0
\(861\) −25.7834 44.6581i −0.878695 1.52194i
\(862\) 3.33652 + 12.4520i 0.113642 + 0.424118i
\(863\) 23.2413i 0.791142i 0.918435 + 0.395571i \(0.129453\pi\)
−0.918435 + 0.395571i \(0.870547\pi\)
\(864\) 82.6350 22.1420i 2.81130 0.753285i
\(865\) 0 0
\(866\) −11.0484 11.0484i −0.375440 0.375440i
\(867\) 1.42937 0.382998i 0.0485439 0.0130073i
\(868\) −0.123330 + 0.460275i −0.00418611 + 0.0156228i
\(869\) 12.1924 + 3.26696i 0.413600 + 0.110824i
\(870\) 0 0
\(871\) −3.89708 2.73763i −0.132048 0.0927609i
\(872\) −15.0626 15.0626i −0.510082 0.510082i
\(873\) −105.091 + 60.6744i −3.55680 + 2.05352i
\(874\) 20.3027 11.7218i 0.686750 0.396495i
\(875\) 0 0
\(876\) −5.49316 + 5.49316i −0.185597 + 0.185597i
\(877\) −12.4978 + 21.6468i −0.422021 + 0.730961i −0.996137 0.0878124i \(-0.972012\pi\)
0.574116 + 0.818774i \(0.305346\pi\)
\(878\) 20.9383 36.2663i 0.706635 1.22393i
\(879\) −77.9783 + 77.9783i −2.63014 + 2.63014i
\(880\) 0 0
\(881\) −26.3994 + 15.2417i −0.889417 + 0.513505i −0.873752 0.486372i \(-0.838320\pi\)
−0.0156653 + 0.999877i \(0.504987\pi\)
\(882\) −59.2131 + 34.1867i −1.99381 + 1.15113i
\(883\) −40.0008 40.0008i −1.34613 1.34613i −0.889818 0.456315i \(-0.849169\pi\)
−0.456315 0.889818i \(-0.650831\pi\)
\(884\) −15.9149 + 2.78123i −0.535276 + 0.0935429i
\(885\) 0 0
\(886\) −12.4770 3.34320i −0.419173 0.112317i
\(887\) −11.7241 + 43.7550i −0.393657 + 1.46915i 0.430398 + 0.902639i \(0.358373\pi\)
−0.824055 + 0.566509i \(0.808294\pi\)
\(888\) 30.3360 8.12851i 1.01801 0.272775i
\(889\) 19.0839 + 19.0839i 0.640053 + 0.640053i
\(890\) 0 0
\(891\) 94.5952 25.3467i 3.16906 0.849147i
\(892\) 21.8962i 0.733138i
\(893\) −3.05679 11.4081i −0.102291 0.381757i
\(894\) 34.6170 + 59.9584i 1.15777 + 2.00531i
\(895\) 0 0
\(896\) 15.8174i 0.528422i
\(897\) 5.96375 66.9901i 0.199124 2.23674i
\(898\) 40.7645 40.7645i 1.36033 1.36033i
\(899\) 0.229778 0.857542i 0.00766351 0.0286006i
\(900\) 0 0
\(901\) 2.91949 + 1.68557i 0.0972623 + 0.0561544i
\(902\) 73.4214 2.44467
\(903\) −21.7834 12.5766i −0.724905 0.418524i
\(904\) 4.68916 + 17.5002i 0.155959 + 0.582047i
\(905\) 0 0
\(906\) −24.9554 + 43.2241i −0.829089 + 1.43602i
\(907\) 49.2541 + 13.1976i 1.63545 + 0.438219i 0.955489 0.295026i \(-0.0953283\pi\)
0.679965 + 0.733245i \(0.261995\pi\)
\(908\) −6.15487 10.6605i −0.204257 0.353783i
\(909\) −20.0064 −0.663571
\(910\) 0 0
\(911\) −42.2460 −1.39967 −0.699836 0.714304i \(-0.746743\pi\)
−0.699836 + 0.714304i \(0.746743\pi\)
\(912\) 18.9792 + 32.8729i 0.628464 + 1.08853i
\(913\) −4.89924 1.31275i −0.162141 0.0434456i
\(914\) 15.8811 27.5068i 0.525299 0.909845i
\(915\) 0 0
\(916\) 5.12191 + 19.1152i 0.169233 + 0.631585i
\(917\) 5.07539 + 2.93028i 0.167604 + 0.0967663i
\(918\) −108.994 −3.59735
\(919\) −51.0057 29.4481i −1.68252 0.971405i −0.959976 0.280082i \(-0.909638\pi\)
−0.722546 0.691323i \(-0.757028\pi\)
\(920\) 0 0
\(921\) 13.8853 51.8206i 0.457536 1.70755i
\(922\) 2.60426 2.60426i 0.0857667 0.0857667i
\(923\) −12.6887 15.1687i −0.417654 0.499284i
\(924\) 18.3376i 0.603261i
\(925\) 0 0
\(926\) 31.9067 + 55.2641i 1.04852 + 1.81609i
\(927\) 2.69409 + 10.0545i 0.0884854 + 0.330232i
\(928\) 16.0386i 0.526493i
\(929\) 13.3277 3.57114i 0.437267 0.117165i −0.0334683 0.999440i \(-0.510655\pi\)
0.470736 + 0.882274i \(0.343989\pi\)
\(930\) 0 0
\(931\) −8.35053 8.35053i −0.273678 0.273678i
\(932\) −0.0154563 + 0.00414150i −0.000506288 + 0.000135659i
\(933\) 1.10869 4.13767i 0.0362967 0.135461i
\(934\) −68.8958 18.4606i −2.25434 0.604048i
\(935\) 0 0
\(936\) 43.5273 + 3.87499i 1.42273 + 0.126658i
\(937\) 8.81699 + 8.81699i 0.288038 + 0.288038i 0.836304 0.548266i \(-0.184712\pi\)
−0.548266 + 0.836304i \(0.684712\pi\)
\(938\) 2.79992 1.61654i 0.0914207 0.0527818i
\(939\) 78.1831 45.1390i 2.55141 1.47306i
\(940\) 0 0
\(941\) −22.1697 + 22.1697i −0.722711 + 0.722711i −0.969157 0.246446i \(-0.920737\pi\)
0.246446 + 0.969157i \(0.420737\pi\)
\(942\) −39.5342 + 68.4752i −1.28809 + 2.23104i
\(943\) 32.4624 56.2265i 1.05712 1.83099i
\(944\) −11.9707 + 11.9707i −0.389614 + 0.389614i
\(945\) 0 0
\(946\) 31.0154 17.9068i 1.00840 0.582199i
\(947\) −9.06381 + 5.23299i −0.294534 + 0.170049i −0.639985 0.768388i \(-0.721059\pi\)
0.345451 + 0.938437i \(0.387726\pi\)
\(948\) −8.75023 8.75023i −0.284194 0.284194i
\(949\) −7.06329 + 3.28057i −0.229284 + 0.106492i
\(950\) 0 0
\(951\) 110.246 + 29.5403i 3.57497 + 0.957911i
\(952\) −2.31521 + 8.64046i −0.0750362 + 0.280039i
\(953\) 10.9837 2.94307i 0.355796 0.0953353i −0.0764935 0.997070i \(-0.524372\pi\)
0.432290 + 0.901735i \(0.357706\pi\)
\(954\) 7.90533 + 7.90533i 0.255945 + 0.255945i
\(955\) 0 0
\(956\) 13.2178 3.54169i 0.427494 0.114547i
\(957\) 34.1648i 1.10439i
\(958\) 15.1378 + 56.4952i 0.489081 + 1.82528i
\(959\) 7.79856 + 13.5075i 0.251828 + 0.436180i
\(960\) 0 0
\(961\) 30.9031i 0.996875i
\(962\) −38.4508 3.42306i −1.23970 0.110364i
\(963\) 84.4983 84.4983i 2.72292 2.72292i
\(964\) −6.36105 + 23.7398i −0.204876 + 0.764606i
\(965\) 0 0
\(966\) 39.5396 + 22.8282i 1.27216 + 0.734485i
\(967\) 21.5436 0.692795 0.346398 0.938088i \(-0.387405\pi\)
0.346398 + 0.938088i \(0.387405\pi\)
\(968\) 3.36881 + 1.94498i 0.108278 + 0.0625141i
\(969\) −8.00917 29.8906i −0.257292 0.960226i
\(970\) 0 0
\(971\) 11.5450 19.9965i 0.370497 0.641719i −0.619145 0.785276i \(-0.712521\pi\)
0.989642 + 0.143557i \(0.0458541\pi\)
\(972\) −44.1720 11.8358i −1.41682 0.379635i
\(973\) −1.15896 2.00738i −0.0371546 0.0643537i
\(974\) 36.9095 1.18266
\(975\) 0 0
\(976\) −30.2811 −0.969275
\(977\) 3.36817 + 5.83384i 0.107757 + 0.186641i 0.914861 0.403768i \(-0.132300\pi\)
−0.807104 + 0.590409i \(0.798966\pi\)
\(978\) −22.1310 5.92999i −0.707672 0.189620i
\(979\) 2.07943 3.60167i 0.0664587 0.115110i
\(980\) 0 0
\(981\) 26.6905 + 99.6102i 0.852161 + 3.18031i
\(982\) −35.9226 20.7399i −1.14633 0.661837i
\(983\) −12.0774 −0.385209 −0.192604 0.981276i \(-0.561693\pi\)
−0.192604 + 0.981276i \(0.561693\pi\)
\(984\) 50.8419 + 29.3536i 1.62078 + 0.935758i
\(985\) 0 0
\(986\) −5.28867 + 19.7376i −0.168426 + 0.628573i
\(987\) 16.2642 16.2642i 0.517694 0.517694i
\(988\) −1.59308 9.11602i −0.0506827 0.290019i
\(989\) 31.6691i 1.00702i
\(990\) 0 0
\(991\) 5.00080 + 8.66164i 0.158856 + 0.275146i 0.934456 0.356078i \(-0.115886\pi\)
−0.775601 + 0.631224i \(0.782553\pi\)
\(992\) −0.452967 1.69050i −0.0143817 0.0536733i
\(993\) 8.30749i 0.263630i
\(994\) 12.9676 3.47466i 0.411308 0.110210i
\(995\) 0 0
\(996\) 3.51607 + 3.51607i 0.111411 + 0.111411i
\(997\) 14.2508 3.81848i 0.451326 0.120932i −0.0259937 0.999662i \(-0.508275\pi\)
0.477320 + 0.878730i \(0.341608\pi\)
\(998\) 11.7471 43.8406i 0.371847 1.38775i
\(999\) −89.3428 23.9393i −2.82668 0.757407i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.2.s.c.132.3 40
5.2 odd 4 325.2.x.c.93.8 yes 40
5.3 odd 4 325.2.x.c.93.3 yes 40
5.4 even 2 inner 325.2.s.c.132.8 yes 40
13.7 odd 12 325.2.x.c.7.3 yes 40
65.7 even 12 inner 325.2.s.c.293.8 yes 40
65.33 even 12 inner 325.2.s.c.293.3 yes 40
65.59 odd 12 325.2.x.c.7.8 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
325.2.s.c.132.3 40 1.1 even 1 trivial
325.2.s.c.132.8 yes 40 5.4 even 2 inner
325.2.s.c.293.3 yes 40 65.33 even 12 inner
325.2.s.c.293.8 yes 40 65.7 even 12 inner
325.2.x.c.7.3 yes 40 13.7 odd 12
325.2.x.c.7.8 yes 40 65.59 odd 12
325.2.x.c.93.3 yes 40 5.3 odd 4
325.2.x.c.93.8 yes 40 5.2 odd 4