Properties

Label 325.2.x.c.7.5
Level $325$
Weight $2$
Character 325.7
Analytic conductor $2.595$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [325,2,Mod(7,325)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(325, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([3, 11])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("325.7"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 325.x (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.59513806569\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(10\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 7.5
Character \(\chi\) \(=\) 325.7
Dual form 325.2.x.c.93.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.107612 - 0.0621297i) q^{2} +(-0.652423 - 2.43488i) q^{3} +(-0.992280 - 1.71868i) q^{4} +(-0.0810697 + 0.302556i) q^{6} +(-1.31142 - 2.27145i) q^{7} +0.495119i q^{8} +(-2.90489 + 1.67714i) q^{9} +(0.780655 + 2.91344i) q^{11} +(-3.53738 + 3.53738i) q^{12} +(-1.34280 - 3.34618i) q^{13} +0.325912i q^{14} +(-1.95380 + 3.38408i) q^{16} +(5.32666 + 1.42727i) q^{17} +0.416800 q^{18} +(3.13682 + 0.840508i) q^{19} +(-4.67509 + 4.67509i) q^{21} +(0.0970037 - 0.362023i) q^{22} +(-6.05629 + 1.62278i) q^{23} +(1.20555 - 0.323027i) q^{24} +(-0.0633962 + 0.443516i) q^{26} +(0.631478 + 0.631478i) q^{27} +(-2.60259 + 4.50782i) q^{28} +(-2.99096 - 1.72683i) q^{29} +(-6.63421 - 6.63421i) q^{31} +(1.27807 - 0.737897i) q^{32} +(6.58455 - 3.80159i) q^{33} +(-0.484535 - 0.484535i) q^{34} +(5.76492 + 3.32838i) q^{36} +(1.09500 - 1.89660i) q^{37} +(-0.285338 - 0.285338i) q^{38} +(-7.27145 + 5.45267i) q^{39} +(8.78430 - 2.35375i) q^{41} +(0.793556 - 0.212633i) q^{42} +(0.775973 - 2.89597i) q^{43} +(4.23265 - 4.23265i) q^{44} +(0.752551 + 0.201645i) q^{46} -2.26395 q^{47} +(9.51451 + 2.54941i) q^{48} +(0.0603560 - 0.104540i) q^{49} -13.9009i q^{51} +(-4.41857 + 5.62818i) q^{52} +(-5.63768 + 5.63768i) q^{53} +(-0.0287210 - 0.107188i) q^{54} +(1.12464 - 0.649309i) q^{56} -8.18613i q^{57} +(0.214575 + 0.371655i) q^{58} +(3.33926 - 12.4623i) q^{59} +(2.79259 + 4.83692i) q^{61} +(0.301738 + 1.12610i) q^{62} +(7.61905 + 4.39886i) q^{63} +7.63181 q^{64} -0.944768 q^{66} +(-6.86447 - 3.96321i) q^{67} +(-2.83251 - 10.5711i) q^{68} +(7.90252 + 13.6876i) q^{69} +(4.12887 - 15.4091i) q^{71} +(-0.830383 - 1.43826i) q^{72} +6.95689i q^{73} +(-0.235671 + 0.136064i) q^{74} +(-1.66804 - 6.22520i) q^{76} +(5.59396 - 5.59396i) q^{77} +(1.12127 - 0.134998i) q^{78} +5.90307i q^{79} +(-3.90583 + 6.76510i) q^{81} +(-1.09153 - 0.292475i) q^{82} +9.71444 q^{83} +(12.6740 + 3.39598i) q^{84} +(-0.263430 + 0.263430i) q^{86} +(-2.25325 + 8.40925i) q^{87} +(-1.44250 + 0.386517i) q^{88} +(-12.3550 + 3.31051i) q^{89} +(-5.83969 + 7.43833i) q^{91} +(8.79857 + 8.79857i) q^{92} +(-11.8252 + 20.4818i) q^{93} +(0.243628 + 0.140659i) q^{94} +(-2.63053 - 2.63053i) q^{96} +(4.55278 - 2.62855i) q^{97} +(-0.0129900 + 0.00749980i) q^{98} +(-7.15396 - 7.15396i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 24 q^{4} - 12 q^{6} - 24 q^{9} + 8 q^{11} - 32 q^{16} + 24 q^{19} + 32 q^{21} - 56 q^{24} + 76 q^{26} + 36 q^{29} + 8 q^{31} - 44 q^{34} - 60 q^{36} - 44 q^{39} - 52 q^{41} + 80 q^{44} - 60 q^{46}+ \cdots - 208 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/325\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{11}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.107612 0.0621297i −0.0760930 0.0439323i 0.461471 0.887155i \(-0.347322\pi\)
−0.537564 + 0.843223i \(0.680655\pi\)
\(3\) −0.652423 2.43488i −0.376677 1.40578i −0.850880 0.525361i \(-0.823930\pi\)
0.474203 0.880415i \(-0.342736\pi\)
\(4\) −0.992280 1.71868i −0.496140 0.859340i
\(5\) 0 0
\(6\) −0.0810697 + 0.302556i −0.0330966 + 0.123518i
\(7\) −1.31142 2.27145i −0.495670 0.858526i 0.504317 0.863518i \(-0.331744\pi\)
−0.999988 + 0.00499253i \(0.998411\pi\)
\(8\) 0.495119i 0.175051i
\(9\) −2.90489 + 1.67714i −0.968296 + 0.559046i
\(10\) 0 0
\(11\) 0.780655 + 2.91344i 0.235376 + 0.878436i 0.977979 + 0.208704i \(0.0669245\pi\)
−0.742603 + 0.669732i \(0.766409\pi\)
\(12\) −3.53738 + 3.53738i −1.02115 + 1.02115i
\(13\) −1.34280 3.34618i −0.372425 0.928062i
\(14\) 0.325912i 0.0871038i
\(15\) 0 0
\(16\) −1.95380 + 3.38408i −0.488450 + 0.846019i
\(17\) 5.32666 + 1.42727i 1.29190 + 0.346165i 0.838384 0.545081i \(-0.183501\pi\)
0.453521 + 0.891246i \(0.350168\pi\)
\(18\) 0.416800 0.0982408
\(19\) 3.13682 + 0.840508i 0.719636 + 0.192826i 0.600009 0.799993i \(-0.295164\pi\)
0.119626 + 0.992819i \(0.461830\pi\)
\(20\) 0 0
\(21\) −4.67509 + 4.67509i −1.02019 + 1.02019i
\(22\) 0.0970037 0.362023i 0.0206813 0.0771835i
\(23\) −6.05629 + 1.62278i −1.26282 + 0.338373i −0.827277 0.561794i \(-0.810111\pi\)
−0.435546 + 0.900166i \(0.643445\pi\)
\(24\) 1.20555 0.323027i 0.246083 0.0659376i
\(25\) 0 0
\(26\) −0.0633962 + 0.443516i −0.0124330 + 0.0869806i
\(27\) 0.631478 + 0.631478i 0.121528 + 0.121528i
\(28\) −2.60259 + 4.50782i −0.491843 + 0.851898i
\(29\) −2.99096 1.72683i −0.555408 0.320665i 0.195893 0.980625i \(-0.437240\pi\)
−0.751300 + 0.659961i \(0.770573\pi\)
\(30\) 0 0
\(31\) −6.63421 6.63421i −1.19154 1.19154i −0.976635 0.214905i \(-0.931056\pi\)
−0.214905 0.976635i \(-0.568944\pi\)
\(32\) 1.27807 0.737897i 0.225934 0.130443i
\(33\) 6.58455 3.80159i 1.14622 0.661773i
\(34\) −0.484535 0.484535i −0.0830971 0.0830971i
\(35\) 0 0
\(36\) 5.76492 + 3.32838i 0.960820 + 0.554730i
\(37\) 1.09500 1.89660i 0.180017 0.311799i −0.761869 0.647731i \(-0.775718\pi\)
0.941886 + 0.335932i \(0.109051\pi\)
\(38\) −0.285338 0.285338i −0.0462880 0.0462880i
\(39\) −7.27145 + 5.45267i −1.16436 + 0.873125i
\(40\) 0 0
\(41\) 8.78430 2.35375i 1.37188 0.367593i 0.503713 0.863871i \(-0.331967\pi\)
0.868164 + 0.496278i \(0.165300\pi\)
\(42\) 0.793556 0.212633i 0.122448 0.0328100i
\(43\) 0.775973 2.89597i 0.118335 0.441631i −0.881180 0.472781i \(-0.843250\pi\)
0.999515 + 0.0311497i \(0.00991687\pi\)
\(44\) 4.23265 4.23265i 0.638095 0.638095i
\(45\) 0 0
\(46\) 0.752551 + 0.201645i 0.110958 + 0.0297310i
\(47\) −2.26395 −0.330231 −0.165116 0.986274i \(-0.552800\pi\)
−0.165116 + 0.986274i \(0.552800\pi\)
\(48\) 9.51451 + 2.54941i 1.37330 + 0.367975i
\(49\) 0.0603560 0.104540i 0.00862229 0.0149342i
\(50\) 0 0
\(51\) 13.9009i 1.94652i
\(52\) −4.41857 + 5.62818i −0.612746 + 0.780488i
\(53\) −5.63768 + 5.63768i −0.774395 + 0.774395i −0.978871 0.204477i \(-0.934451\pi\)
0.204477 + 0.978871i \(0.434451\pi\)
\(54\) −0.0287210 0.107188i −0.00390843 0.0145865i
\(55\) 0 0
\(56\) 1.12464 0.649309i 0.150286 0.0867675i
\(57\) 8.18613i 1.08428i
\(58\) 0.214575 + 0.371655i 0.0281751 + 0.0488007i
\(59\) 3.33926 12.4623i 0.434734 1.62245i −0.306967 0.951720i \(-0.599314\pi\)
0.741701 0.670730i \(-0.234019\pi\)
\(60\) 0 0
\(61\) 2.79259 + 4.83692i 0.357555 + 0.619304i 0.987552 0.157294i \(-0.0502771\pi\)
−0.629997 + 0.776598i \(0.716944\pi\)
\(62\) 0.301738 + 1.12610i 0.0383208 + 0.143015i
\(63\) 7.61905 + 4.39886i 0.959911 + 0.554205i
\(64\) 7.63181 0.953976
\(65\) 0 0
\(66\) −0.944768 −0.116293
\(67\) −6.86447 3.96321i −0.838629 0.484183i 0.0181691 0.999835i \(-0.494216\pi\)
−0.856798 + 0.515652i \(0.827550\pi\)
\(68\) −2.83251 10.5711i −0.343492 1.28193i
\(69\) 7.90252 + 13.6876i 0.951352 + 1.64779i
\(70\) 0 0
\(71\) 4.12887 15.4091i 0.490006 1.82873i −0.0663658 0.997795i \(-0.521140\pi\)
0.556372 0.830933i \(-0.312193\pi\)
\(72\) −0.830383 1.43826i −0.0978615 0.169501i
\(73\) 6.95689i 0.814242i 0.913374 + 0.407121i \(0.133467\pi\)
−0.913374 + 0.407121i \(0.866533\pi\)
\(74\) −0.235671 + 0.136064i −0.0273961 + 0.0158172i
\(75\) 0 0
\(76\) −1.66804 6.22520i −0.191337 0.714080i
\(77\) 5.59396 5.59396i 0.637491 0.637491i
\(78\) 1.12127 0.134998i 0.126958 0.0152855i
\(79\) 5.90307i 0.664147i 0.943253 + 0.332074i \(0.107748\pi\)
−0.943253 + 0.332074i \(0.892252\pi\)
\(80\) 0 0
\(81\) −3.90583 + 6.76510i −0.433981 + 0.751678i
\(82\) −1.09153 0.292475i −0.120539 0.0322985i
\(83\) 9.71444 1.06630 0.533149 0.846021i \(-0.321008\pi\)
0.533149 + 0.846021i \(0.321008\pi\)
\(84\) 12.6740 + 3.39598i 1.38284 + 0.370532i
\(85\) 0 0
\(86\) −0.263430 + 0.263430i −0.0284063 + 0.0284063i
\(87\) −2.25325 + 8.40925i −0.241574 + 0.901566i
\(88\) −1.44250 + 0.386517i −0.153771 + 0.0412029i
\(89\) −12.3550 + 3.31051i −1.30963 + 0.350913i −0.845082 0.534637i \(-0.820448\pi\)
−0.464544 + 0.885550i \(0.653782\pi\)
\(90\) 0 0
\(91\) −5.83969 + 7.43833i −0.612166 + 0.779749i
\(92\) 8.79857 + 8.79857i 0.917314 + 0.917314i
\(93\) −11.8252 + 20.4818i −1.22621 + 2.12386i
\(94\) 0.243628 + 0.140659i 0.0251283 + 0.0145078i
\(95\) 0 0
\(96\) −2.63053 2.63053i −0.268478 0.268478i
\(97\) 4.55278 2.62855i 0.462264 0.266888i −0.250732 0.968057i \(-0.580671\pi\)
0.712996 + 0.701168i \(0.247338\pi\)
\(98\) −0.0129900 + 0.00749980i −0.00131219 + 0.000757594i
\(99\) −7.15396 7.15396i −0.719000 0.719000i
\(100\) 0 0
\(101\) −1.24767 0.720340i −0.124147 0.0716765i 0.436640 0.899636i \(-0.356168\pi\)
−0.560788 + 0.827960i \(0.689502\pi\)
\(102\) −0.863661 + 1.49591i −0.0855152 + 0.148117i
\(103\) 2.90200 + 2.90200i 0.285943 + 0.285943i 0.835473 0.549531i \(-0.185194\pi\)
−0.549531 + 0.835473i \(0.685194\pi\)
\(104\) 1.65676 0.664844i 0.162458 0.0651933i
\(105\) 0 0
\(106\) 0.956948 0.256414i 0.0929470 0.0249051i
\(107\) 0.968336 0.259465i 0.0936126 0.0250834i −0.211709 0.977333i \(-0.567903\pi\)
0.305321 + 0.952249i \(0.401236\pi\)
\(108\) 0.458705 1.71191i 0.0441389 0.164729i
\(109\) 9.69976 9.69976i 0.929068 0.929068i −0.0685774 0.997646i \(-0.521846\pi\)
0.997646 + 0.0685774i \(0.0218460\pi\)
\(110\) 0 0
\(111\) −5.33239 1.42881i −0.506128 0.135617i
\(112\) 10.2490 0.968439
\(113\) 10.3896 + 2.78387i 0.977367 + 0.261885i 0.711935 0.702245i \(-0.247819\pi\)
0.265432 + 0.964130i \(0.414485\pi\)
\(114\) −0.508602 + 0.880924i −0.0476349 + 0.0825061i
\(115\) 0 0
\(116\) 6.85401i 0.636378i
\(117\) 9.51267 + 7.46821i 0.879447 + 0.690436i
\(118\) −1.13362 + 1.13362i −0.104358 + 0.104358i
\(119\) −3.74351 13.9710i −0.343167 1.28072i
\(120\) 0 0
\(121\) 1.64755 0.951213i 0.149777 0.0864739i
\(122\) 0.694012i 0.0628329i
\(123\) −11.4622 19.8530i −1.03351 1.79009i
\(124\) −4.81909 + 17.9851i −0.432767 + 1.61511i
\(125\) 0 0
\(126\) −0.546600 0.946739i −0.0486950 0.0843422i
\(127\) −1.42275 5.30979i −0.126249 0.471168i 0.873632 0.486587i \(-0.161758\pi\)
−0.999881 + 0.0154193i \(0.995092\pi\)
\(128\) −3.37742 1.94996i −0.298525 0.172353i
\(129\) −7.55759 −0.665408
\(130\) 0 0
\(131\) 1.87484 0.163806 0.0819028 0.996640i \(-0.473900\pi\)
0.0819028 + 0.996640i \(0.473900\pi\)
\(132\) −13.0674 7.54449i −1.13737 0.656664i
\(133\) −2.20452 8.22737i −0.191156 0.713404i
\(134\) 0.492465 + 0.852975i 0.0425425 + 0.0736858i
\(135\) 0 0
\(136\) −0.706671 + 2.63733i −0.0605965 + 0.226149i
\(137\) −0.416423 0.721267i −0.0355775 0.0616220i 0.847688 0.530494i \(-0.177994\pi\)
−0.883266 + 0.468872i \(0.844660\pi\)
\(138\) 1.96393i 0.167180i
\(139\) −12.2720 + 7.08524i −1.04090 + 0.600962i −0.920087 0.391713i \(-0.871883\pi\)
−0.120810 + 0.992676i \(0.538549\pi\)
\(140\) 0 0
\(141\) 1.47705 + 5.51244i 0.124390 + 0.464231i
\(142\) −1.40168 + 1.40168i −0.117626 + 0.117626i
\(143\) 8.70063 6.52437i 0.727584 0.545595i
\(144\) 13.1072i 1.09226i
\(145\) 0 0
\(146\) 0.432229 0.748643i 0.0357716 0.0619582i
\(147\) −0.293919 0.0787553i −0.0242420 0.00649563i
\(148\) −4.34620 −0.357255
\(149\) −0.0628459 0.0168395i −0.00514854 0.00137955i 0.256244 0.966612i \(-0.417515\pi\)
−0.261392 + 0.965233i \(0.584182\pi\)
\(150\) 0 0
\(151\) 0.503953 0.503953i 0.0410111 0.0410111i −0.686304 0.727315i \(-0.740768\pi\)
0.727315 + 0.686304i \(0.240768\pi\)
\(152\) −0.416152 + 1.55310i −0.0337543 + 0.125973i
\(153\) −17.8671 + 4.78747i −1.44447 + 0.387044i
\(154\) −0.949528 + 0.254425i −0.0765151 + 0.0205022i
\(155\) 0 0
\(156\) 16.5867 + 7.08672i 1.32800 + 0.567392i
\(157\) −11.7855 11.7855i −0.940584 0.940584i 0.0577473 0.998331i \(-0.481608\pi\)
−0.998331 + 0.0577473i \(0.981608\pi\)
\(158\) 0.366756 0.635240i 0.0291775 0.0505370i
\(159\) 17.4052 + 10.0489i 1.38032 + 0.796929i
\(160\) 0 0
\(161\) 11.6284 + 11.6284i 0.916445 + 0.916445i
\(162\) 0.840627 0.485336i 0.0660459 0.0381316i
\(163\) −3.43975 + 1.98594i −0.269422 + 0.155551i −0.628625 0.777709i \(-0.716382\pi\)
0.359203 + 0.933259i \(0.383049\pi\)
\(164\) −12.7618 12.7618i −0.996530 0.996530i
\(165\) 0 0
\(166\) −1.04539 0.603555i −0.0811379 0.0468450i
\(167\) −6.33310 + 10.9692i −0.490070 + 0.848826i −0.999935 0.0114288i \(-0.996362\pi\)
0.509865 + 0.860254i \(0.329695\pi\)
\(168\) −2.31472 2.31472i −0.178585 0.178585i
\(169\) −9.39379 + 8.98647i −0.722600 + 0.691267i
\(170\) 0 0
\(171\) −10.5218 + 2.81930i −0.804619 + 0.215597i
\(172\) −5.74722 + 1.53996i −0.438222 + 0.117421i
\(173\) 6.34047 23.6630i 0.482057 1.79906i −0.110905 0.993831i \(-0.535375\pi\)
0.592962 0.805230i \(-0.297958\pi\)
\(174\) 0.764940 0.764940i 0.0579900 0.0579900i
\(175\) 0 0
\(176\) −11.3846 3.05048i −0.858143 0.229939i
\(177\) −32.5227 −2.44456
\(178\) 1.53522 + 0.411362i 0.115070 + 0.0308329i
\(179\) 6.48009 11.2238i 0.484345 0.838910i −0.515493 0.856893i \(-0.672391\pi\)
0.999838 + 0.0179837i \(0.00572470\pi\)
\(180\) 0 0
\(181\) 10.2702i 0.763381i 0.924290 + 0.381691i \(0.124658\pi\)
−0.924290 + 0.381691i \(0.875342\pi\)
\(182\) 1.09056 0.437634i 0.0808377 0.0324396i
\(183\) 9.95533 9.95533i 0.735920 0.735920i
\(184\) −0.803468 2.99858i −0.0592324 0.221059i
\(185\) 0 0
\(186\) 2.54506 1.46939i 0.186613 0.107741i
\(187\) 16.6331i 1.21633i
\(188\) 2.24647 + 3.89101i 0.163841 + 0.283781i
\(189\) 0.606236 2.26250i 0.0440972 0.164573i
\(190\) 0 0
\(191\) 4.16282 + 7.21021i 0.301211 + 0.521712i 0.976410 0.215923i \(-0.0692759\pi\)
−0.675200 + 0.737635i \(0.735943\pi\)
\(192\) −4.97917 18.5825i −0.359341 1.34108i
\(193\) 2.16611 + 1.25060i 0.155920 + 0.0900204i 0.575930 0.817499i \(-0.304640\pi\)
−0.420010 + 0.907519i \(0.637973\pi\)
\(194\) −0.653243 −0.0469001
\(195\) 0 0
\(196\) −0.239560 −0.0171114
\(197\) 16.9593 + 9.79143i 1.20830 + 0.697611i 0.962387 0.271682i \(-0.0875799\pi\)
0.245910 + 0.969293i \(0.420913\pi\)
\(198\) 0.325377 + 1.21432i 0.0231235 + 0.0862982i
\(199\) 1.49761 + 2.59393i 0.106163 + 0.183879i 0.914213 0.405235i \(-0.132810\pi\)
−0.808050 + 0.589114i \(0.799477\pi\)
\(200\) 0 0
\(201\) −5.17137 + 19.2998i −0.364760 + 1.36130i
\(202\) 0.0895091 + 0.155034i 0.00629784 + 0.0109082i
\(203\) 9.05841i 0.635776i
\(204\) −23.8913 + 13.7936i −1.67272 + 0.965747i
\(205\) 0 0
\(206\) −0.131989 0.492590i −0.00919611 0.0343204i
\(207\) 14.8712 14.8712i 1.03362 1.03362i
\(208\) 13.9473 + 1.99363i 0.967069 + 0.138233i
\(209\) 9.79509i 0.677541i
\(210\) 0 0
\(211\) 2.22460 3.85311i 0.153148 0.265259i −0.779235 0.626731i \(-0.784392\pi\)
0.932383 + 0.361472i \(0.117726\pi\)
\(212\) 15.2835 + 4.09521i 1.04968 + 0.281260i
\(213\) −40.2131 −2.75536
\(214\) −0.120325 0.0322410i −0.00822524 0.00220395i
\(215\) 0 0
\(216\) −0.312657 + 0.312657i −0.0212736 + 0.0212736i
\(217\) −6.36902 + 23.7695i −0.432357 + 1.61358i
\(218\) −1.64645 + 0.441165i −0.111512 + 0.0298795i
\(219\) 16.9392 4.53883i 1.14464 0.306706i
\(220\) 0 0
\(221\) −2.37671 19.7405i −0.159875 1.32789i
\(222\) 0.485057 + 0.485057i 0.0325549 + 0.0325549i
\(223\) 0.406831 0.704652i 0.0272434 0.0471870i −0.852082 0.523408i \(-0.824660\pi\)
0.879326 + 0.476221i \(0.157994\pi\)
\(224\) −3.35219 1.93538i −0.223977 0.129313i
\(225\) 0 0
\(226\) −0.945078 0.945078i −0.0628656 0.0628656i
\(227\) 21.1058 12.1854i 1.40084 0.808775i 0.406360 0.913713i \(-0.366798\pi\)
0.994479 + 0.104938i \(0.0334646\pi\)
\(228\) −14.0693 + 8.12293i −0.931764 + 0.537954i
\(229\) 9.07194 + 9.07194i 0.599491 + 0.599491i 0.940177 0.340686i \(-0.110659\pi\)
−0.340686 + 0.940177i \(0.610659\pi\)
\(230\) 0 0
\(231\) −17.2702 9.97097i −1.13630 0.656042i
\(232\) 0.854988 1.48088i 0.0561327 0.0972247i
\(233\) −3.41602 3.41602i −0.223791 0.223791i 0.586302 0.810093i \(-0.300583\pi\)
−0.810093 + 0.586302i \(0.800583\pi\)
\(234\) −0.559678 1.39469i −0.0365873 0.0911735i
\(235\) 0 0
\(236\) −24.7321 + 6.62695i −1.60992 + 0.431378i
\(237\) 14.3732 3.85130i 0.933642 0.250169i
\(238\) −0.465166 + 1.73602i −0.0301523 + 0.112530i
\(239\) −1.50535 + 1.50535i −0.0973730 + 0.0973730i −0.754115 0.656742i \(-0.771934\pi\)
0.656742 + 0.754115i \(0.271934\pi\)
\(240\) 0 0
\(241\) 16.8894 + 4.52549i 1.08794 + 0.291513i 0.757845 0.652435i \(-0.226253\pi\)
0.330095 + 0.943948i \(0.392919\pi\)
\(242\) −0.236394 −0.0151960
\(243\) 21.6083 + 5.78992i 1.38617 + 0.371424i
\(244\) 5.54207 9.59915i 0.354795 0.614522i
\(245\) 0 0
\(246\) 2.84856i 0.181618i
\(247\) −1.39962 11.6250i −0.0890558 0.739680i
\(248\) 3.28473 3.28473i 0.208580 0.208580i
\(249\) −6.33792 23.6535i −0.401650 1.49898i
\(250\) 0 0
\(251\) −0.632462 + 0.365152i −0.0399207 + 0.0230482i −0.519828 0.854271i \(-0.674004\pi\)
0.479907 + 0.877319i \(0.340670\pi\)
\(252\) 17.4596i 1.09985i
\(253\) −9.45574 16.3778i −0.594477 1.02966i
\(254\) −0.176791 + 0.659791i −0.0110928 + 0.0413990i
\(255\) 0 0
\(256\) −7.38951 12.7990i −0.461844 0.799938i
\(257\) 3.97438 + 14.8326i 0.247915 + 0.925232i 0.971896 + 0.235411i \(0.0756437\pi\)
−0.723981 + 0.689820i \(0.757690\pi\)
\(258\) 0.813286 + 0.469551i 0.0506329 + 0.0292329i
\(259\) −5.74404 −0.356917
\(260\) 0 0
\(261\) 11.5845 0.717065
\(262\) −0.201755 0.116483i −0.0124645 0.00719636i
\(263\) 6.61411 + 24.6842i 0.407844 + 1.52209i 0.798750 + 0.601663i \(0.205495\pi\)
−0.390907 + 0.920430i \(0.627839\pi\)
\(264\) 1.88224 + 3.26014i 0.115844 + 0.200648i
\(265\) 0 0
\(266\) −0.273932 + 1.02233i −0.0167959 + 0.0626830i
\(267\) 16.1213 + 27.9230i 0.986610 + 1.70886i
\(268\) 15.7304i 0.960889i
\(269\) 8.63715 4.98666i 0.526617 0.304042i −0.213021 0.977048i \(-0.568330\pi\)
0.739638 + 0.673005i \(0.234997\pi\)
\(270\) 0 0
\(271\) 2.45325 + 9.15564i 0.149024 + 0.556166i 0.999543 + 0.0302215i \(0.00962126\pi\)
−0.850519 + 0.525944i \(0.823712\pi\)
\(272\) −15.2372 + 15.2372i −0.923892 + 0.923892i
\(273\) 21.9214 + 9.36598i 1.32674 + 0.566855i
\(274\) 0.103489i 0.00625200i
\(275\) 0 0
\(276\) 15.6830 27.1638i 0.944007 1.63507i
\(277\) −5.02757 1.34713i −0.302077 0.0809414i 0.104597 0.994515i \(-0.466645\pi\)
−0.406674 + 0.913573i \(0.633312\pi\)
\(278\) 1.76082 0.105607
\(279\) 30.3981 + 8.14515i 1.81989 + 0.487638i
\(280\) 0 0
\(281\) 18.7894 18.7894i 1.12088 1.12088i 0.129271 0.991609i \(-0.458736\pi\)
0.991609 0.129271i \(-0.0412638\pi\)
\(282\) 0.183538 0.684973i 0.0109295 0.0407895i
\(283\) 26.8173 7.18567i 1.59412 0.427144i 0.650861 0.759197i \(-0.274408\pi\)
0.943261 + 0.332053i \(0.107741\pi\)
\(284\) −30.5804 + 8.19398i −1.81461 + 0.486223i
\(285\) 0 0
\(286\) −1.34165 + 0.161531i −0.0793333 + 0.00955155i
\(287\) −16.8663 16.8663i −0.995586 0.995586i
\(288\) −2.47511 + 4.28701i −0.145847 + 0.252615i
\(289\) 11.6138 + 6.70521i 0.683162 + 0.394424i
\(290\) 0 0
\(291\) −9.37052 9.37052i −0.549310 0.549310i
\(292\) 11.9567 6.90318i 0.699711 0.403978i
\(293\) −6.10410 + 3.52420i −0.356605 + 0.205886i −0.667591 0.744529i \(-0.732674\pi\)
0.310985 + 0.950415i \(0.399341\pi\)
\(294\) 0.0267361 + 0.0267361i 0.00155928 + 0.00155928i
\(295\) 0 0
\(296\) 0.939043 + 0.542157i 0.0545808 + 0.0315122i
\(297\) −1.34681 + 2.33274i −0.0781498 + 0.135359i
\(298\) 0.00571673 + 0.00571673i 0.000331161 + 0.000331161i
\(299\) 13.5625 + 18.0864i 0.784338 + 1.04596i
\(300\) 0 0
\(301\) −7.59566 + 2.03525i −0.437807 + 0.117310i
\(302\) −0.0855417 + 0.0229208i −0.00492237 + 0.00131895i
\(303\) −0.939933 + 3.50788i −0.0539978 + 0.201522i
\(304\) −8.97305 + 8.97305i −0.514640 + 0.514640i
\(305\) 0 0
\(306\) 2.22015 + 0.594888i 0.126918 + 0.0340075i
\(307\) −17.7175 −1.01119 −0.505596 0.862770i \(-0.668727\pi\)
−0.505596 + 0.862770i \(0.668727\pi\)
\(308\) −15.1650 4.06345i −0.864106 0.231537i
\(309\) 5.17268 8.95934i 0.294263 0.509679i
\(310\) 0 0
\(311\) 18.1295i 1.02803i 0.857782 + 0.514014i \(0.171842\pi\)
−0.857782 + 0.514014i \(0.828158\pi\)
\(312\) −2.69972 3.60023i −0.152841 0.203823i
\(313\) 7.90286 7.90286i 0.446696 0.446696i −0.447558 0.894255i \(-0.647706\pi\)
0.894255 + 0.447558i \(0.147706\pi\)
\(314\) 0.536028 + 2.00049i 0.0302498 + 0.112894i
\(315\) 0 0
\(316\) 10.1455 5.85750i 0.570728 0.329510i
\(317\) 8.03345i 0.451203i −0.974220 0.225602i \(-0.927565\pi\)
0.974220 0.225602i \(-0.0724348\pi\)
\(318\) −1.24867 2.16276i −0.0700219 0.121282i
\(319\) 2.69612 10.0621i 0.150954 0.563367i
\(320\) 0 0
\(321\) −1.26353 2.18850i −0.0705233 0.122150i
\(322\) −0.528884 1.97382i −0.0294735 0.109997i
\(323\) 15.5091 + 8.95420i 0.862951 + 0.498225i
\(324\) 15.5027 0.861262
\(325\) 0 0
\(326\) 0.493544 0.0273349
\(327\) −29.9461 17.2894i −1.65602 0.956104i
\(328\) 1.16538 + 4.34927i 0.0643476 + 0.240148i
\(329\) 2.96899 + 5.14245i 0.163686 + 0.283512i
\(330\) 0 0
\(331\) 3.42770 12.7924i 0.188403 0.703131i −0.805473 0.592633i \(-0.798089\pi\)
0.993876 0.110499i \(-0.0352448\pi\)
\(332\) −9.63944 16.6960i −0.529033 0.916312i
\(333\) 7.34588i 0.402552i
\(334\) 1.36303 0.786947i 0.0745818 0.0430598i
\(335\) 0 0
\(336\) −6.68668 24.9550i −0.364788 1.36141i
\(337\) 1.40596 1.40596i 0.0765877 0.0765877i −0.667775 0.744363i \(-0.732753\pi\)
0.744363 + 0.667775i \(0.232753\pi\)
\(338\) 1.56921 0.383417i 0.0853538 0.0208551i
\(339\) 27.1135i 1.47261i
\(340\) 0 0
\(341\) 14.1494 24.5074i 0.766232 1.32715i
\(342\) 1.30743 + 0.350324i 0.0706975 + 0.0189433i
\(343\) −18.6765 −1.00844
\(344\) 1.43385 + 0.384199i 0.0773080 + 0.0207146i
\(345\) 0 0
\(346\) −2.15248 + 2.15248i −0.115718 + 0.115718i
\(347\) −1.22887 + 4.58620i −0.0659692 + 0.246200i −0.991034 0.133608i \(-0.957344\pi\)
0.925065 + 0.379809i \(0.124010\pi\)
\(348\) 16.6887 4.47171i 0.894606 0.239709i
\(349\) 2.32494 0.622965i 0.124451 0.0333466i −0.196056 0.980593i \(-0.562813\pi\)
0.320507 + 0.947246i \(0.396147\pi\)
\(350\) 0 0
\(351\) 1.26509 2.96099i 0.0675256 0.158046i
\(352\) 3.14756 + 3.14756i 0.167765 + 0.167765i
\(353\) −2.64643 + 4.58374i −0.140855 + 0.243968i −0.927819 0.373031i \(-0.878318\pi\)
0.786964 + 0.616999i \(0.211652\pi\)
\(354\) 3.49983 + 2.02063i 0.186014 + 0.107395i
\(355\) 0 0
\(356\) 17.9493 + 17.9493i 0.951311 + 0.951311i
\(357\) −31.5752 + 18.2300i −1.67114 + 0.964832i
\(358\) −1.39467 + 0.805212i −0.0737105 + 0.0425568i
\(359\) 0.976204 + 0.976204i 0.0515221 + 0.0515221i 0.732398 0.680876i \(-0.238401\pi\)
−0.680876 + 0.732398i \(0.738401\pi\)
\(360\) 0 0
\(361\) −7.32130 4.22696i −0.385332 0.222471i
\(362\) 0.638087 1.10520i 0.0335371 0.0580880i
\(363\) −3.39099 3.39099i −0.177981 0.177981i
\(364\) 18.5787 + 2.65564i 0.973789 + 0.139194i
\(365\) 0 0
\(366\) −1.68983 + 0.452790i −0.0883290 + 0.0236677i
\(367\) 28.3765 7.60345i 1.48124 0.396897i 0.574471 0.818525i \(-0.305208\pi\)
0.906769 + 0.421628i \(0.138541\pi\)
\(368\) 6.34116 23.6655i 0.330556 1.23365i
\(369\) −21.5698 + 21.5698i −1.12288 + 1.12288i
\(370\) 0 0
\(371\) 20.1990 + 5.41232i 1.04868 + 0.280994i
\(372\) 46.9355 2.43349
\(373\) 21.5476 + 5.77365i 1.11569 + 0.298949i 0.769139 0.639082i \(-0.220686\pi\)
0.346552 + 0.938031i \(0.387352\pi\)
\(374\) 1.03341 1.78992i 0.0534364 0.0925546i
\(375\) 0 0
\(376\) 1.12093i 0.0578073i
\(377\) −1.76203 + 12.3271i −0.0907493 + 0.634877i
\(378\) −0.205807 + 0.205807i −0.0105856 + 0.0105856i
\(379\) −7.19049 26.8353i −0.369351 1.37844i −0.861426 0.507883i \(-0.830428\pi\)
0.492075 0.870553i \(-0.336238\pi\)
\(380\) 0 0
\(381\) −12.0004 + 6.92846i −0.614801 + 0.354956i
\(382\) 1.03454i 0.0529316i
\(383\) 1.73419 + 3.00371i 0.0886132 + 0.153483i 0.906925 0.421292i \(-0.138423\pi\)
−0.818312 + 0.574774i \(0.805090\pi\)
\(384\) −2.54439 + 9.49580i −0.129843 + 0.484580i
\(385\) 0 0
\(386\) −0.155399 0.269159i −0.00790961 0.0136998i
\(387\) 2.60283 + 9.71388i 0.132309 + 0.493784i
\(388\) −9.03526 5.21651i −0.458696 0.264828i
\(389\) 15.9955 0.811006 0.405503 0.914094i \(-0.367096\pi\)
0.405503 + 0.914094i \(0.367096\pi\)
\(390\) 0 0
\(391\) −34.5759 −1.74858
\(392\) 0.0517596 + 0.0298834i 0.00261425 + 0.00150934i
\(393\) −1.22319 4.56500i −0.0617017 0.230274i
\(394\) −1.21668 2.10735i −0.0612953 0.106167i
\(395\) 0 0
\(396\) −5.19663 + 19.3941i −0.261140 + 0.974590i
\(397\) 5.61593 + 9.72708i 0.281856 + 0.488188i 0.971842 0.235634i \(-0.0757167\pi\)
−0.689986 + 0.723823i \(0.742383\pi\)
\(398\) 0.372184i 0.0186559i
\(399\) −18.5944 + 10.7355i −0.930882 + 0.537445i
\(400\) 0 0
\(401\) 1.94255 + 7.24971i 0.0970065 + 0.362033i 0.997316 0.0732171i \(-0.0233266\pi\)
−0.900310 + 0.435250i \(0.856660\pi\)
\(402\) 1.75559 1.75559i 0.0875610 0.0875610i
\(403\) −13.2908 + 31.1076i −0.662064 + 1.54958i
\(404\) 2.85912i 0.142246i
\(405\) 0 0
\(406\) 0.562796 0.974792i 0.0279311 0.0483781i
\(407\) 6.38046 + 1.70964i 0.316268 + 0.0847437i
\(408\) 6.88262 0.340740
\(409\) −36.5236 9.78648i −1.80598 0.483910i −0.811092 0.584918i \(-0.801127\pi\)
−0.994886 + 0.101008i \(0.967793\pi\)
\(410\) 0 0
\(411\) −1.48451 + 1.48451i −0.0732255 + 0.0732255i
\(412\) 2.10801 7.86720i 0.103854 0.387589i
\(413\) −32.6866 + 8.75834i −1.60840 + 0.430970i
\(414\) −2.52426 + 0.676374i −0.124061 + 0.0332420i
\(415\) 0 0
\(416\) −4.18533 3.28582i −0.205203 0.161100i
\(417\) 25.2582 + 25.2582i 1.23690 + 1.23690i
\(418\) 0.608566 1.05407i 0.0297659 0.0515561i
\(419\) 2.07584 + 1.19849i 0.101411 + 0.0585499i 0.549848 0.835265i \(-0.314686\pi\)
−0.448437 + 0.893815i \(0.648019\pi\)
\(420\) 0 0
\(421\) 13.9343 + 13.9343i 0.679116 + 0.679116i 0.959800 0.280684i \(-0.0905614\pi\)
−0.280684 + 0.959800i \(0.590561\pi\)
\(422\) −0.478786 + 0.276427i −0.0233069 + 0.0134563i
\(423\) 6.57653 3.79696i 0.319762 0.184614i
\(424\) −2.79132 2.79132i −0.135559 0.135559i
\(425\) 0 0
\(426\) 4.32741 + 2.49843i 0.209663 + 0.121049i
\(427\) 7.32453 12.6865i 0.354459 0.613941i
\(428\) −1.40680 1.40680i −0.0680001 0.0680001i
\(429\) −21.5625 16.9283i −1.04105 0.817307i
\(430\) 0 0
\(431\) −18.4142 + 4.93407i −0.886981 + 0.237666i −0.673417 0.739263i \(-0.735174\pi\)
−0.213565 + 0.976929i \(0.568507\pi\)
\(432\) −3.37075 + 0.903190i −0.162175 + 0.0434548i
\(433\) −1.97715 + 7.37884i −0.0950159 + 0.354604i −0.997022 0.0771194i \(-0.975428\pi\)
0.902006 + 0.431724i \(0.142094\pi\)
\(434\) 2.16217 2.16217i 0.103788 0.103788i
\(435\) 0 0
\(436\) −26.2956 7.04590i −1.25933 0.337437i
\(437\) −20.3614 −0.974020
\(438\) −2.10485 0.563993i −0.100574 0.0269486i
\(439\) 2.24892 3.89524i 0.107335 0.185910i −0.807355 0.590066i \(-0.799102\pi\)
0.914690 + 0.404157i \(0.132435\pi\)
\(440\) 0 0
\(441\) 0.404901i 0.0192810i
\(442\) −0.970708 + 2.27197i −0.0461719 + 0.108067i
\(443\) −20.2178 + 20.2178i −0.960576 + 0.960576i −0.999252 0.0386758i \(-0.987686\pi\)
0.0386758 + 0.999252i \(0.487686\pi\)
\(444\) 2.83556 + 10.5825i 0.134570 + 0.502221i
\(445\) 0 0
\(446\) −0.0875596 + 0.0505526i −0.00414607 + 0.00239373i
\(447\) 0.164008i 0.00775733i
\(448\) −10.0085 17.3352i −0.472858 0.819013i
\(449\) −4.01450 + 14.9823i −0.189456 + 0.707059i 0.804177 + 0.594390i \(0.202607\pi\)
−0.993633 + 0.112669i \(0.964060\pi\)
\(450\) 0 0
\(451\) 13.7150 + 23.7551i 0.645814 + 1.11858i
\(452\) −5.52476 20.6187i −0.259863 0.969822i
\(453\) −1.55585 0.898272i −0.0731004 0.0422045i
\(454\) −3.02831 −0.142125
\(455\) 0 0
\(456\) 4.05311 0.189804
\(457\) 3.92630 + 2.26685i 0.183665 + 0.106039i 0.589013 0.808123i \(-0.299517\pi\)
−0.405349 + 0.914162i \(0.632850\pi\)
\(458\) −0.412611 1.53989i −0.0192800 0.0719541i
\(459\) 2.46238 + 4.26496i 0.114934 + 0.199071i
\(460\) 0 0
\(461\) 1.41111 5.26633i 0.0657219 0.245278i −0.925248 0.379363i \(-0.876143\pi\)
0.990970 + 0.134086i \(0.0428097\pi\)
\(462\) 1.23899 + 2.14599i 0.0576429 + 0.0998404i
\(463\) 34.6785i 1.61165i −0.592155 0.805824i \(-0.701723\pi\)
0.592155 0.805824i \(-0.298277\pi\)
\(464\) 11.6875 6.74777i 0.542577 0.313257i
\(465\) 0 0
\(466\) 0.155368 + 0.579840i 0.00719727 + 0.0268606i
\(467\) −0.351988 + 0.351988i −0.0162881 + 0.0162881i −0.715204 0.698916i \(-0.753666\pi\)
0.698916 + 0.715204i \(0.253666\pi\)
\(468\) 3.39623 23.7598i 0.156991 1.09830i
\(469\) 20.7897i 0.959979i
\(470\) 0 0
\(471\) −21.0071 + 36.3853i −0.967954 + 1.67655i
\(472\) 6.17031 + 1.65333i 0.284012 + 0.0761007i
\(473\) 9.04301 0.415798
\(474\) −1.78601 0.478560i −0.0820342 0.0219810i
\(475\) 0 0
\(476\) −20.2970 + 20.2970i −0.930312 + 0.930312i
\(477\) 6.92166 25.8320i 0.316921 1.18277i
\(478\) 0.255520 0.0684665i 0.0116872 0.00313158i
\(479\) 16.9065 4.53008i 0.772478 0.206985i 0.149012 0.988835i \(-0.452391\pi\)
0.623466 + 0.781851i \(0.285724\pi\)
\(480\) 0 0
\(481\) −7.81673 1.11732i −0.356412 0.0509456i
\(482\) −1.53633 1.53633i −0.0699778 0.0699778i
\(483\) 20.7271 35.9003i 0.943114 1.63352i
\(484\) −3.26966 1.88774i −0.148621 0.0858063i
\(485\) 0 0
\(486\) −1.96558 1.96558i −0.0891605 0.0891605i
\(487\) −6.22227 + 3.59243i −0.281958 + 0.162788i −0.634309 0.773079i \(-0.718715\pi\)
0.352352 + 0.935868i \(0.385382\pi\)
\(488\) −2.39485 + 1.38267i −0.108410 + 0.0625904i
\(489\) 7.07969 + 7.07969i 0.320155 + 0.320155i
\(490\) 0 0
\(491\) −10.4598 6.03895i −0.472042 0.272534i 0.245052 0.969510i \(-0.421195\pi\)
−0.717094 + 0.696976i \(0.754528\pi\)
\(492\) −22.7473 + 39.3995i −1.02553 + 1.77627i
\(493\) −13.4672 13.4672i −0.606531 0.606531i
\(494\) −0.571641 + 1.33794i −0.0257193 + 0.0601969i
\(495\) 0 0
\(496\) 35.4126 9.48878i 1.59007 0.426059i
\(497\) −40.4157 + 10.8294i −1.81289 + 0.485763i
\(498\) −0.787547 + 2.93916i −0.0352908 + 0.131707i
\(499\) 26.4464 26.4464i 1.18390 1.18390i 0.205177 0.978725i \(-0.434223\pi\)
0.978725 0.205177i \(-0.0657770\pi\)
\(500\) 0 0
\(501\) 30.8406 + 8.26372i 1.37786 + 0.369196i
\(502\) 0.0907472 0.00405025
\(503\) −24.6933 6.61654i −1.10102 0.295017i −0.337839 0.941204i \(-0.609696\pi\)
−0.763179 + 0.646187i \(0.776363\pi\)
\(504\) −2.17796 + 3.77234i −0.0970141 + 0.168033i
\(505\) 0 0
\(506\) 2.34993i 0.104467i
\(507\) 28.0097 + 17.0097i 1.24395 + 0.755429i
\(508\) −7.71406 + 7.71406i −0.342256 + 0.342256i
\(509\) 2.29966 + 8.58245i 0.101931 + 0.380410i 0.997979 0.0635463i \(-0.0202411\pi\)
−0.896048 + 0.443957i \(0.853574\pi\)
\(510\) 0 0
\(511\) 15.8022 9.12340i 0.699048 0.403596i
\(512\) 9.63626i 0.425866i
\(513\) 1.45007 + 2.51160i 0.0640222 + 0.110890i
\(514\) 0.493854 1.84309i 0.0217830 0.0812952i
\(515\) 0 0
\(516\) 7.49924 + 12.9891i 0.330136 + 0.571812i
\(517\) −1.76737 6.59590i −0.0777286 0.290087i
\(518\) 0.618126 + 0.356875i 0.0271589 + 0.0156802i
\(519\) −61.7530 −2.71066
\(520\) 0 0
\(521\) −25.8875 −1.13415 −0.567076 0.823666i \(-0.691925\pi\)
−0.567076 + 0.823666i \(0.691925\pi\)
\(522\) −1.24663 0.719744i −0.0545637 0.0315024i
\(523\) −0.312883 1.16769i −0.0136814 0.0510597i 0.958748 0.284258i \(-0.0917474\pi\)
−0.972429 + 0.233199i \(0.925081\pi\)
\(524\) −1.86037 3.22225i −0.0812704 0.140765i
\(525\) 0 0
\(526\) 0.821866 3.06724i 0.0358350 0.133738i
\(527\) −25.8694 44.8070i −1.12689 1.95183i
\(528\) 29.7102i 1.29297i
\(529\) 14.1266 8.15602i 0.614202 0.354610i
\(530\) 0 0
\(531\) 11.2008 + 41.8019i 0.486073 + 1.81405i
\(532\) −11.9527 + 11.9527i −0.518216 + 0.518216i
\(533\) −19.6716 26.2332i −0.852070 1.13629i
\(534\) 4.00646i 0.173376i
\(535\) 0 0
\(536\) 1.96226 3.39873i 0.0847566 0.146803i
\(537\) −31.5564 8.45552i −1.36176 0.364883i
\(538\) −1.23928 −0.0534291
\(539\) 0.351688 + 0.0942344i 0.0151483 + 0.00405896i
\(540\) 0 0
\(541\) 1.85241 1.85241i 0.0796411 0.0796411i −0.666164 0.745805i \(-0.732065\pi\)
0.745805 + 0.666164i \(0.232065\pi\)
\(542\) 0.304839 1.13767i 0.0130940 0.0488673i
\(543\) 25.0068 6.70054i 1.07314 0.287548i
\(544\) 7.86105 2.10636i 0.337040 0.0903095i
\(545\) 0 0
\(546\) −1.77709 2.36986i −0.0760525 0.101421i
\(547\) −13.8446 13.8446i −0.591954 0.591954i 0.346205 0.938159i \(-0.387470\pi\)
−0.938159 + 0.346205i \(0.887470\pi\)
\(548\) −0.826417 + 1.43140i −0.0353028 + 0.0611462i
\(549\) −16.2243 9.36713i −0.692438 0.399779i
\(550\) 0 0
\(551\) −7.93069 7.93069i −0.337859 0.337859i
\(552\) −6.77698 + 3.91269i −0.288447 + 0.166535i
\(553\) 13.4085 7.74140i 0.570187 0.329198i
\(554\) 0.457329 + 0.457329i 0.0194300 + 0.0194300i
\(555\) 0 0
\(556\) 24.3545 + 14.0611i 1.03286 + 0.596323i
\(557\) 16.7504 29.0126i 0.709738 1.22930i −0.255216 0.966884i \(-0.582147\pi\)
0.964954 0.262418i \(-0.0845201\pi\)
\(558\) −2.76514 2.76514i −0.117058 0.117058i
\(559\) −10.7324 + 1.29216i −0.453932 + 0.0546524i
\(560\) 0 0
\(561\) 40.4996 10.8518i 1.70989 0.458165i
\(562\) −3.18934 + 0.854581i −0.134534 + 0.0360483i
\(563\) −4.42343 + 16.5085i −0.186425 + 0.695748i 0.807896 + 0.589325i \(0.200606\pi\)
−0.994321 + 0.106423i \(0.966060\pi\)
\(564\) 8.00847 8.00847i 0.337217 0.337217i
\(565\) 0 0
\(566\) −3.33230 0.892887i −0.140067 0.0375308i
\(567\) 20.4887 0.860446
\(568\) 7.62936 + 2.04428i 0.320121 + 0.0857761i
\(569\) −22.0925 + 38.2653i −0.926165 + 1.60416i −0.136488 + 0.990642i \(0.543582\pi\)
−0.789677 + 0.613523i \(0.789752\pi\)
\(570\) 0 0
\(571\) 37.9123i 1.58658i −0.608844 0.793290i \(-0.708367\pi\)
0.608844 0.793290i \(-0.291633\pi\)
\(572\) −19.8468 8.47960i −0.829835 0.354550i
\(573\) 14.8400 14.8400i 0.619952 0.619952i
\(574\) 0.767115 + 2.86291i 0.0320188 + 0.119496i
\(575\) 0 0
\(576\) −22.1696 + 12.7996i −0.923731 + 0.533316i
\(577\) 16.9069i 0.703843i 0.936030 + 0.351921i \(0.114472\pi\)
−0.936030 + 0.351921i \(0.885528\pi\)
\(578\) −0.833185 1.44312i −0.0346559 0.0600258i
\(579\) 1.63184 6.09012i 0.0678171 0.253097i
\(580\) 0 0
\(581\) −12.7397 22.0658i −0.528532 0.915445i
\(582\) 0.426191 + 1.59057i 0.0176662 + 0.0659311i
\(583\) −20.8261 12.0240i −0.862531 0.497982i
\(584\) −3.44449 −0.142534
\(585\) 0 0
\(586\) 0.875831 0.0361802
\(587\) 26.0333 + 15.0303i 1.07451 + 0.620368i 0.929410 0.369049i \(-0.120317\pi\)
0.145099 + 0.989417i \(0.453650\pi\)
\(588\) 0.156295 + 0.583299i 0.00644548 + 0.0240549i
\(589\) −15.2342 26.3864i −0.627715 1.08723i
\(590\) 0 0
\(591\) 12.7763 47.6818i 0.525547 1.96137i
\(592\) 4.27883 + 7.41115i 0.175859 + 0.304596i
\(593\) 5.10110i 0.209477i 0.994500 + 0.104739i \(0.0334006\pi\)
−0.994500 + 0.104739i \(0.966599\pi\)
\(594\) 0.289865 0.167354i 0.0118933 0.00686661i
\(595\) 0 0
\(596\) 0.0334190 + 0.124721i 0.00136890 + 0.00510879i
\(597\) 5.33883 5.33883i 0.218504 0.218504i
\(598\) −0.335782 2.78894i −0.0137311 0.114048i
\(599\) 33.5536i 1.37096i 0.728091 + 0.685480i \(0.240408\pi\)
−0.728091 + 0.685480i \(0.759592\pi\)
\(600\) 0 0
\(601\) −23.6229 + 40.9160i −0.963597 + 1.66900i −0.250259 + 0.968179i \(0.580516\pi\)
−0.713338 + 0.700820i \(0.752817\pi\)
\(602\) 0.943833 + 0.252899i 0.0384677 + 0.0103074i
\(603\) 26.5874 1.08272
\(604\) −1.36620 0.366071i −0.0555897 0.0148952i
\(605\) 0 0
\(606\) 0.319091 0.319091i 0.0129622 0.0129622i
\(607\) 0.852422 3.18128i 0.0345987 0.129124i −0.946466 0.322802i \(-0.895375\pi\)
0.981065 + 0.193678i \(0.0620418\pi\)
\(608\) 4.62930 1.24042i 0.187743 0.0503055i
\(609\) 22.0561 5.90992i 0.893758 0.239482i
\(610\) 0 0
\(611\) 3.04003 + 7.57558i 0.122986 + 0.306475i
\(612\) 25.9573 + 25.9573i 1.04926 + 1.04926i
\(613\) −1.54384 + 2.67402i −0.0623553 + 0.108003i −0.895518 0.445026i \(-0.853195\pi\)
0.833162 + 0.553028i \(0.186528\pi\)
\(614\) 1.90661 + 1.10078i 0.0769447 + 0.0444241i
\(615\) 0 0
\(616\) 2.76968 + 2.76968i 0.111593 + 0.111593i
\(617\) 23.8740 13.7837i 0.961131 0.554909i 0.0646098 0.997911i \(-0.479420\pi\)
0.896521 + 0.443002i \(0.146086\pi\)
\(618\) −1.11328 + 0.642754i −0.0447828 + 0.0258554i
\(619\) −13.0430 13.0430i −0.524244 0.524244i 0.394606 0.918850i \(-0.370881\pi\)
−0.918850 + 0.394606i \(0.870881\pi\)
\(620\) 0 0
\(621\) −4.84916 2.79967i −0.194590 0.112347i
\(622\) 1.12638 1.95094i 0.0451636 0.0782257i
\(623\) 23.7222 + 23.7222i 0.950410 + 0.950410i
\(624\) −4.24529 35.2606i −0.169948 1.41155i
\(625\) 0 0
\(626\) −1.34144 + 0.359439i −0.0536149 + 0.0143661i
\(627\) 23.8498 6.39054i 0.952470 0.255214i
\(628\) −8.56097 + 31.9500i −0.341620 + 1.27494i
\(629\) 8.53968 8.53968i 0.340499 0.340499i
\(630\) 0 0
\(631\) −23.7377 6.36049i −0.944982 0.253207i −0.246750 0.969079i \(-0.579363\pi\)
−0.698232 + 0.715872i \(0.746029\pi\)
\(632\) −2.92272 −0.116260
\(633\) −10.8332 2.90276i −0.430582 0.115374i
\(634\) −0.499116 + 0.864494i −0.0198224 + 0.0343334i
\(635\) 0 0
\(636\) 39.8853i 1.58155i
\(637\) −0.430854 0.0615863i −0.0170711 0.00244014i
\(638\) −0.915287 + 0.915287i −0.0362366 + 0.0362366i
\(639\) 13.8494 + 51.6865i 0.547872 + 2.04469i
\(640\) 0 0
\(641\) −28.0502 + 16.1948i −1.10792 + 0.639656i −0.938289 0.345852i \(-0.887590\pi\)
−0.169628 + 0.985508i \(0.554257\pi\)
\(642\) 0.314011i 0.0123930i
\(643\) 16.9008 + 29.2730i 0.666501 + 1.15441i 0.978876 + 0.204455i \(0.0655422\pi\)
−0.312375 + 0.949959i \(0.601124\pi\)
\(644\) 8.44685 31.5241i 0.332853 1.24222i
\(645\) 0 0
\(646\) −1.11264 1.92716i −0.0437764 0.0758229i
\(647\) 8.72438 + 32.5598i 0.342991 + 1.28006i 0.894942 + 0.446183i \(0.147217\pi\)
−0.551951 + 0.833877i \(0.686116\pi\)
\(648\) −3.34953 1.93385i −0.131582 0.0759689i
\(649\) 38.9149 1.52755
\(650\) 0 0
\(651\) 62.0311 2.43119
\(652\) 6.82639 + 3.94122i 0.267342 + 0.154350i
\(653\) −4.59060 17.1323i −0.179644 0.670441i −0.995714 0.0924873i \(-0.970518\pi\)
0.816070 0.577953i \(-0.196148\pi\)
\(654\) 2.14837 + 3.72108i 0.0840077 + 0.145506i
\(655\) 0 0
\(656\) −9.19748 + 34.3255i −0.359101 + 1.34018i
\(657\) −11.6677 20.2090i −0.455199 0.788427i
\(658\) 0.737850i 0.0287644i
\(659\) 11.6311 6.71522i 0.453084 0.261588i −0.256048 0.966664i \(-0.582421\pi\)
0.709132 + 0.705076i \(0.249087\pi\)
\(660\) 0 0
\(661\) −9.25257 34.5311i −0.359883 1.34310i −0.874226 0.485518i \(-0.838631\pi\)
0.514343 0.857585i \(-0.328036\pi\)
\(662\) −1.16365 + 1.16365i −0.0452264 + 0.0452264i
\(663\) −46.5150 + 18.6661i −1.80649 + 0.724933i
\(664\) 4.80980i 0.186657i
\(665\) 0 0
\(666\) 0.456398 0.790504i 0.0176850 0.0306314i
\(667\) 20.9164 + 5.60453i 0.809886 + 0.217008i
\(668\) 25.1368 0.972573
\(669\) −1.98117 0.530852i −0.0765963 0.0205239i
\(670\) 0 0
\(671\) −11.9120 + 11.9120i −0.459859 + 0.459859i
\(672\) −2.52538 + 9.42484i −0.0974186 + 0.363571i
\(673\) −45.3283 + 12.1457i −1.74728 + 0.468181i −0.984042 0.177939i \(-0.943057\pi\)
−0.763235 + 0.646120i \(0.776390\pi\)
\(674\) −0.238650 + 0.0639462i −0.00919247 + 0.00246311i
\(675\) 0 0
\(676\) 24.7661 + 7.22783i 0.952543 + 0.277993i
\(677\) −11.2472 11.2472i −0.432266 0.432266i 0.457133 0.889398i \(-0.348876\pi\)
−0.889398 + 0.457133i \(0.848876\pi\)
\(678\) −1.68456 + 2.91774i −0.0646950 + 0.112055i
\(679\) −11.9412 6.89426i −0.458261 0.264577i
\(680\) 0 0
\(681\) −43.4399 43.4399i −1.66462 1.66462i
\(682\) −3.04528 + 1.75819i −0.116610 + 0.0673247i
\(683\) 13.8477 7.99498i 0.529868 0.305919i −0.211095 0.977466i \(-0.567703\pi\)
0.740963 + 0.671546i \(0.234370\pi\)
\(684\) 15.2860 + 15.2860i 0.584474 + 0.584474i
\(685\) 0 0
\(686\) 2.00981 + 1.16036i 0.0767349 + 0.0443029i
\(687\) 16.1703 28.0078i 0.616936 1.06856i
\(688\) 8.28409 + 8.28409i 0.315828 + 0.315828i
\(689\) 26.4349 + 11.2944i 1.00709 + 0.430283i
\(690\) 0 0
\(691\) 13.8396 3.70831i 0.526483 0.141071i 0.0142191 0.999899i \(-0.495474\pi\)
0.512264 + 0.858828i \(0.328807\pi\)
\(692\) −46.9605 + 12.5830i −1.78517 + 0.478335i
\(693\) −6.86799 + 25.6317i −0.260893 + 0.973667i
\(694\) 0.417180 0.417180i 0.0158359 0.0158359i
\(695\) 0 0
\(696\) −4.16358 1.11563i −0.157820 0.0422877i
\(697\) 50.1504 1.89958
\(698\) −0.288895 0.0774093i −0.0109349 0.00292999i
\(699\) −6.08889 + 10.5463i −0.230303 + 0.398897i
\(700\) 0 0
\(701\) 2.47832i 0.0936050i −0.998904 0.0468025i \(-0.985097\pi\)
0.998904 0.0468025i \(-0.0149031\pi\)
\(702\) −0.320104 + 0.240037i −0.0120815 + 0.00905962i
\(703\) 5.02894 5.02894i 0.189670 0.189670i
\(704\) 5.95781 + 22.2348i 0.224543 + 0.838007i
\(705\) 0 0
\(706\) 0.569573 0.328843i 0.0214362 0.0123762i
\(707\) 3.77867i 0.142112i
\(708\) 32.2716 + 55.8961i 1.21284 + 2.10070i
\(709\) −2.01972 + 7.53768i −0.0758520 + 0.283084i −0.993425 0.114483i \(-0.963479\pi\)
0.917573 + 0.397567i \(0.130145\pi\)
\(710\) 0 0
\(711\) −9.90026 17.1477i −0.371289 0.643091i
\(712\) −1.63910 6.11719i −0.0614277 0.229251i
\(713\) 50.9446 + 29.4129i 1.90789 + 1.10152i
\(714\) 4.53049 0.169549
\(715\) 0 0
\(716\) −25.7203 −0.961211
\(717\) 4.64747 + 2.68322i 0.173563 + 0.100207i
\(718\) −0.0443998 0.165702i −0.00165699 0.00618396i
\(719\) 16.7165 + 28.9539i 0.623421 + 1.07980i 0.988844 + 0.148955i \(0.0475910\pi\)
−0.365423 + 0.930842i \(0.619076\pi\)
\(720\) 0 0
\(721\) 2.78600 10.3975i 0.103756 0.387222i
\(722\) 0.525239 + 0.909741i 0.0195474 + 0.0338571i
\(723\) 44.0760i 1.63921i
\(724\) 17.6513 10.1910i 0.656004 0.378744i
\(725\) 0 0
\(726\) 0.154229 + 0.575591i 0.00572398 + 0.0213622i
\(727\) −22.0118 + 22.0118i −0.816374 + 0.816374i −0.985581 0.169207i \(-0.945879\pi\)
0.169207 + 0.985581i \(0.445879\pi\)
\(728\) −3.68286 2.89134i −0.136496 0.107160i
\(729\) 32.9560i 1.22059i
\(730\) 0 0
\(731\) 8.26668 14.3183i 0.305754 0.529582i
\(732\) −26.9885 7.23155i −0.997524 0.267286i
\(733\) 32.5431 1.20201 0.601004 0.799246i \(-0.294768\pi\)
0.601004 + 0.799246i \(0.294768\pi\)
\(734\) −3.52604 0.944800i −0.130149 0.0348732i
\(735\) 0 0
\(736\) −6.54295 + 6.54295i −0.241176 + 0.241176i
\(737\) 6.18779 23.0931i 0.227930 0.850647i
\(738\) 3.66130 0.981041i 0.134774 0.0361126i
\(739\) −34.8599 + 9.34069i −1.28234 + 0.343603i −0.834747 0.550633i \(-0.814386\pi\)
−0.447595 + 0.894236i \(0.647720\pi\)
\(740\) 0 0
\(741\) −27.3922 + 10.9923i −1.00628 + 0.403813i
\(742\) −1.83739 1.83739i −0.0674527 0.0674527i
\(743\) −2.48474 + 4.30370i −0.0911563 + 0.157887i −0.907998 0.418975i \(-0.862390\pi\)
0.816842 + 0.576862i \(0.195723\pi\)
\(744\) −10.1409 5.85487i −0.371784 0.214650i
\(745\) 0 0
\(746\) −1.96006 1.96006i −0.0717628 0.0717628i
\(747\) −28.2194 + 16.2925i −1.03249 + 0.596110i
\(748\) 28.5870 16.5047i 1.04524 0.603472i
\(749\) −1.85926 1.85926i −0.0679357 0.0679357i
\(750\) 0 0
\(751\) 21.9475 + 12.6714i 0.800876 + 0.462386i 0.843778 0.536693i \(-0.180327\pi\)
−0.0429011 + 0.999079i \(0.513660\pi\)
\(752\) 4.42331 7.66139i 0.161301 0.279382i
\(753\) 1.30173 + 1.30173i 0.0474378 + 0.0474378i
\(754\) 0.955493 1.21706i 0.0347970 0.0443229i
\(755\) 0 0
\(756\) −4.49007 + 1.20311i −0.163302 + 0.0437567i
\(757\) 34.0207 9.11581i 1.23650 0.331320i 0.419394 0.907804i \(-0.362242\pi\)
0.817108 + 0.576484i \(0.195576\pi\)
\(758\) −0.893486 + 3.33454i −0.0324529 + 0.121116i
\(759\) −33.7088 + 33.7088i −1.22355 + 1.22355i
\(760\) 0 0
\(761\) −3.10639 0.832355i −0.112607 0.0301728i 0.202076 0.979370i \(-0.435231\pi\)
−0.314682 + 0.949197i \(0.601898\pi\)
\(762\) 1.72185 0.0623761
\(763\) −34.7529 9.31202i −1.25814 0.337118i
\(764\) 8.26136 14.3091i 0.298885 0.517685i
\(765\) 0 0
\(766\) 0.430980i 0.0155719i
\(767\) −46.1849 + 5.56056i −1.66764 + 0.200780i
\(768\) −26.3429 + 26.3429i −0.950568 + 0.950568i
\(769\) 7.34107 + 27.3973i 0.264726 + 0.987970i 0.962418 + 0.271573i \(0.0875437\pi\)
−0.697692 + 0.716398i \(0.745790\pi\)
\(770\) 0 0
\(771\) 33.5225 19.3542i 1.20728 0.697026i
\(772\) 4.96379i 0.178651i
\(773\) 14.3589 + 24.8703i 0.516454 + 0.894524i 0.999817 + 0.0191044i \(0.00608150\pi\)
−0.483364 + 0.875420i \(0.660585\pi\)
\(774\) 0.323426 1.20704i 0.0116253 0.0433862i
\(775\) 0 0
\(776\) 1.30144 + 2.25417i 0.0467191 + 0.0809198i
\(777\) 3.74754 + 13.9860i 0.134442 + 0.501745i
\(778\) −1.72131 0.993798i −0.0617119 0.0356294i
\(779\) 29.5331 1.05813
\(780\) 0 0
\(781\) 48.1169 1.72176
\(782\) 3.72078 + 2.14819i 0.133055 + 0.0768192i
\(783\) −0.798270 2.97919i −0.0285279 0.106467i
\(784\) 0.235847 + 0.408499i 0.00842310 + 0.0145892i
\(785\) 0 0
\(786\) −0.151993 + 0.567244i −0.00542140 + 0.0202329i
\(787\) −0.260059 0.450435i −0.00927010 0.0160563i 0.861353 0.508007i \(-0.169617\pi\)
−0.870623 + 0.491950i \(0.836284\pi\)
\(788\) 38.8634i 1.38445i
\(789\) 55.7878 32.2091i 1.98610 1.14667i
\(790\) 0 0
\(791\) −7.30165 27.2501i −0.259617 0.968903i
\(792\) 3.54206 3.54206i 0.125862 0.125862i
\(793\) 12.4353 15.8395i 0.441590 0.562477i
\(794\) 1.39567i 0.0495303i
\(795\) 0 0
\(796\) 2.97209 5.14782i 0.105343 0.182459i
\(797\) −3.86739 1.03627i −0.136990 0.0367064i 0.189672 0.981847i \(-0.439257\pi\)
−0.326663 + 0.945141i \(0.605924\pi\)
\(798\) 2.66796 0.0944448
\(799\) −12.0593 3.23128i −0.426628 0.114315i
\(800\) 0 0
\(801\) 30.3377 30.3377i 1.07193 1.07193i
\(802\) 0.241380 0.900844i 0.00852344 0.0318099i
\(803\) −20.2685 + 5.43093i −0.715260 + 0.191653i
\(804\) 38.3016 10.2629i 1.35079 0.361944i
\(805\) 0 0
\(806\) 3.36296 2.52179i 0.118455 0.0888264i
\(807\) −17.7770 17.7770i −0.625779 0.625779i
\(808\) 0.356654 0.617743i 0.0125471 0.0217321i
\(809\) −39.9699 23.0766i −1.40527 0.811331i −0.410339 0.911933i \(-0.634590\pi\)
−0.994927 + 0.100602i \(0.967923\pi\)
\(810\) 0 0
\(811\) −13.0967 13.0967i −0.459888 0.459888i 0.438731 0.898618i \(-0.355428\pi\)
−0.898618 + 0.438731i \(0.855428\pi\)
\(812\) 15.5685 8.98848i 0.546347 0.315434i
\(813\) 20.6923 11.9467i 0.725710 0.418989i
\(814\) −0.580393 0.580393i −0.0203428 0.0203428i
\(815\) 0 0
\(816\) 47.0419 + 27.1596i 1.64679 + 0.950777i
\(817\) 4.86817 8.43192i 0.170316 0.294996i
\(818\) 3.32234 + 3.32234i 0.116163 + 0.116163i
\(819\) 4.48853 31.4015i 0.156842 1.09726i
\(820\) 0 0
\(821\) 19.0466 5.10353i 0.664733 0.178115i 0.0893517 0.996000i \(-0.471520\pi\)
0.575381 + 0.817886i \(0.304854\pi\)
\(822\) 0.251983 0.0675186i 0.00878892 0.00235498i
\(823\) 1.46552 5.46939i 0.0510848 0.190651i −0.935668 0.352881i \(-0.885202\pi\)
0.986753 + 0.162230i \(0.0518687\pi\)
\(824\) −1.43684 + 1.43684i −0.0500545 + 0.0500545i
\(825\) 0 0
\(826\) 4.06161 + 1.08831i 0.141322 + 0.0378670i
\(827\) −37.5355 −1.30524 −0.652618 0.757687i \(-0.726329\pi\)
−0.652618 + 0.757687i \(0.726329\pi\)
\(828\) −40.3153 10.8024i −1.40105 0.375411i
\(829\) −19.0247 + 32.9518i −0.660756 + 1.14446i 0.319661 + 0.947532i \(0.396431\pi\)
−0.980417 + 0.196932i \(0.936902\pi\)
\(830\) 0 0
\(831\) 13.1204i 0.455142i
\(832\) −10.2480 25.5374i −0.355284 0.885350i
\(833\) 0.470703 0.470703i 0.0163089 0.0163089i
\(834\) −1.14880 4.28737i −0.0397796 0.148459i
\(835\) 0 0
\(836\) 16.8346 9.71947i 0.582237 0.336155i
\(837\) 8.37872i 0.289611i
\(838\) −0.148923 0.257942i −0.00514446 0.00891047i
\(839\) −0.986990 + 3.68350i −0.0340747 + 0.127168i −0.980868 0.194673i \(-0.937635\pi\)
0.946793 + 0.321842i \(0.104302\pi\)
\(840\) 0 0
\(841\) −8.53610 14.7850i −0.294348 0.509826i
\(842\) −0.633761 2.36523i −0.0218408 0.0815111i
\(843\) −58.0084 33.4912i −1.99792 1.15350i
\(844\) −8.82969 −0.303930
\(845\) 0 0
\(846\) −0.943616 −0.0324422
\(847\) −4.32126 2.49488i −0.148480 0.0857251i
\(848\) −8.06346 30.0932i −0.276900 1.03341i
\(849\) −34.9924 60.6086i −1.20094 2.08008i
\(850\) 0 0
\(851\) −3.55389 + 13.2633i −0.121826 + 0.454660i
\(852\) 39.9027 + 69.1134i 1.36704 + 2.36779i
\(853\) 15.1949i 0.520263i −0.965573 0.260132i \(-0.916234\pi\)
0.965573 0.260132i \(-0.0837660\pi\)
\(854\) −1.57641 + 0.910141i −0.0539437 + 0.0311444i
\(855\) 0 0
\(856\) 0.128466 + 0.479442i 0.00439088 + 0.0163870i
\(857\) 21.7961 21.7961i 0.744542 0.744542i −0.228906 0.973448i \(-0.573515\pi\)
0.973448 + 0.228906i \(0.0735150\pi\)
\(858\) 1.26863 + 3.16136i 0.0433103 + 0.107927i
\(859\) 19.9625i 0.681113i −0.940224 0.340557i \(-0.889385\pi\)
0.940224 0.340557i \(-0.110615\pi\)
\(860\) 0 0
\(861\) −30.0634 + 52.0713i −1.02456 + 1.77459i
\(862\) 2.28814 + 0.613105i 0.0779343 + 0.0208824i
\(863\) 45.8868 1.56201 0.781003 0.624527i \(-0.214708\pi\)
0.781003 + 0.624527i \(0.214708\pi\)
\(864\) 1.27304 + 0.341111i 0.0433098 + 0.0116048i
\(865\) 0 0
\(866\) 0.671210 0.671210i 0.0228086 0.0228086i
\(867\) 8.74926 32.6527i 0.297141 1.10894i
\(868\) 47.1720 12.6397i 1.60112 0.429019i
\(869\) −17.1983 + 4.60826i −0.583411 + 0.156324i
\(870\) 0 0
\(871\) −4.04399 + 28.2915i −0.137025 + 0.958621i
\(872\) 4.80254 + 4.80254i 0.162634 + 0.162634i
\(873\) −8.81687 + 15.2713i −0.298406 + 0.516854i
\(874\) 2.19113 + 1.26505i 0.0741161 + 0.0427910i
\(875\) 0 0
\(876\) −24.6092 24.6092i −0.831467 0.831467i
\(877\) −30.5152 + 17.6180i −1.03042 + 0.594916i −0.917106 0.398643i \(-0.869481\pi\)
−0.113318 + 0.993559i \(0.536148\pi\)
\(878\) −0.484020 + 0.279449i −0.0163349 + 0.00943096i
\(879\) 12.5635 + 12.5635i 0.423755 + 0.423755i
\(880\) 0 0
\(881\) −19.2802 11.1314i −0.649566 0.375027i 0.138724 0.990331i \(-0.455700\pi\)
−0.788290 + 0.615304i \(0.789033\pi\)
\(882\) 0.0251564 0.0435722i 0.000847060 0.00146715i
\(883\) 11.0289 + 11.0289i 0.371151 + 0.371151i 0.867896 0.496745i \(-0.165472\pi\)
−0.496745 + 0.867896i \(0.665472\pi\)
\(884\) −31.5692 + 23.6729i −1.06179 + 0.796205i
\(885\) 0 0
\(886\) 3.43180 0.919547i 0.115293 0.0308928i
\(887\) −17.0556 + 4.57003i −0.572671 + 0.153447i −0.533521 0.845787i \(-0.679132\pi\)
−0.0391497 + 0.999233i \(0.512465\pi\)
\(888\) 0.707431 2.64017i 0.0237398 0.0885983i
\(889\) −10.1951 + 10.1951i −0.341932 + 0.341932i
\(890\) 0 0
\(891\) −22.7588 6.09821i −0.762450 0.204298i
\(892\) −1.61476 −0.0540662
\(893\) −7.10161 1.90287i −0.237646 0.0636771i
\(894\) 0.0101898 0.0176492i 0.000340798 0.000590279i
\(895\) 0 0
\(896\) 10.2288i 0.341722i
\(897\) 35.1895 44.8229i 1.17494 1.49659i
\(898\) 1.36285 1.36285i 0.0454790 0.0454790i
\(899\) 8.38650 + 31.2989i 0.279706 + 1.04388i
\(900\) 0 0
\(901\) −38.0765 + 21.9835i −1.26851 + 0.732376i
\(902\) 3.40844i 0.113489i
\(903\) 9.91117 + 17.1666i 0.329823 + 0.571270i
\(904\) −1.37835 + 5.14407i −0.0458432 + 0.171089i
\(905\) 0 0
\(906\) 0.111619 + 0.193329i 0.00370829 + 0.00642294i
\(907\) 14.3754 + 53.6498i 0.477328 + 1.78141i 0.612367 + 0.790573i \(0.290217\pi\)
−0.135039 + 0.990840i \(0.543116\pi\)
\(908\) −41.8856 24.1827i −1.39002 0.802531i
\(909\) 4.83244 0.160282
\(910\) 0 0
\(911\) −15.2824 −0.506330 −0.253165 0.967423i \(-0.581472\pi\)
−0.253165 + 0.967423i \(0.581472\pi\)
\(912\) 27.7025 + 15.9940i 0.917321 + 0.529616i
\(913\) 7.58363 + 28.3025i 0.250981 + 0.936675i
\(914\) −0.281678 0.487880i −0.00931706 0.0161376i
\(915\) 0 0
\(916\) 6.58985 24.5937i 0.217735 0.812597i
\(917\) −2.45870 4.25860i −0.0811935 0.140631i
\(918\) 0.611947i 0.0201973i
\(919\) −15.6355 + 9.02717i −0.515768 + 0.297779i −0.735202 0.677848i \(-0.762913\pi\)
0.219433 + 0.975628i \(0.429579\pi\)
\(920\) 0 0
\(921\) 11.5593 + 43.1400i 0.380893 + 1.42151i
\(922\) −0.479048 + 0.479048i −0.0157766 + 0.0157766i
\(923\) −57.1059 + 6.87543i −1.87966 + 0.226307i
\(924\) 39.5760i 1.30195i
\(925\) 0 0
\(926\) −2.15457 + 3.73182i −0.0708035 + 0.122635i
\(927\) −13.2970 3.56293i −0.436732 0.117022i
\(928\) −5.09690 −0.167314
\(929\) −40.3925 10.8231i −1.32524 0.355096i −0.474299 0.880364i \(-0.657298\pi\)
−0.850937 + 0.525268i \(0.823965\pi\)
\(930\) 0 0
\(931\) 0.277192 0.277192i 0.00908461 0.00908461i
\(932\) −2.48139 + 9.26069i −0.0812808 + 0.303344i
\(933\) 44.1430 11.8281i 1.44518 0.387234i
\(934\) 0.0597469 0.0160091i 0.00195498 0.000523835i
\(935\) 0 0
\(936\) −3.69765 + 4.70990i −0.120862 + 0.153948i
\(937\) 10.8603 + 10.8603i 0.354791 + 0.354791i 0.861889 0.507098i \(-0.169282\pi\)
−0.507098 + 0.861889i \(0.669282\pi\)
\(938\) 1.29166 2.23722i 0.0421741 0.0730477i
\(939\) −24.3985 14.0865i −0.796215 0.459695i
\(940\) 0 0
\(941\) 33.9949 + 33.9949i 1.10820 + 1.10820i 0.993387 + 0.114815i \(0.0366274\pi\)
0.114815 + 0.993387i \(0.463373\pi\)
\(942\) 4.52122 2.61033i 0.147309 0.0850490i
\(943\) −49.3806 + 28.5099i −1.60805 + 0.928411i
\(944\) 35.6491 + 35.6491i 1.16028 + 1.16028i
\(945\) 0 0
\(946\) −0.973134 0.561839i −0.0316393 0.0182670i
\(947\) −23.4687 + 40.6489i −0.762629 + 1.32091i 0.178862 + 0.983874i \(0.442758\pi\)
−0.941491 + 0.337038i \(0.890575\pi\)
\(948\) −20.8814 20.8814i −0.678197 0.678197i
\(949\) 23.2790 9.34169i 0.755668 0.303244i
\(950\) 0 0
\(951\) −19.5605 + 5.24121i −0.634291 + 0.169958i
\(952\) 6.91729 1.85348i 0.224191 0.0600717i
\(953\) 0.821808 3.06703i 0.0266210 0.0993508i −0.951337 0.308152i \(-0.900289\pi\)
0.977958 + 0.208801i \(0.0669561\pi\)
\(954\) −2.34979 + 2.34979i −0.0760771 + 0.0760771i
\(955\) 0 0
\(956\) 4.08094 + 1.09349i 0.131987 + 0.0353658i
\(957\) −26.2589 −0.848829
\(958\) −2.10079 0.562905i −0.0678735 0.0181866i
\(959\) −1.09221 + 1.89177i −0.0352694 + 0.0610883i
\(960\) 0 0
\(961\) 57.0256i 1.83953i
\(962\) 0.771753 + 0.605888i 0.0248823 + 0.0195346i
\(963\) −2.37775 + 2.37775i −0.0766219 + 0.0766219i
\(964\) −8.98111 33.5179i −0.289262 1.07954i
\(965\) 0 0
\(966\) −4.46095 + 2.57553i −0.143529 + 0.0828664i
\(967\) 18.3290i 0.589421i 0.955587 + 0.294711i \(0.0952233\pi\)
−0.955587 + 0.294711i \(0.904777\pi\)
\(968\) 0.470964 + 0.815733i 0.0151374 + 0.0262187i
\(969\) 11.6839 43.6047i 0.375339 1.40079i
\(970\) 0 0
\(971\) 11.2202 + 19.4339i 0.360073 + 0.623664i 0.987972 0.154630i \(-0.0494185\pi\)
−0.627900 + 0.778294i \(0.716085\pi\)
\(972\) −11.4904 42.8829i −0.368556 1.37547i
\(973\) 32.1875 + 18.5835i 1.03188 + 0.595758i
\(974\) 0.892786 0.0286067
\(975\) 0 0
\(976\) −21.8247 −0.698590
\(977\) 36.8699 + 21.2868i 1.17957 + 0.681026i 0.955915 0.293642i \(-0.0948674\pi\)
0.223656 + 0.974668i \(0.428201\pi\)
\(978\) −0.321999 1.20172i −0.0102964 0.0384267i
\(979\) −19.2900 33.4112i −0.616510 1.06783i
\(980\) 0 0
\(981\) −11.9089 + 44.4445i −0.380221 + 1.41900i
\(982\) 0.750396 + 1.29972i 0.0239461 + 0.0414758i
\(983\) 2.26298i 0.0721778i −0.999349 0.0360889i \(-0.988510\pi\)
0.999349 0.0360889i \(-0.0114899\pi\)
\(984\) 9.82961 5.67513i 0.313357 0.180917i
\(985\) 0 0
\(986\) 0.612515 + 2.28594i 0.0195065 + 0.0727991i
\(987\) 10.5842 10.5842i 0.336898 0.336898i
\(988\) −18.5908 + 13.9407i −0.591452 + 0.443514i
\(989\) 18.7981i 0.597743i
\(990\) 0 0
\(991\) 2.17856 3.77337i 0.0692042 0.119865i −0.829347 0.558734i \(-0.811287\pi\)
0.898551 + 0.438869i \(0.144621\pi\)
\(992\) −13.3744 3.58366i −0.424637 0.113781i
\(993\) −33.3841 −1.05941
\(994\) 5.02203 + 1.34565i 0.159289 + 0.0426814i
\(995\) 0 0
\(996\) −34.3637 + 34.3637i −1.08886 + 1.08886i
\(997\) 2.91575 10.8817i 0.0923426 0.344627i −0.904261 0.426981i \(-0.859577\pi\)
0.996603 + 0.0823538i \(0.0262437\pi\)
\(998\) −4.48905 + 1.20284i −0.142098 + 0.0380751i
\(999\) 1.88913 0.506192i 0.0597695 0.0160152i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.2.x.c.7.5 yes 40
5.2 odd 4 325.2.s.c.293.6 yes 40
5.3 odd 4 325.2.s.c.293.5 yes 40
5.4 even 2 inner 325.2.x.c.7.6 yes 40
13.2 odd 12 325.2.s.c.132.5 40
65.2 even 12 inner 325.2.x.c.93.6 yes 40
65.28 even 12 inner 325.2.x.c.93.5 yes 40
65.54 odd 12 325.2.s.c.132.6 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
325.2.s.c.132.5 40 13.2 odd 12
325.2.s.c.132.6 yes 40 65.54 odd 12
325.2.s.c.293.5 yes 40 5.3 odd 4
325.2.s.c.293.6 yes 40 5.2 odd 4
325.2.x.c.7.5 yes 40 1.1 even 1 trivial
325.2.x.c.7.6 yes 40 5.4 even 2 inner
325.2.x.c.93.5 yes 40 65.28 even 12 inner
325.2.x.c.93.6 yes 40 65.2 even 12 inner