Properties

Label 325.2.s.c.293.5
Level $325$
Weight $2$
Character 325.293
Analytic conductor $2.595$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [325,2,Mod(32,325)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(325, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([3, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("325.32"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 325.s (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.59513806569\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(10\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 293.5
Character \(\chi\) \(=\) 325.293
Dual form 325.2.s.c.132.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0621297 + 0.107612i) q^{2} +(2.43488 - 0.652423i) q^{3} +(0.992280 + 1.71868i) q^{4} +(-0.0810697 + 0.302556i) q^{6} +(-2.27145 + 1.31142i) q^{7} -0.495119 q^{8} +(2.90489 - 1.67714i) q^{9} +(0.780655 + 2.91344i) q^{11} +(3.53738 + 3.53738i) q^{12} +(3.34618 - 1.34280i) q^{13} -0.325912i q^{14} +(-1.95380 + 3.38408i) q^{16} +(1.42727 - 5.32666i) q^{17} +0.416800i q^{18} +(-3.13682 - 0.840508i) q^{19} +(-4.67509 + 4.67509i) q^{21} +(-0.362023 - 0.0970037i) q^{22} +(-1.62278 - 6.05629i) q^{23} +(-1.20555 + 0.323027i) q^{24} +(-0.0633962 + 0.443516i) q^{26} +(0.631478 - 0.631478i) q^{27} +(-4.50782 - 2.60259i) q^{28} +(2.99096 + 1.72683i) q^{29} +(-6.63421 - 6.63421i) q^{31} +(-0.737897 - 1.27807i) q^{32} +(3.80159 + 6.58455i) q^{33} +(0.484535 + 0.484535i) q^{34} +(5.76492 + 3.32838i) q^{36} +(-1.89660 - 1.09500i) q^{37} +(0.285338 - 0.285338i) q^{38} +(7.27145 - 5.45267i) q^{39} +(8.78430 - 2.35375i) q^{41} +(-0.212633 - 0.793556i) q^{42} +(2.89597 + 0.775973i) q^{43} +(-4.23265 + 4.23265i) q^{44} +(0.752551 + 0.201645i) q^{46} +2.26395i q^{47} +(-2.54941 + 9.51451i) q^{48} +(-0.0603560 + 0.104540i) q^{49} -13.9009i q^{51} +(5.62818 + 4.41857i) q^{52} +(-5.63768 - 5.63768i) q^{53} +(0.0287210 + 0.107188i) q^{54} +(1.12464 - 0.649309i) q^{56} -8.18613 q^{57} +(-0.371655 + 0.214575i) q^{58} +(-3.33926 + 12.4623i) q^{59} +(2.79259 + 4.83692i) q^{61} +(1.12610 - 0.301738i) q^{62} +(-4.39886 + 7.61905i) q^{63} -7.63181 q^{64} -0.944768 q^{66} +(-3.96321 + 6.86447i) q^{67} +(10.5711 - 2.83251i) q^{68} +(-7.90252 - 13.6876i) q^{69} +(4.12887 - 15.4091i) q^{71} +(-1.43826 + 0.830383i) q^{72} -6.95689 q^{73} +(0.235671 - 0.136064i) q^{74} +(-1.66804 - 6.22520i) q^{76} +(-5.59396 - 5.59396i) q^{77} +(0.134998 + 1.12127i) q^{78} -5.90307i q^{79} +(-3.90583 + 6.76510i) q^{81} +(-0.292475 + 1.09153i) q^{82} +9.71444i q^{83} +(-12.6740 - 3.39598i) q^{84} +(-0.263430 + 0.263430i) q^{86} +(8.40925 + 2.25325i) q^{87} +(-0.386517 - 1.44250i) q^{88} +(12.3550 - 3.31051i) q^{89} +(-5.83969 + 7.43833i) q^{91} +(8.79857 - 8.79857i) q^{92} +(-20.4818 - 11.8252i) q^{93} +(-0.243628 - 0.140659i) q^{94} +(-2.63053 - 2.63053i) q^{96} +(-2.62855 - 4.55278i) q^{97} +(-0.00749980 - 0.0129900i) q^{98} +(7.15396 + 7.15396i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 24 q^{4} - 12 q^{6} + 24 q^{9} + 8 q^{11} - 32 q^{16} - 24 q^{19} + 32 q^{21} + 56 q^{24} + 76 q^{26} - 36 q^{29} + 8 q^{31} + 44 q^{34} - 60 q^{36} + 44 q^{39} - 52 q^{41} - 80 q^{44} - 60 q^{46}+ \cdots + 208 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/325\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{11}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0621297 + 0.107612i −0.0439323 + 0.0760930i −0.887155 0.461471i \(-0.847322\pi\)
0.843223 + 0.537564i \(0.180655\pi\)
\(3\) 2.43488 0.652423i 1.40578 0.376677i 0.525361 0.850880i \(-0.323930\pi\)
0.880415 + 0.474203i \(0.157264\pi\)
\(4\) 0.992280 + 1.71868i 0.496140 + 0.859340i
\(5\) 0 0
\(6\) −0.0810697 + 0.302556i −0.0330966 + 0.123518i
\(7\) −2.27145 + 1.31142i −0.858526 + 0.495670i −0.863518 0.504317i \(-0.831744\pi\)
0.00499253 + 0.999988i \(0.498411\pi\)
\(8\) −0.495119 −0.175051
\(9\) 2.90489 1.67714i 0.968296 0.559046i
\(10\) 0 0
\(11\) 0.780655 + 2.91344i 0.235376 + 0.878436i 0.977979 + 0.208704i \(0.0669245\pi\)
−0.742603 + 0.669732i \(0.766409\pi\)
\(12\) 3.53738 + 3.53738i 1.02115 + 1.02115i
\(13\) 3.34618 1.34280i 0.928062 0.372425i
\(14\) 0.325912i 0.0871038i
\(15\) 0 0
\(16\) −1.95380 + 3.38408i −0.488450 + 0.846019i
\(17\) 1.42727 5.32666i 0.346165 1.29190i −0.545081 0.838384i \(-0.683501\pi\)
0.891246 0.453521i \(-0.149832\pi\)
\(18\) 0.416800i 0.0982408i
\(19\) −3.13682 0.840508i −0.719636 0.192826i −0.119626 0.992819i \(-0.538170\pi\)
−0.600009 + 0.799993i \(0.704836\pi\)
\(20\) 0 0
\(21\) −4.67509 + 4.67509i −1.02019 + 1.02019i
\(22\) −0.362023 0.0970037i −0.0771835 0.0206813i
\(23\) −1.62278 6.05629i −0.338373 1.26282i −0.900166 0.435546i \(-0.856555\pi\)
0.561794 0.827277i \(-0.310111\pi\)
\(24\) −1.20555 + 0.323027i −0.246083 + 0.0659376i
\(25\) 0 0
\(26\) −0.0633962 + 0.443516i −0.0124330 + 0.0869806i
\(27\) 0.631478 0.631478i 0.121528 0.121528i
\(28\) −4.50782 2.60259i −0.851898 0.491843i
\(29\) 2.99096 + 1.72683i 0.555408 + 0.320665i 0.751300 0.659961i \(-0.229427\pi\)
−0.195893 + 0.980625i \(0.562760\pi\)
\(30\) 0 0
\(31\) −6.63421 6.63421i −1.19154 1.19154i −0.976635 0.214905i \(-0.931056\pi\)
−0.214905 0.976635i \(-0.568944\pi\)
\(32\) −0.737897 1.27807i −0.130443 0.225934i
\(33\) 3.80159 + 6.58455i 0.661773 + 1.14622i
\(34\) 0.484535 + 0.484535i 0.0830971 + 0.0830971i
\(35\) 0 0
\(36\) 5.76492 + 3.32838i 0.960820 + 0.554730i
\(37\) −1.89660 1.09500i −0.311799 0.180017i 0.335932 0.941886i \(-0.390949\pi\)
−0.647731 + 0.761869i \(0.724282\pi\)
\(38\) 0.285338 0.285338i 0.0462880 0.0462880i
\(39\) 7.27145 5.45267i 1.16436 0.873125i
\(40\) 0 0
\(41\) 8.78430 2.35375i 1.37188 0.367593i 0.503713 0.863871i \(-0.331967\pi\)
0.868164 + 0.496278i \(0.165300\pi\)
\(42\) −0.212633 0.793556i −0.0328100 0.122448i
\(43\) 2.89597 + 0.775973i 0.441631 + 0.118335i 0.472781 0.881180i \(-0.343250\pi\)
−0.0311497 + 0.999515i \(0.509917\pi\)
\(44\) −4.23265 + 4.23265i −0.638095 + 0.638095i
\(45\) 0 0
\(46\) 0.752551 + 0.201645i 0.110958 + 0.0297310i
\(47\) 2.26395i 0.330231i 0.986274 + 0.165116i \(0.0527998\pi\)
−0.986274 + 0.165116i \(0.947200\pi\)
\(48\) −2.54941 + 9.51451i −0.367975 + 1.37330i
\(49\) −0.0603560 + 0.104540i −0.00862229 + 0.0149342i
\(50\) 0 0
\(51\) 13.9009i 1.94652i
\(52\) 5.62818 + 4.41857i 0.780488 + 0.612746i
\(53\) −5.63768 5.63768i −0.774395 0.774395i 0.204477 0.978871i \(-0.434451\pi\)
−0.978871 + 0.204477i \(0.934451\pi\)
\(54\) 0.0287210 + 0.107188i 0.00390843 + 0.0145865i
\(55\) 0 0
\(56\) 1.12464 0.649309i 0.150286 0.0867675i
\(57\) −8.18613 −1.08428
\(58\) −0.371655 + 0.214575i −0.0488007 + 0.0281751i
\(59\) −3.33926 + 12.4623i −0.434734 + 1.62245i 0.306967 + 0.951720i \(0.400686\pi\)
−0.741701 + 0.670730i \(0.765981\pi\)
\(60\) 0 0
\(61\) 2.79259 + 4.83692i 0.357555 + 0.619304i 0.987552 0.157294i \(-0.0502771\pi\)
−0.629997 + 0.776598i \(0.716944\pi\)
\(62\) 1.12610 0.301738i 0.143015 0.0383208i
\(63\) −4.39886 + 7.61905i −0.554205 + 0.959911i
\(64\) −7.63181 −0.953976
\(65\) 0 0
\(66\) −0.944768 −0.116293
\(67\) −3.96321 + 6.86447i −0.484183 + 0.838629i −0.999835 0.0181691i \(-0.994216\pi\)
0.515652 + 0.856798i \(0.327550\pi\)
\(68\) 10.5711 2.83251i 1.28193 0.343492i
\(69\) −7.90252 13.6876i −0.951352 1.64779i
\(70\) 0 0
\(71\) 4.12887 15.4091i 0.490006 1.82873i −0.0663658 0.997795i \(-0.521140\pi\)
0.556372 0.830933i \(-0.312193\pi\)
\(72\) −1.43826 + 0.830383i −0.169501 + 0.0978615i
\(73\) −6.95689 −0.814242 −0.407121 0.913374i \(-0.633467\pi\)
−0.407121 + 0.913374i \(0.633467\pi\)
\(74\) 0.235671 0.136064i 0.0273961 0.0158172i
\(75\) 0 0
\(76\) −1.66804 6.22520i −0.191337 0.714080i
\(77\) −5.59396 5.59396i −0.637491 0.637491i
\(78\) 0.134998 + 1.12127i 0.0152855 + 0.126958i
\(79\) 5.90307i 0.664147i −0.943253 0.332074i \(-0.892252\pi\)
0.943253 0.332074i \(-0.107748\pi\)
\(80\) 0 0
\(81\) −3.90583 + 6.76510i −0.433981 + 0.751678i
\(82\) −0.292475 + 1.09153i −0.0322985 + 0.120539i
\(83\) 9.71444i 1.06630i 0.846021 + 0.533149i \(0.178992\pi\)
−0.846021 + 0.533149i \(0.821008\pi\)
\(84\) −12.6740 3.39598i −1.38284 0.370532i
\(85\) 0 0
\(86\) −0.263430 + 0.263430i −0.0284063 + 0.0284063i
\(87\) 8.40925 + 2.25325i 0.901566 + 0.241574i
\(88\) −0.386517 1.44250i −0.0412029 0.153771i
\(89\) 12.3550 3.31051i 1.30963 0.350913i 0.464544 0.885550i \(-0.346218\pi\)
0.845082 + 0.534637i \(0.179552\pi\)
\(90\) 0 0
\(91\) −5.83969 + 7.43833i −0.612166 + 0.779749i
\(92\) 8.79857 8.79857i 0.917314 0.917314i
\(93\) −20.4818 11.8252i −2.12386 1.22621i
\(94\) −0.243628 0.140659i −0.0251283 0.0145078i
\(95\) 0 0
\(96\) −2.63053 2.63053i −0.268478 0.268478i
\(97\) −2.62855 4.55278i −0.266888 0.462264i 0.701168 0.712996i \(-0.252662\pi\)
−0.968057 + 0.250732i \(0.919329\pi\)
\(98\) −0.00749980 0.0129900i −0.000757594 0.00131219i
\(99\) 7.15396 + 7.15396i 0.719000 + 0.719000i
\(100\) 0 0
\(101\) −1.24767 0.720340i −0.124147 0.0716765i 0.436640 0.899636i \(-0.356168\pi\)
−0.560788 + 0.827960i \(0.689502\pi\)
\(102\) 1.49591 + 0.863661i 0.148117 + 0.0855152i
\(103\) −2.90200 + 2.90200i −0.285943 + 0.285943i −0.835473 0.549531i \(-0.814806\pi\)
0.549531 + 0.835473i \(0.314806\pi\)
\(104\) −1.65676 + 0.664844i −0.162458 + 0.0651933i
\(105\) 0 0
\(106\) 0.956948 0.256414i 0.0929470 0.0249051i
\(107\) −0.259465 0.968336i −0.0250834 0.0936126i 0.952249 0.305321i \(-0.0987639\pi\)
−0.977333 + 0.211709i \(0.932097\pi\)
\(108\) 1.71191 + 0.458705i 0.164729 + 0.0441389i
\(109\) −9.69976 + 9.69976i −0.929068 + 0.929068i −0.997646 0.0685774i \(-0.978154\pi\)
0.0685774 + 0.997646i \(0.478154\pi\)
\(110\) 0 0
\(111\) −5.33239 1.42881i −0.506128 0.135617i
\(112\) 10.2490i 0.968439i
\(113\) −2.78387 + 10.3896i −0.261885 + 0.977367i 0.702245 + 0.711935i \(0.252181\pi\)
−0.964130 + 0.265432i \(0.914485\pi\)
\(114\) 0.508602 0.880924i 0.0476349 0.0825061i
\(115\) 0 0
\(116\) 6.85401i 0.636378i
\(117\) 7.46821 9.51267i 0.690436 0.879447i
\(118\) −1.13362 1.13362i −0.104358 0.104358i
\(119\) 3.74351 + 13.9710i 0.343167 + 1.28072i
\(120\) 0 0
\(121\) 1.64755 0.951213i 0.149777 0.0864739i
\(122\) −0.694012 −0.0628329
\(123\) 19.8530 11.4622i 1.79009 1.03351i
\(124\) 4.81909 17.9851i 0.432767 1.61511i
\(125\) 0 0
\(126\) −0.546600 0.946739i −0.0486950 0.0843422i
\(127\) −5.30979 + 1.42275i −0.471168 + 0.126249i −0.486587 0.873632i \(-0.661758\pi\)
0.0154193 + 0.999881i \(0.495092\pi\)
\(128\) 1.94996 3.37742i 0.172353 0.298525i
\(129\) 7.55759 0.665408
\(130\) 0 0
\(131\) 1.87484 0.163806 0.0819028 0.996640i \(-0.473900\pi\)
0.0819028 + 0.996640i \(0.473900\pi\)
\(132\) −7.54449 + 13.0674i −0.656664 + 1.13737i
\(133\) 8.22737 2.20452i 0.713404 0.191156i
\(134\) −0.492465 0.852975i −0.0425425 0.0736858i
\(135\) 0 0
\(136\) −0.706671 + 2.63733i −0.0605965 + 0.226149i
\(137\) −0.721267 + 0.416423i −0.0616220 + 0.0355775i −0.530494 0.847688i \(-0.677994\pi\)
0.468872 + 0.883266i \(0.344660\pi\)
\(138\) 1.96393 0.167180
\(139\) 12.2720 7.08524i 1.04090 0.600962i 0.120810 0.992676i \(-0.461451\pi\)
0.920087 + 0.391713i \(0.128117\pi\)
\(140\) 0 0
\(141\) 1.47705 + 5.51244i 0.124390 + 0.464231i
\(142\) 1.40168 + 1.40168i 0.117626 + 0.117626i
\(143\) 6.52437 + 8.70063i 0.545595 + 0.727584i
\(144\) 13.1072i 1.09226i
\(145\) 0 0
\(146\) 0.432229 0.748643i 0.0357716 0.0619582i
\(147\) −0.0787553 + 0.293919i −0.00649563 + 0.0242420i
\(148\) 4.34620i 0.357255i
\(149\) 0.0628459 + 0.0168395i 0.00514854 + 0.00137955i 0.261392 0.965233i \(-0.415818\pi\)
−0.256244 + 0.966612i \(0.582485\pi\)
\(150\) 0 0
\(151\) 0.503953 0.503953i 0.0410111 0.0410111i −0.686304 0.727315i \(-0.740768\pi\)
0.727315 + 0.686304i \(0.240768\pi\)
\(152\) 1.55310 + 0.416152i 0.125973 + 0.0337543i
\(153\) −4.78747 17.8671i −0.387044 1.44447i
\(154\) 0.949528 0.254425i 0.0765151 0.0205022i
\(155\) 0 0
\(156\) 16.5867 + 7.08672i 1.32800 + 0.567392i
\(157\) −11.7855 + 11.7855i −0.940584 + 0.940584i −0.998331 0.0577473i \(-0.981608\pi\)
0.0577473 + 0.998331i \(0.481608\pi\)
\(158\) 0.635240 + 0.366756i 0.0505370 + 0.0291775i
\(159\) −17.4052 10.0489i −1.38032 0.796929i
\(160\) 0 0
\(161\) 11.6284 + 11.6284i 0.916445 + 0.916445i
\(162\) −0.485336 0.840627i −0.0381316 0.0660459i
\(163\) −1.98594 3.43975i −0.155551 0.269422i 0.777709 0.628625i \(-0.216382\pi\)
−0.933259 + 0.359203i \(0.883049\pi\)
\(164\) 12.7618 + 12.7618i 0.996530 + 0.996530i
\(165\) 0 0
\(166\) −1.04539 0.603555i −0.0811379 0.0468450i
\(167\) 10.9692 + 6.33310i 0.848826 + 0.490070i 0.860254 0.509865i \(-0.170305\pi\)
−0.0114288 + 0.999935i \(0.503638\pi\)
\(168\) 2.31472 2.31472i 0.178585 0.178585i
\(169\) 9.39379 8.98647i 0.722600 0.691267i
\(170\) 0 0
\(171\) −10.5218 + 2.81930i −0.804619 + 0.215597i
\(172\) 1.53996 + 5.74722i 0.117421 + 0.438222i
\(173\) 23.6630 + 6.34047i 1.79906 + 0.482057i 0.993831 0.110905i \(-0.0353750\pi\)
0.805230 + 0.592962i \(0.202042\pi\)
\(174\) −0.764940 + 0.764940i −0.0579900 + 0.0579900i
\(175\) 0 0
\(176\) −11.3846 3.05048i −0.858143 0.229939i
\(177\) 32.5227i 2.44456i
\(178\) −0.411362 + 1.53522i −0.0308329 + 0.115070i
\(179\) −6.48009 + 11.2238i −0.484345 + 0.838910i −0.999838 0.0179837i \(-0.994275\pi\)
0.515493 + 0.856893i \(0.327609\pi\)
\(180\) 0 0
\(181\) 10.2702i 0.763381i 0.924290 + 0.381691i \(0.124658\pi\)
−0.924290 + 0.381691i \(0.875342\pi\)
\(182\) −0.437634 1.09056i −0.0324396 0.0808377i
\(183\) 9.95533 + 9.95533i 0.735920 + 0.735920i
\(184\) 0.803468 + 2.99858i 0.0592324 + 0.221059i
\(185\) 0 0
\(186\) 2.54506 1.46939i 0.186613 0.107741i
\(187\) 16.6331 1.21633
\(188\) −3.89101 + 2.24647i −0.283781 + 0.163841i
\(189\) −0.606236 + 2.26250i −0.0440972 + 0.164573i
\(190\) 0 0
\(191\) 4.16282 + 7.21021i 0.301211 + 0.521712i 0.976410 0.215923i \(-0.0692759\pi\)
−0.675200 + 0.737635i \(0.735943\pi\)
\(192\) −18.5825 + 4.97917i −1.34108 + 0.359341i
\(193\) −1.25060 + 2.16611i −0.0900204 + 0.155920i −0.907519 0.420010i \(-0.862027\pi\)
0.817499 + 0.575930i \(0.195360\pi\)
\(194\) 0.653243 0.0469001
\(195\) 0 0
\(196\) −0.239560 −0.0171114
\(197\) 9.79143 16.9593i 0.697611 1.20830i −0.271682 0.962387i \(-0.587580\pi\)
0.969293 0.245910i \(-0.0790868\pi\)
\(198\) −1.21432 + 0.325377i −0.0862982 + 0.0231235i
\(199\) −1.49761 2.59393i −0.106163 0.183879i 0.808050 0.589114i \(-0.200523\pi\)
−0.914213 + 0.405235i \(0.867190\pi\)
\(200\) 0 0
\(201\) −5.17137 + 19.2998i −0.364760 + 1.36130i
\(202\) 0.155034 0.0895091i 0.0109082 0.00629784i
\(203\) −9.05841 −0.635776
\(204\) 23.8913 13.7936i 1.67272 0.965747i
\(205\) 0 0
\(206\) −0.131989 0.492590i −0.00919611 0.0343204i
\(207\) −14.8712 14.8712i −1.03362 1.03362i
\(208\) −1.99363 + 13.9473i −0.138233 + 0.967069i
\(209\) 9.79509i 0.677541i
\(210\) 0 0
\(211\) 2.22460 3.85311i 0.153148 0.265259i −0.779235 0.626731i \(-0.784392\pi\)
0.932383 + 0.361472i \(0.117726\pi\)
\(212\) 4.09521 15.2835i 0.281260 1.04968i
\(213\) 40.2131i 2.75536i
\(214\) 0.120325 + 0.0322410i 0.00822524 + 0.00220395i
\(215\) 0 0
\(216\) −0.312657 + 0.312657i −0.0212736 + 0.0212736i
\(217\) 23.7695 + 6.36902i 1.61358 + 0.432357i
\(218\) −0.441165 1.64645i −0.0298795 0.111512i
\(219\) −16.9392 + 4.53883i −1.14464 + 0.306706i
\(220\) 0 0
\(221\) −2.37671 19.7405i −0.159875 1.32789i
\(222\) 0.485057 0.485057i 0.0325549 0.0325549i
\(223\) 0.704652 + 0.406831i 0.0471870 + 0.0272434i 0.523408 0.852082i \(-0.324660\pi\)
−0.476221 + 0.879326i \(0.657994\pi\)
\(224\) 3.35219 + 1.93538i 0.223977 + 0.129313i
\(225\) 0 0
\(226\) −0.945078 0.945078i −0.0628656 0.0628656i
\(227\) −12.1854 21.1058i −0.808775 1.40084i −0.913713 0.406360i \(-0.866798\pi\)
0.104938 0.994479i \(-0.466535\pi\)
\(228\) −8.12293 14.0693i −0.537954 0.931764i
\(229\) −9.07194 9.07194i −0.599491 0.599491i 0.340686 0.940177i \(-0.389341\pi\)
−0.940177 + 0.340686i \(0.889341\pi\)
\(230\) 0 0
\(231\) −17.2702 9.97097i −1.13630 0.656042i
\(232\) −1.48088 0.854988i −0.0972247 0.0561327i
\(233\) 3.41602 3.41602i 0.223791 0.223791i −0.586302 0.810093i \(-0.699417\pi\)
0.810093 + 0.586302i \(0.199417\pi\)
\(234\) 0.559678 + 1.39469i 0.0365873 + 0.0911735i
\(235\) 0 0
\(236\) −24.7321 + 6.62695i −1.60992 + 0.431378i
\(237\) −3.85130 14.3732i −0.250169 0.933642i
\(238\) −1.73602 0.465166i −0.112530 0.0301523i
\(239\) 1.50535 1.50535i 0.0973730 0.0973730i −0.656742 0.754115i \(-0.728066\pi\)
0.754115 + 0.656742i \(0.228066\pi\)
\(240\) 0 0
\(241\) 16.8894 + 4.52549i 1.08794 + 0.291513i 0.757845 0.652435i \(-0.226253\pi\)
0.330095 + 0.943948i \(0.392919\pi\)
\(242\) 0.236394i 0.0151960i
\(243\) −5.78992 + 21.6083i −0.371424 + 1.38617i
\(244\) −5.54207 + 9.59915i −0.354795 + 0.614522i
\(245\) 0 0
\(246\) 2.84856i 0.181618i
\(247\) −11.6250 + 1.39962i −0.739680 + 0.0890558i
\(248\) 3.28473 + 3.28473i 0.208580 + 0.208580i
\(249\) 6.33792 + 23.6535i 0.401650 + 1.49898i
\(250\) 0 0
\(251\) −0.632462 + 0.365152i −0.0399207 + 0.0230482i −0.519828 0.854271i \(-0.674004\pi\)
0.479907 + 0.877319i \(0.340670\pi\)
\(252\) −17.4596 −1.09985
\(253\) 16.3778 9.45574i 1.02966 0.594477i
\(254\) 0.176791 0.659791i 0.0110928 0.0413990i
\(255\) 0 0
\(256\) −7.38951 12.7990i −0.461844 0.799938i
\(257\) 14.8326 3.97438i 0.925232 0.247915i 0.235411 0.971896i \(-0.424356\pi\)
0.689820 + 0.723981i \(0.257690\pi\)
\(258\) −0.469551 + 0.813286i −0.0292329 + 0.0506329i
\(259\) 5.74404 0.356917
\(260\) 0 0
\(261\) 11.5845 0.717065
\(262\) −0.116483 + 0.201755i −0.00719636 + 0.0124645i
\(263\) −24.6842 + 6.61411i −1.52209 + 0.407844i −0.920430 0.390907i \(-0.872161\pi\)
−0.601663 + 0.798750i \(0.705495\pi\)
\(264\) −1.88224 3.26014i −0.115844 0.200648i
\(265\) 0 0
\(266\) −0.273932 + 1.02233i −0.0167959 + 0.0626830i
\(267\) 27.9230 16.1213i 1.70886 0.986610i
\(268\) −15.7304 −0.960889
\(269\) −8.63715 + 4.98666i −0.526617 + 0.304042i −0.739638 0.673005i \(-0.765003\pi\)
0.213021 + 0.977048i \(0.431670\pi\)
\(270\) 0 0
\(271\) 2.45325 + 9.15564i 0.149024 + 0.556166i 0.999543 + 0.0302215i \(0.00962126\pi\)
−0.850519 + 0.525944i \(0.823712\pi\)
\(272\) 15.2372 + 15.2372i 0.923892 + 0.923892i
\(273\) −9.36598 + 21.9214i −0.566855 + 1.32674i
\(274\) 0.103489i 0.00625200i
\(275\) 0 0
\(276\) 15.6830 27.1638i 0.944007 1.63507i
\(277\) −1.34713 + 5.02757i −0.0809414 + 0.302077i −0.994515 0.104597i \(-0.966645\pi\)
0.913573 + 0.406674i \(0.133312\pi\)
\(278\) 1.76082i 0.105607i
\(279\) −30.3981 8.14515i −1.81989 0.487638i
\(280\) 0 0
\(281\) 18.7894 18.7894i 1.12088 1.12088i 0.129271 0.991609i \(-0.458736\pi\)
0.991609 0.129271i \(-0.0412638\pi\)
\(282\) −0.684973 0.183538i −0.0407895 0.0109295i
\(283\) 7.18567 + 26.8173i 0.427144 + 1.59412i 0.759197 + 0.650861i \(0.225592\pi\)
−0.332053 + 0.943261i \(0.607741\pi\)
\(284\) 30.5804 8.19398i 1.81461 0.486223i
\(285\) 0 0
\(286\) −1.34165 + 0.161531i −0.0793333 + 0.00955155i
\(287\) −16.8663 + 16.8663i −0.995586 + 0.995586i
\(288\) −4.28701 2.47511i −0.252615 0.145847i
\(289\) −11.6138 6.70521i −0.683162 0.394424i
\(290\) 0 0
\(291\) −9.37052 9.37052i −0.549310 0.549310i
\(292\) −6.90318 11.9567i −0.403978 0.699711i
\(293\) −3.52420 6.10410i −0.205886 0.356605i 0.744529 0.667591i \(-0.232674\pi\)
−0.950415 + 0.310985i \(0.899341\pi\)
\(294\) −0.0267361 0.0267361i −0.00155928 0.00155928i
\(295\) 0 0
\(296\) 0.939043 + 0.542157i 0.0545808 + 0.0315122i
\(297\) 2.33274 + 1.34681i 0.135359 + 0.0781498i
\(298\) −0.00571673 + 0.00571673i −0.000331161 + 0.000331161i
\(299\) −13.5625 18.0864i −0.784338 1.04596i
\(300\) 0 0
\(301\) −7.59566 + 2.03525i −0.437807 + 0.117310i
\(302\) 0.0229208 + 0.0855417i 0.00131895 + 0.00492237i
\(303\) −3.50788 0.939933i −0.201522 0.0539978i
\(304\) 8.97305 8.97305i 0.514640 0.514640i
\(305\) 0 0
\(306\) 2.22015 + 0.594888i 0.126918 + 0.0340075i
\(307\) 17.7175i 1.01119i 0.862770 + 0.505596i \(0.168727\pi\)
−0.862770 + 0.505596i \(0.831273\pi\)
\(308\) 4.06345 15.1650i 0.231537 0.864106i
\(309\) −5.17268 + 8.95934i −0.294263 + 0.509679i
\(310\) 0 0
\(311\) 18.1295i 1.02803i 0.857782 + 0.514014i \(0.171842\pi\)
−0.857782 + 0.514014i \(0.828158\pi\)
\(312\) −3.60023 + 2.69972i −0.203823 + 0.152841i
\(313\) 7.90286 + 7.90286i 0.446696 + 0.446696i 0.894255 0.447558i \(-0.147706\pi\)
−0.447558 + 0.894255i \(0.647706\pi\)
\(314\) −0.536028 2.00049i −0.0302498 0.112894i
\(315\) 0 0
\(316\) 10.1455 5.85750i 0.570728 0.329510i
\(317\) −8.03345 −0.451203 −0.225602 0.974220i \(-0.572435\pi\)
−0.225602 + 0.974220i \(0.572435\pi\)
\(318\) 2.16276 1.24867i 0.121282 0.0700219i
\(319\) −2.69612 + 10.0621i −0.150954 + 0.563367i
\(320\) 0 0
\(321\) −1.26353 2.18850i −0.0705233 0.122150i
\(322\) −1.97382 + 0.528884i −0.109997 + 0.0294735i
\(323\) −8.95420 + 15.5091i −0.498225 + 0.862951i
\(324\) −15.5027 −0.861262
\(325\) 0 0
\(326\) 0.493544 0.0273349
\(327\) −17.2894 + 29.9461i −0.956104 + 1.65602i
\(328\) −4.34927 + 1.16538i −0.240148 + 0.0643476i
\(329\) −2.96899 5.14245i −0.163686 0.283512i
\(330\) 0 0
\(331\) 3.42770 12.7924i 0.188403 0.703131i −0.805473 0.592633i \(-0.798089\pi\)
0.993876 0.110499i \(-0.0352448\pi\)
\(332\) −16.6960 + 9.63944i −0.916312 + 0.529033i
\(333\) −7.34588 −0.402552
\(334\) −1.36303 + 0.786947i −0.0745818 + 0.0430598i
\(335\) 0 0
\(336\) −6.68668 24.9550i −0.364788 1.36141i
\(337\) −1.40596 1.40596i −0.0765877 0.0765877i 0.667775 0.744363i \(-0.267247\pi\)
−0.744363 + 0.667775i \(0.767247\pi\)
\(338\) 0.383417 + 1.56921i 0.0208551 + 0.0853538i
\(339\) 27.1135i 1.47261i
\(340\) 0 0
\(341\) 14.1494 24.5074i 0.766232 1.32715i
\(342\) 0.350324 1.30743i 0.0189433 0.0706975i
\(343\) 18.6765i 1.00844i
\(344\) −1.43385 0.384199i −0.0773080 0.0207146i
\(345\) 0 0
\(346\) −2.15248 + 2.15248i −0.115718 + 0.115718i
\(347\) 4.58620 + 1.22887i 0.246200 + 0.0659692i 0.379809 0.925065i \(-0.375990\pi\)
−0.133608 + 0.991034i \(0.542656\pi\)
\(348\) 4.47171 + 16.6887i 0.239709 + 0.894606i
\(349\) −2.32494 + 0.622965i −0.124451 + 0.0333466i −0.320507 0.947246i \(-0.603853\pi\)
0.196056 + 0.980593i \(0.437187\pi\)
\(350\) 0 0
\(351\) 1.26509 2.96099i 0.0675256 0.158046i
\(352\) 3.14756 3.14756i 0.167765 0.167765i
\(353\) −4.58374 2.64643i −0.243968 0.140855i 0.373031 0.927819i \(-0.378318\pi\)
−0.616999 + 0.786964i \(0.711652\pi\)
\(354\) −3.49983 2.02063i −0.186014 0.107395i
\(355\) 0 0
\(356\) 17.9493 + 17.9493i 0.951311 + 0.951311i
\(357\) 18.2300 + 31.5752i 0.964832 + 1.67114i
\(358\) −0.805212 1.39467i −0.0425568 0.0737105i
\(359\) −0.976204 0.976204i −0.0515221 0.0515221i 0.680876 0.732398i \(-0.261599\pi\)
−0.732398 + 0.680876i \(0.761599\pi\)
\(360\) 0 0
\(361\) −7.32130 4.22696i −0.385332 0.222471i
\(362\) −1.10520 0.638087i −0.0580880 0.0335371i
\(363\) 3.39099 3.39099i 0.177981 0.177981i
\(364\) −18.5787 2.65564i −0.973789 0.139194i
\(365\) 0 0
\(366\) −1.68983 + 0.452790i −0.0883290 + 0.0236677i
\(367\) −7.60345 28.3765i −0.396897 1.48124i −0.818525 0.574471i \(-0.805208\pi\)
0.421628 0.906769i \(-0.361459\pi\)
\(368\) 23.6655 + 6.34116i 1.23365 + 0.330556i
\(369\) 21.5698 21.5698i 1.12288 1.12288i
\(370\) 0 0
\(371\) 20.1990 + 5.41232i 1.04868 + 0.280994i
\(372\) 46.9355i 2.43349i
\(373\) −5.77365 + 21.5476i −0.298949 + 1.11569i 0.639082 + 0.769139i \(0.279314\pi\)
−0.938031 + 0.346552i \(0.887352\pi\)
\(374\) −1.03341 + 1.78992i −0.0534364 + 0.0925546i
\(375\) 0 0
\(376\) 1.12093i 0.0578073i
\(377\) 12.3271 + 1.76203i 0.634877 + 0.0907493i
\(378\) −0.205807 0.205807i −0.0105856 0.0105856i
\(379\) 7.19049 + 26.8353i 0.369351 + 1.37844i 0.861426 + 0.507883i \(0.169572\pi\)
−0.492075 + 0.870553i \(0.663762\pi\)
\(380\) 0 0
\(381\) −12.0004 + 6.92846i −0.614801 + 0.354956i
\(382\) −1.03454 −0.0529316
\(383\) −3.00371 + 1.73419i −0.153483 + 0.0886132i −0.574774 0.818312i \(-0.694910\pi\)
0.421292 + 0.906925i \(0.361577\pi\)
\(384\) 2.54439 9.49580i 0.129843 0.484580i
\(385\) 0 0
\(386\) −0.155399 0.269159i −0.00790961 0.0136998i
\(387\) 9.71388 2.60283i 0.493784 0.132309i
\(388\) 5.21651 9.03526i 0.264828 0.458696i
\(389\) −15.9955 −0.811006 −0.405503 0.914094i \(-0.632904\pi\)
−0.405503 + 0.914094i \(0.632904\pi\)
\(390\) 0 0
\(391\) −34.5759 −1.74858
\(392\) 0.0298834 0.0517596i 0.00150934 0.00261425i
\(393\) 4.56500 1.22319i 0.230274 0.0617017i
\(394\) 1.21668 + 2.10735i 0.0612953 + 0.106167i
\(395\) 0 0
\(396\) −5.19663 + 19.3941i −0.261140 + 0.974590i
\(397\) 9.72708 5.61593i 0.488188 0.281856i −0.235634 0.971842i \(-0.575717\pi\)
0.723823 + 0.689986i \(0.242383\pi\)
\(398\) 0.372184 0.0186559
\(399\) 18.5944 10.7355i 0.930882 0.537445i
\(400\) 0 0
\(401\) 1.94255 + 7.24971i 0.0970065 + 0.362033i 0.997316 0.0732171i \(-0.0233266\pi\)
−0.900310 + 0.435250i \(0.856660\pi\)
\(402\) −1.75559 1.75559i −0.0875610 0.0875610i
\(403\) −31.1076 13.2908i −1.54958 0.662064i
\(404\) 2.85912i 0.142246i
\(405\) 0 0
\(406\) 0.562796 0.974792i 0.0279311 0.0483781i
\(407\) 1.70964 6.38046i 0.0847437 0.316268i
\(408\) 6.88262i 0.340740i
\(409\) 36.5236 + 9.78648i 1.80598 + 0.483910i 0.994886 0.101008i \(-0.0322067\pi\)
0.811092 + 0.584918i \(0.198873\pi\)
\(410\) 0 0
\(411\) −1.48451 + 1.48451i −0.0732255 + 0.0732255i
\(412\) −7.86720 2.10801i −0.387589 0.103854i
\(413\) −8.75834 32.6866i −0.430970 1.60840i
\(414\) 2.52426 0.676374i 0.124061 0.0332420i
\(415\) 0 0
\(416\) −4.18533 3.28582i −0.205203 0.161100i
\(417\) 25.2582 25.2582i 1.23690 1.23690i
\(418\) 1.05407 + 0.608566i 0.0515561 + 0.0297659i
\(419\) −2.07584 1.19849i −0.101411 0.0585499i 0.448437 0.893815i \(-0.351981\pi\)
−0.549848 + 0.835265i \(0.685314\pi\)
\(420\) 0 0
\(421\) 13.9343 + 13.9343i 0.679116 + 0.679116i 0.959800 0.280684i \(-0.0905614\pi\)
−0.280684 + 0.959800i \(0.590561\pi\)
\(422\) 0.276427 + 0.478786i 0.0134563 + 0.0233069i
\(423\) 3.79696 + 6.57653i 0.184614 + 0.319762i
\(424\) 2.79132 + 2.79132i 0.135559 + 0.135559i
\(425\) 0 0
\(426\) 4.32741 + 2.49843i 0.209663 + 0.121049i
\(427\) −12.6865 7.32453i −0.613941 0.354459i
\(428\) 1.40680 1.40680i 0.0680001 0.0680001i
\(429\) 21.5625 + 16.9283i 1.04105 + 0.817307i
\(430\) 0 0
\(431\) −18.4142 + 4.93407i −0.886981 + 0.237666i −0.673417 0.739263i \(-0.735174\pi\)
−0.213565 + 0.976929i \(0.568507\pi\)
\(432\) 0.903190 + 3.37075i 0.0434548 + 0.162175i
\(433\) −7.37884 1.97715i −0.354604 0.0950159i 0.0771194 0.997022i \(-0.475428\pi\)
−0.431724 + 0.902006i \(0.642094\pi\)
\(434\) −2.16217 + 2.16217i −0.103788 + 0.103788i
\(435\) 0 0
\(436\) −26.2956 7.04590i −1.25933 0.337437i
\(437\) 20.3614i 0.974020i
\(438\) 0.563993 2.10485i 0.0269486 0.100574i
\(439\) −2.24892 + 3.89524i −0.107335 + 0.185910i −0.914690 0.404157i \(-0.867565\pi\)
0.807355 + 0.590066i \(0.200898\pi\)
\(440\) 0 0
\(441\) 0.404901i 0.0192810i
\(442\) 2.27197 + 0.970708i 0.108067 + 0.0461719i
\(443\) −20.2178 20.2178i −0.960576 0.960576i 0.0386758 0.999252i \(-0.487686\pi\)
−0.999252 + 0.0386758i \(0.987686\pi\)
\(444\) −2.83556 10.5825i −0.134570 0.502221i
\(445\) 0 0
\(446\) −0.0875596 + 0.0505526i −0.00414607 + 0.00239373i
\(447\) 0.164008 0.00775733
\(448\) 17.3352 10.0085i 0.819013 0.472858i
\(449\) 4.01450 14.9823i 0.189456 0.707059i −0.804177 0.594390i \(-0.797393\pi\)
0.993633 0.112669i \(-0.0359399\pi\)
\(450\) 0 0
\(451\) 13.7150 + 23.7551i 0.645814 + 1.11858i
\(452\) −20.6187 + 5.52476i −0.969822 + 0.259863i
\(453\) 0.898272 1.55585i 0.0422045 0.0731004i
\(454\) 3.02831 0.142125
\(455\) 0 0
\(456\) 4.05311 0.189804
\(457\) 2.26685 3.92630i 0.106039 0.183665i −0.808123 0.589013i \(-0.799517\pi\)
0.914162 + 0.405349i \(0.132850\pi\)
\(458\) 1.53989 0.412611i 0.0719541 0.0192800i
\(459\) −2.46238 4.26496i −0.114934 0.199071i
\(460\) 0 0
\(461\) 1.41111 5.26633i 0.0657219 0.245278i −0.925248 0.379363i \(-0.876143\pi\)
0.990970 + 0.134086i \(0.0428097\pi\)
\(462\) 2.14599 1.23899i 0.0998404 0.0576429i
\(463\) 34.6785 1.61165 0.805824 0.592155i \(-0.201723\pi\)
0.805824 + 0.592155i \(0.201723\pi\)
\(464\) −11.6875 + 6.74777i −0.542577 + 0.313257i
\(465\) 0 0
\(466\) 0.155368 + 0.579840i 0.00719727 + 0.0268606i
\(467\) 0.351988 + 0.351988i 0.0162881 + 0.0162881i 0.715204 0.698916i \(-0.246334\pi\)
−0.698916 + 0.715204i \(0.746334\pi\)
\(468\) 23.7598 + 3.39623i 1.09830 + 0.156991i
\(469\) 20.7897i 0.959979i
\(470\) 0 0
\(471\) −21.0071 + 36.3853i −0.967954 + 1.67655i
\(472\) 1.65333 6.17031i 0.0761007 0.284012i
\(473\) 9.04301i 0.415798i
\(474\) 1.78601 + 0.478560i 0.0820342 + 0.0219810i
\(475\) 0 0
\(476\) −20.2970 + 20.2970i −0.930312 + 0.930312i
\(477\) −25.8320 6.92166i −1.18277 0.316921i
\(478\) 0.0684665 + 0.255520i 0.00313158 + 0.0116872i
\(479\) −16.9065 + 4.53008i −0.772478 + 0.206985i −0.623466 0.781851i \(-0.714276\pi\)
−0.149012 + 0.988835i \(0.547609\pi\)
\(480\) 0 0
\(481\) −7.81673 1.11732i −0.356412 0.0509456i
\(482\) −1.53633 + 1.53633i −0.0699778 + 0.0699778i
\(483\) 35.9003 + 20.7271i 1.63352 + 0.943114i
\(484\) 3.26966 + 1.88774i 0.148621 + 0.0858063i
\(485\) 0 0
\(486\) −1.96558 1.96558i −0.0891605 0.0891605i
\(487\) 3.59243 + 6.22227i 0.162788 + 0.281958i 0.935868 0.352352i \(-0.114618\pi\)
−0.773079 + 0.634309i \(0.781285\pi\)
\(488\) −1.38267 2.39485i −0.0625904 0.108410i
\(489\) −7.07969 7.07969i −0.320155 0.320155i
\(490\) 0 0
\(491\) −10.4598 6.03895i −0.472042 0.272534i 0.245052 0.969510i \(-0.421195\pi\)
−0.717094 + 0.696976i \(0.754528\pi\)
\(492\) 39.3995 + 22.7473i 1.77627 + 1.02553i
\(493\) 13.4672 13.4672i 0.606531 0.606531i
\(494\) 0.571641 1.33794i 0.0257193 0.0601969i
\(495\) 0 0
\(496\) 35.4126 9.48878i 1.59007 0.426059i
\(497\) 10.8294 + 40.4157i 0.485763 + 1.81289i
\(498\) −2.93916 0.787547i −0.131707 0.0352908i
\(499\) −26.4464 + 26.4464i −1.18390 + 1.18390i −0.205177 + 0.978725i \(0.565777\pi\)
−0.978725 + 0.205177i \(0.934223\pi\)
\(500\) 0 0
\(501\) 30.8406 + 8.26372i 1.37786 + 0.369196i
\(502\) 0.0907472i 0.00405025i
\(503\) 6.61654 24.6933i 0.295017 1.10102i −0.646187 0.763179i \(-0.723637\pi\)
0.941204 0.337839i \(-0.109696\pi\)
\(504\) 2.17796 3.77234i 0.0970141 0.168033i
\(505\) 0 0
\(506\) 2.34993i 0.104467i
\(507\) 17.0097 28.0097i 0.755429 1.24395i
\(508\) −7.71406 7.71406i −0.342256 0.342256i
\(509\) −2.29966 8.58245i −0.101931 0.380410i 0.896048 0.443957i \(-0.146426\pi\)
−0.997979 + 0.0635463i \(0.979759\pi\)
\(510\) 0 0
\(511\) 15.8022 9.12340i 0.699048 0.403596i
\(512\) 9.63626 0.425866
\(513\) −2.51160 + 1.45007i −0.110890 + 0.0640222i
\(514\) −0.493854 + 1.84309i −0.0217830 + 0.0812952i
\(515\) 0 0
\(516\) 7.49924 + 12.9891i 0.330136 + 0.571812i
\(517\) −6.59590 + 1.76737i −0.290087 + 0.0777286i
\(518\) −0.356875 + 0.618126i −0.0156802 + 0.0271589i
\(519\) 61.7530 2.71066
\(520\) 0 0
\(521\) −25.8875 −1.13415 −0.567076 0.823666i \(-0.691925\pi\)
−0.567076 + 0.823666i \(0.691925\pi\)
\(522\) −0.719744 + 1.24663i −0.0315024 + 0.0545637i
\(523\) 1.16769 0.312883i 0.0510597 0.0136814i −0.233199 0.972429i \(-0.574919\pi\)
0.284258 + 0.958748i \(0.408253\pi\)
\(524\) 1.86037 + 3.22225i 0.0812704 + 0.140765i
\(525\) 0 0
\(526\) 0.821866 3.06724i 0.0358350 0.133738i
\(527\) −44.8070 + 25.8694i −1.95183 + 1.12689i
\(528\) −29.7102 −1.29297
\(529\) −14.1266 + 8.15602i −0.614202 + 0.354610i
\(530\) 0 0
\(531\) 11.2008 + 41.8019i 0.486073 + 1.81405i
\(532\) 11.9527 + 11.9527i 0.518216 + 0.518216i
\(533\) 26.2332 19.6716i 1.13629 0.852070i
\(534\) 4.00646i 0.173376i
\(535\) 0 0
\(536\) 1.96226 3.39873i 0.0847566 0.146803i
\(537\) −8.45552 + 31.5564i −0.364883 + 1.36176i
\(538\) 1.23928i 0.0534291i
\(539\) −0.351688 0.0942344i −0.0151483 0.00405896i
\(540\) 0 0
\(541\) 1.85241 1.85241i 0.0796411 0.0796411i −0.666164 0.745805i \(-0.732065\pi\)
0.745805 + 0.666164i \(0.232065\pi\)
\(542\) −1.13767 0.304839i −0.0488673 0.0130940i
\(543\) 6.70054 + 25.0068i 0.287548 + 1.07314i
\(544\) −7.86105 + 2.10636i −0.337040 + 0.0903095i
\(545\) 0 0
\(546\) −1.77709 2.36986i −0.0760525 0.101421i
\(547\) −13.8446 + 13.8446i −0.591954 + 0.591954i −0.938159 0.346205i \(-0.887470\pi\)
0.346205 + 0.938159i \(0.387470\pi\)
\(548\) −1.43140 0.826417i −0.0611462 0.0353028i
\(549\) 16.2243 + 9.36713i 0.692438 + 0.399779i
\(550\) 0 0
\(551\) −7.93069 7.93069i −0.337859 0.337859i
\(552\) 3.91269 + 6.77698i 0.166535 + 0.288447i
\(553\) 7.74140 + 13.4085i 0.329198 + 0.570187i
\(554\) −0.457329 0.457329i −0.0194300 0.0194300i
\(555\) 0 0
\(556\) 24.3545 + 14.0611i 1.03286 + 0.596323i
\(557\) −29.0126 16.7504i −1.22930 0.709738i −0.262418 0.964954i \(-0.584520\pi\)
−0.966884 + 0.255216i \(0.917853\pi\)
\(558\) 2.76514 2.76514i 0.117058 0.117058i
\(559\) 10.7324 1.29216i 0.453932 0.0546524i
\(560\) 0 0
\(561\) 40.4996 10.8518i 1.70989 0.458165i
\(562\) 0.854581 + 3.18934i 0.0360483 + 0.134534i
\(563\) −16.5085 4.42343i −0.695748 0.186425i −0.106423 0.994321i \(-0.533940\pi\)
−0.589325 + 0.807896i \(0.700606\pi\)
\(564\) −8.00847 + 8.00847i −0.337217 + 0.337217i
\(565\) 0 0
\(566\) −3.33230 0.892887i −0.140067 0.0375308i
\(567\) 20.4887i 0.860446i
\(568\) −2.04428 + 7.62936i −0.0857761 + 0.320121i
\(569\) 22.0925 38.2653i 0.926165 1.60416i 0.136488 0.990642i \(-0.456418\pi\)
0.789677 0.613523i \(-0.210248\pi\)
\(570\) 0 0
\(571\) 37.9123i 1.58658i −0.608844 0.793290i \(-0.708367\pi\)
0.608844 0.793290i \(-0.291633\pi\)
\(572\) −8.47960 + 19.8468i −0.354550 + 0.829835i
\(573\) 14.8400 + 14.8400i 0.619952 + 0.619952i
\(574\) −0.767115 2.86291i −0.0320188 0.119496i
\(575\) 0 0
\(576\) −22.1696 + 12.7996i −0.923731 + 0.533316i
\(577\) 16.9069 0.703843 0.351921 0.936030i \(-0.385528\pi\)
0.351921 + 0.936030i \(0.385528\pi\)
\(578\) 1.44312 0.833185i 0.0600258 0.0346559i
\(579\) −1.63184 + 6.09012i −0.0678171 + 0.253097i
\(580\) 0 0
\(581\) −12.7397 22.0658i −0.528532 0.915445i
\(582\) 1.59057 0.426191i 0.0659311 0.0176662i
\(583\) 12.0240 20.8261i 0.497982 0.862531i
\(584\) 3.44449 0.142534
\(585\) 0 0
\(586\) 0.875831 0.0361802
\(587\) 15.0303 26.0333i 0.620368 1.07451i −0.369049 0.929410i \(-0.620317\pi\)
0.989417 0.145099i \(-0.0463500\pi\)
\(588\) −0.583299 + 0.156295i −0.0240549 + 0.00644548i
\(589\) 15.2342 + 26.3864i 0.627715 + 1.08723i
\(590\) 0 0
\(591\) 12.7763 47.6818i 0.525547 1.96137i
\(592\) 7.41115 4.27883i 0.304596 0.175859i
\(593\) −5.10110 −0.209477 −0.104739 0.994500i \(-0.533401\pi\)
−0.104739 + 0.994500i \(0.533401\pi\)
\(594\) −0.289865 + 0.167354i −0.0118933 + 0.00686661i
\(595\) 0 0
\(596\) 0.0334190 + 0.124721i 0.00136890 + 0.00510879i
\(597\) −5.33883 5.33883i −0.218504 0.218504i
\(598\) 2.78894 0.335782i 0.114048 0.0137311i
\(599\) 33.5536i 1.37096i −0.728091 0.685480i \(-0.759592\pi\)
0.728091 0.685480i \(-0.240408\pi\)
\(600\) 0 0
\(601\) −23.6229 + 40.9160i −0.963597 + 1.66900i −0.250259 + 0.968179i \(0.580516\pi\)
−0.713338 + 0.700820i \(0.752817\pi\)
\(602\) 0.252899 0.943833i 0.0103074 0.0384677i
\(603\) 26.5874i 1.08272i
\(604\) 1.36620 + 0.366071i 0.0555897 + 0.0148952i
\(605\) 0 0
\(606\) 0.319091 0.319091i 0.0129622 0.0129622i
\(607\) −3.18128 0.852422i −0.129124 0.0345987i 0.193678 0.981065i \(-0.437958\pi\)
−0.322802 + 0.946466i \(0.604625\pi\)
\(608\) 1.24042 + 4.62930i 0.0503055 + 0.187743i
\(609\) −22.0561 + 5.90992i −0.893758 + 0.239482i
\(610\) 0 0
\(611\) 3.04003 + 7.57558i 0.122986 + 0.306475i
\(612\) 25.9573 25.9573i 1.04926 1.04926i
\(613\) −2.67402 1.54384i −0.108003 0.0623553i 0.445026 0.895518i \(-0.353195\pi\)
−0.553028 + 0.833162i \(0.686528\pi\)
\(614\) −1.90661 1.10078i −0.0769447 0.0444241i
\(615\) 0 0
\(616\) 2.76968 + 2.76968i 0.111593 + 0.111593i
\(617\) −13.7837 23.8740i −0.554909 0.961131i −0.997911 0.0646098i \(-0.979420\pi\)
0.443002 0.896521i \(-0.353914\pi\)
\(618\) −0.642754 1.11328i −0.0258554 0.0447828i
\(619\) 13.0430 + 13.0430i 0.524244 + 0.524244i 0.918850 0.394606i \(-0.129119\pi\)
−0.394606 + 0.918850i \(0.629119\pi\)
\(620\) 0 0
\(621\) −4.84916 2.79967i −0.194590 0.112347i
\(622\) −1.95094 1.12638i −0.0782257 0.0451636i
\(623\) −23.7222 + 23.7222i −0.950410 + 0.950410i
\(624\) 4.24529 + 35.2606i 0.169948 + 1.41155i
\(625\) 0 0
\(626\) −1.34144 + 0.359439i −0.0536149 + 0.0143661i
\(627\) −6.39054 23.8498i −0.255214 0.952470i
\(628\) −31.9500 8.56097i −1.27494 0.341620i
\(629\) −8.53968 + 8.53968i −0.340499 + 0.340499i
\(630\) 0 0
\(631\) −23.7377 6.36049i −0.944982 0.253207i −0.246750 0.969079i \(-0.579363\pi\)
−0.698232 + 0.715872i \(0.746029\pi\)
\(632\) 2.92272i 0.116260i
\(633\) 2.90276 10.8332i 0.115374 0.430582i
\(634\) 0.499116 0.864494i 0.0198224 0.0343334i
\(635\) 0 0
\(636\) 39.8853i 1.58155i
\(637\) −0.0615863 + 0.430854i −0.00244014 + 0.0170711i
\(638\) −0.915287 0.915287i −0.0362366 0.0362366i
\(639\) −13.8494 51.6865i −0.547872 2.04469i
\(640\) 0 0
\(641\) −28.0502 + 16.1948i −1.10792 + 0.639656i −0.938289 0.345852i \(-0.887590\pi\)
−0.169628 + 0.985508i \(0.554257\pi\)
\(642\) 0.314011 0.0123930
\(643\) −29.2730 + 16.9008i −1.15441 + 0.666501i −0.949959 0.312375i \(-0.898876\pi\)
−0.204455 + 0.978876i \(0.565542\pi\)
\(644\) −8.44685 + 31.5241i −0.332853 + 1.24222i
\(645\) 0 0
\(646\) −1.11264 1.92716i −0.0437764 0.0758229i
\(647\) 32.5598 8.72438i 1.28006 0.342991i 0.446183 0.894942i \(-0.352783\pi\)
0.833877 + 0.551951i \(0.186116\pi\)
\(648\) 1.93385 3.34953i 0.0759689 0.131582i
\(649\) −38.9149 −1.52755
\(650\) 0 0
\(651\) 62.0311 2.43119
\(652\) 3.94122 6.82639i 0.154350 0.267342i
\(653\) 17.1323 4.59060i 0.670441 0.179644i 0.0924873 0.995714i \(-0.470518\pi\)
0.577953 + 0.816070i \(0.303852\pi\)
\(654\) −2.14837 3.72108i −0.0840077 0.145506i
\(655\) 0 0
\(656\) −9.19748 + 34.3255i −0.359101 + 1.34018i
\(657\) −20.2090 + 11.6677i −0.788427 + 0.455199i
\(658\) 0.737850 0.0287644
\(659\) −11.6311 + 6.71522i −0.453084 + 0.261588i −0.709132 0.705076i \(-0.750913\pi\)
0.256048 + 0.966664i \(0.417579\pi\)
\(660\) 0 0
\(661\) −9.25257 34.5311i −0.359883 1.34310i −0.874226 0.485518i \(-0.838631\pi\)
0.514343 0.857585i \(-0.328036\pi\)
\(662\) 1.16365 + 1.16365i 0.0452264 + 0.0452264i
\(663\) −18.6661 46.5150i −0.724933 1.80649i
\(664\) 4.80980i 0.186657i
\(665\) 0 0
\(666\) 0.456398 0.790504i 0.0176850 0.0306314i
\(667\) 5.60453 20.9164i 0.217008 0.809886i
\(668\) 25.1368i 0.972573i
\(669\) 1.98117 + 0.530852i 0.0765963 + 0.0205239i
\(670\) 0 0
\(671\) −11.9120 + 11.9120i −0.459859 + 0.459859i
\(672\) 9.42484 + 2.52538i 0.363571 + 0.0974186i
\(673\) −12.1457 45.3283i −0.468181 1.74728i −0.646120 0.763235i \(-0.723610\pi\)
0.177939 0.984042i \(-0.443057\pi\)
\(674\) 0.238650 0.0639462i 0.00919247 0.00246311i
\(675\) 0 0
\(676\) 24.7661 + 7.22783i 0.952543 + 0.277993i
\(677\) −11.2472 + 11.2472i −0.432266 + 0.432266i −0.889398 0.457133i \(-0.848876\pi\)
0.457133 + 0.889398i \(0.348876\pi\)
\(678\) −2.91774 1.68456i −0.112055 0.0646950i
\(679\) 11.9412 + 6.89426i 0.458261 + 0.264577i
\(680\) 0 0
\(681\) −43.4399 43.4399i −1.66462 1.66462i
\(682\) 1.75819 + 3.04528i 0.0673247 + 0.116610i
\(683\) 7.99498 + 13.8477i 0.305919 + 0.529868i 0.977466 0.211095i \(-0.0677029\pi\)
−0.671546 + 0.740963i \(0.734370\pi\)
\(684\) −15.2860 15.2860i −0.584474 0.584474i
\(685\) 0 0
\(686\) 2.00981 + 1.16036i 0.0767349 + 0.0443029i
\(687\) −28.0078 16.1703i −1.06856 0.616936i
\(688\) −8.28409 + 8.28409i −0.315828 + 0.315828i
\(689\) −26.4349 11.2944i −1.00709 0.430283i
\(690\) 0 0
\(691\) 13.8396 3.70831i 0.526483 0.141071i 0.0142191 0.999899i \(-0.495474\pi\)
0.512264 + 0.858828i \(0.328807\pi\)
\(692\) 12.5830 + 46.9605i 0.478335 + 1.78517i
\(693\) −25.6317 6.86799i −0.973667 0.260893i
\(694\) −0.417180 + 0.417180i −0.0158359 + 0.0158359i
\(695\) 0 0
\(696\) −4.16358 1.11563i −0.157820 0.0422877i
\(697\) 50.1504i 1.89958i
\(698\) 0.0774093 0.288895i 0.00292999 0.0109349i
\(699\) 6.08889 10.5463i 0.230303 0.398897i
\(700\) 0 0
\(701\) 2.47832i 0.0936050i −0.998904 0.0468025i \(-0.985097\pi\)
0.998904 0.0468025i \(-0.0149031\pi\)
\(702\) 0.240037 + 0.320104i 0.00905962 + 0.0120815i
\(703\) 5.02894 + 5.02894i 0.189670 + 0.189670i
\(704\) −5.95781 22.2348i −0.224543 0.838007i
\(705\) 0 0
\(706\) 0.569573 0.328843i 0.0214362 0.0123762i
\(707\) 3.77867 0.142112
\(708\) −55.8961 + 32.2716i −2.10070 + 1.21284i
\(709\) 2.01972 7.53768i 0.0758520 0.283084i −0.917573 0.397567i \(-0.869855\pi\)
0.993425 + 0.114483i \(0.0365213\pi\)
\(710\) 0 0
\(711\) −9.90026 17.1477i −0.371289 0.643091i
\(712\) −6.11719 + 1.63910i −0.229251 + 0.0614277i
\(713\) −29.4129 + 50.9446i −1.10152 + 1.90789i
\(714\) −4.53049 −0.169549
\(715\) 0 0
\(716\) −25.7203 −0.961211
\(717\) 2.68322 4.64747i 0.100207 0.173563i
\(718\) 0.165702 0.0443998i 0.00618396 0.00165699i
\(719\) −16.7165 28.9539i −0.623421 1.07980i −0.988844 0.148955i \(-0.952409\pi\)
0.365423 0.930842i \(-0.380924\pi\)
\(720\) 0 0
\(721\) 2.78600 10.3975i 0.103756 0.387222i
\(722\) 0.909741 0.525239i 0.0338571 0.0195474i
\(723\) 44.0760 1.63921
\(724\) −17.6513 + 10.1910i −0.656004 + 0.378744i
\(725\) 0 0
\(726\) 0.154229 + 0.575591i 0.00572398 + 0.0213622i
\(727\) 22.0118 + 22.0118i 0.816374 + 0.816374i 0.985581 0.169207i \(-0.0541206\pi\)
−0.169207 + 0.985581i \(0.554121\pi\)
\(728\) 2.89134 3.68286i 0.107160 0.136496i
\(729\) 32.9560i 1.22059i
\(730\) 0 0
\(731\) 8.26668 14.3183i 0.305754 0.529582i
\(732\) −7.23155 + 26.9885i −0.267286 + 0.997524i
\(733\) 32.5431i 1.20201i 0.799246 + 0.601004i \(0.205232\pi\)
−0.799246 + 0.601004i \(0.794768\pi\)
\(734\) 3.52604 + 0.944800i 0.130149 + 0.0348732i
\(735\) 0 0
\(736\) −6.54295 + 6.54295i −0.241176 + 0.241176i
\(737\) −23.0931 6.18779i −0.850647 0.227930i
\(738\) 0.981041 + 3.66130i 0.0361126 + 0.134774i
\(739\) 34.8599 9.34069i 1.28234 0.343603i 0.447595 0.894236i \(-0.352280\pi\)
0.834747 + 0.550633i \(0.185614\pi\)
\(740\) 0 0
\(741\) −27.3922 + 10.9923i −1.00628 + 0.403813i
\(742\) −1.83739 + 1.83739i −0.0674527 + 0.0674527i
\(743\) −4.30370 2.48474i −0.157887 0.0911563i 0.418975 0.907998i \(-0.362390\pi\)
−0.576862 + 0.816842i \(0.695723\pi\)
\(744\) 10.1409 + 5.85487i 0.371784 + 0.214650i
\(745\) 0 0
\(746\) −1.96006 1.96006i −0.0717628 0.0717628i
\(747\) 16.2925 + 28.2194i 0.596110 + 1.03249i
\(748\) 16.5047 + 28.5870i 0.603472 + 1.04524i
\(749\) 1.85926 + 1.85926i 0.0679357 + 0.0679357i
\(750\) 0 0
\(751\) 21.9475 + 12.6714i 0.800876 + 0.462386i 0.843778 0.536693i \(-0.180327\pi\)
−0.0429011 + 0.999079i \(0.513660\pi\)
\(752\) −7.66139 4.42331i −0.279382 0.161301i
\(753\) −1.30173 + 1.30173i −0.0474378 + 0.0474378i
\(754\) −0.955493 + 1.21706i −0.0347970 + 0.0443229i
\(755\) 0 0
\(756\) −4.49007 + 1.20311i −0.163302 + 0.0437567i
\(757\) −9.11581 34.0207i −0.331320 1.23650i −0.907804 0.419394i \(-0.862242\pi\)
0.576484 0.817108i \(-0.304424\pi\)
\(758\) −3.33454 0.893486i −0.121116 0.0324529i
\(759\) 33.7088 33.7088i 1.22355 1.22355i
\(760\) 0 0
\(761\) −3.10639 0.832355i −0.112607 0.0301728i 0.202076 0.979370i \(-0.435231\pi\)
−0.314682 + 0.949197i \(0.601898\pi\)
\(762\) 1.72185i 0.0623761i
\(763\) 9.31202 34.7529i 0.337118 1.25814i
\(764\) −8.26136 + 14.3091i −0.298885 + 0.517685i
\(765\) 0 0
\(766\) 0.430980i 0.0155719i
\(767\) 5.56056 + 46.1849i 0.200780 + 1.66764i
\(768\) −26.3429 26.3429i −0.950568 0.950568i
\(769\) −7.34107 27.3973i −0.264726 0.987970i −0.962418 0.271573i \(-0.912456\pi\)
0.697692 0.716398i \(-0.254210\pi\)
\(770\) 0 0
\(771\) 33.5225 19.3542i 1.20728 0.697026i
\(772\) −4.96379 −0.178651
\(773\) −24.8703 + 14.3589i −0.894524 + 0.516454i −0.875420 0.483364i \(-0.839415\pi\)
−0.0191044 + 0.999817i \(0.506081\pi\)
\(774\) −0.323426 + 1.20704i −0.0116253 + 0.0433862i
\(775\) 0 0
\(776\) 1.30144 + 2.25417i 0.0467191 + 0.0809198i
\(777\) 13.9860 3.74754i 0.501745 0.134442i
\(778\) 0.993798 1.72131i 0.0356294 0.0617119i
\(779\) −29.5331 −1.05813
\(780\) 0 0
\(781\) 48.1169 1.72176
\(782\) 2.14819 3.72078i 0.0768192 0.133055i
\(783\) 2.97919 0.798270i 0.106467 0.0285279i
\(784\) −0.235847 0.408499i −0.00842310 0.0145892i
\(785\) 0 0
\(786\) −0.151993 + 0.567244i −0.00542140 + 0.0202329i
\(787\) −0.450435 + 0.260059i −0.0160563 + 0.00927010i −0.508007 0.861353i \(-0.669617\pi\)
0.491950 + 0.870623i \(0.336284\pi\)
\(788\) 38.8634 1.38445
\(789\) −55.7878 + 32.2091i −1.98610 + 1.14667i
\(790\) 0 0
\(791\) −7.30165 27.2501i −0.259617 0.968903i
\(792\) −3.54206 3.54206i −0.125862 0.125862i
\(793\) 15.8395 + 12.4353i 0.562477 + 0.441590i
\(794\) 1.39567i 0.0495303i
\(795\) 0 0
\(796\) 2.97209 5.14782i 0.105343 0.182459i
\(797\) −1.03627 + 3.86739i −0.0367064 + 0.136990i −0.981847 0.189672i \(-0.939257\pi\)
0.945141 + 0.326663i \(0.105924\pi\)
\(798\) 2.66796i 0.0944448i
\(799\) 12.0593 + 3.23128i 0.426628 + 0.114315i
\(800\) 0 0
\(801\) 30.3377 30.3377i 1.07193 1.07193i
\(802\) −0.900844 0.241380i −0.0318099 0.00852344i
\(803\) −5.43093 20.2685i −0.191653 0.715260i
\(804\) −38.3016 + 10.2629i −1.35079 + 0.361944i
\(805\) 0 0
\(806\) 3.36296 2.52179i 0.118455 0.0888264i
\(807\) −17.7770 + 17.7770i −0.625779 + 0.625779i
\(808\) 0.617743 + 0.356654i 0.0217321 + 0.0125471i
\(809\) 39.9699 + 23.0766i 1.40527 + 0.811331i 0.994927 0.100602i \(-0.0320769\pi\)
0.410339 + 0.911933i \(0.365410\pi\)
\(810\) 0 0
\(811\) −13.0967 13.0967i −0.459888 0.459888i 0.438731 0.898618i \(-0.355428\pi\)
−0.898618 + 0.438731i \(0.855428\pi\)
\(812\) −8.98848 15.5685i −0.315434 0.546347i
\(813\) 11.9467 + 20.6923i 0.418989 + 0.725710i
\(814\) 0.580393 + 0.580393i 0.0203428 + 0.0203428i
\(815\) 0 0
\(816\) 47.0419 + 27.1596i 1.64679 + 0.950777i
\(817\) −8.43192 4.86817i −0.294996 0.170316i
\(818\) −3.32234 + 3.32234i −0.116163 + 0.116163i
\(819\) −4.48853 + 31.4015i −0.156842 + 1.09726i
\(820\) 0 0
\(821\) 19.0466 5.10353i 0.664733 0.178115i 0.0893517 0.996000i \(-0.471520\pi\)
0.575381 + 0.817886i \(0.304854\pi\)
\(822\) −0.0675186 0.251983i −0.00235498 0.00878892i
\(823\) 5.46939 + 1.46552i 0.190651 + 0.0510848i 0.352881 0.935668i \(-0.385202\pi\)
−0.162230 + 0.986753i \(0.551869\pi\)
\(824\) 1.43684 1.43684i 0.0500545 0.0500545i
\(825\) 0 0
\(826\) 4.06161 + 1.08831i 0.141322 + 0.0378670i
\(827\) 37.5355i 1.30524i 0.757687 + 0.652618i \(0.226329\pi\)
−0.757687 + 0.652618i \(0.773671\pi\)
\(828\) 10.8024 40.3153i 0.375411 1.40105i
\(829\) 19.0247 32.9518i 0.660756 1.14446i −0.319661 0.947532i \(-0.603569\pi\)
0.980417 0.196932i \(-0.0630977\pi\)
\(830\) 0 0
\(831\) 13.1204i 0.455142i
\(832\) −25.5374 + 10.2480i −0.885350 + 0.355284i
\(833\) 0.470703 + 0.470703i 0.0163089 + 0.0163089i
\(834\) 1.14880 + 4.28737i 0.0397796 + 0.148459i
\(835\) 0 0
\(836\) 16.8346 9.71947i 0.582237 0.336155i
\(837\) −8.37872 −0.289611
\(838\) 0.257942 0.148923i 0.00891047 0.00514446i
\(839\) 0.986990 3.68350i 0.0340747 0.127168i −0.946793 0.321842i \(-0.895698\pi\)
0.980868 + 0.194673i \(0.0623647\pi\)
\(840\) 0 0
\(841\) −8.53610 14.7850i −0.294348 0.509826i
\(842\) −2.36523 + 0.633761i −0.0815111 + 0.0218408i
\(843\) 33.4912 58.0084i 1.15350 1.99792i
\(844\) 8.82969 0.303930
\(845\) 0 0
\(846\) −0.943616 −0.0324422
\(847\) −2.49488 + 4.32126i −0.0857251 + 0.148480i
\(848\) 30.0932 8.06346i 1.03341 0.276900i
\(849\) 34.9924 + 60.6086i 1.20094 + 2.08008i
\(850\) 0 0
\(851\) −3.55389 + 13.2633i −0.121826 + 0.454660i
\(852\) 69.1134 39.9027i 2.36779 1.36704i
\(853\) 15.1949 0.520263 0.260132 0.965573i \(-0.416234\pi\)
0.260132 + 0.965573i \(0.416234\pi\)
\(854\) 1.57641 0.910141i 0.0539437 0.0311444i
\(855\) 0 0
\(856\) 0.128466 + 0.479442i 0.00439088 + 0.0163870i
\(857\) −21.7961 21.7961i −0.744542 0.744542i 0.228906 0.973448i \(-0.426485\pi\)
−0.973448 + 0.228906i \(0.926485\pi\)
\(858\) −3.16136 + 1.26863i −0.107927 + 0.0433103i
\(859\) 19.9625i 0.681113i 0.940224 + 0.340557i \(0.110615\pi\)
−0.940224 + 0.340557i \(0.889385\pi\)
\(860\) 0 0
\(861\) −30.0634 + 52.0713i −1.02456 + 1.77459i
\(862\) 0.613105 2.28814i 0.0208824 0.0779343i
\(863\) 45.8868i 1.56201i 0.624527 + 0.781003i \(0.285292\pi\)
−0.624527 + 0.781003i \(0.714708\pi\)
\(864\) −1.27304 0.341111i −0.0433098 0.0116048i
\(865\) 0 0
\(866\) 0.671210 0.671210i 0.0228086 0.0228086i
\(867\) −32.6527 8.74926i −1.10894 0.297141i
\(868\) 12.6397 + 47.1720i 0.429019 + 1.60112i
\(869\) 17.1983 4.60826i 0.583411 0.156324i
\(870\) 0 0
\(871\) −4.04399 + 28.2915i −0.137025 + 0.958621i
\(872\) 4.80254 4.80254i 0.162634 0.162634i
\(873\) −15.2713 8.81687i −0.516854 0.298406i
\(874\) −2.19113 1.26505i −0.0741161 0.0427910i
\(875\) 0 0
\(876\) −24.6092 24.6092i −0.831467 0.831467i
\(877\) 17.6180 + 30.5152i 0.594916 + 1.03042i 0.993559 + 0.113318i \(0.0361480\pi\)
−0.398643 + 0.917106i \(0.630519\pi\)
\(878\) −0.279449 0.484020i −0.00943096 0.0163349i
\(879\) −12.5635 12.5635i −0.423755 0.423755i
\(880\) 0 0
\(881\) −19.2802 11.1314i −0.649566 0.375027i 0.138724 0.990331i \(-0.455700\pi\)
−0.788290 + 0.615304i \(0.789033\pi\)
\(882\) −0.0435722 0.0251564i −0.00146715 0.000847060i
\(883\) −11.0289 + 11.0289i −0.371151 + 0.371151i −0.867896 0.496745i \(-0.834528\pi\)
0.496745 + 0.867896i \(0.334528\pi\)
\(884\) 31.5692 23.6729i 1.06179 0.796205i
\(885\) 0 0
\(886\) 3.43180 0.919547i 0.115293 0.0308928i
\(887\) 4.57003 + 17.0556i 0.153447 + 0.572671i 0.999233 + 0.0391497i \(0.0124649\pi\)
−0.845787 + 0.533521i \(0.820868\pi\)
\(888\) 2.64017 + 0.707431i 0.0885983 + 0.0237398i
\(889\) 10.1951 10.1951i 0.341932 0.341932i
\(890\) 0 0
\(891\) −22.7588 6.09821i −0.762450 0.204298i
\(892\) 1.61476i 0.0540662i
\(893\) 1.90287 7.10161i 0.0636771 0.237646i
\(894\) −0.0101898 + 0.0176492i −0.000340798 + 0.000590279i
\(895\) 0 0
\(896\) 10.2288i 0.341722i
\(897\) −44.8229 35.1895i −1.49659 1.17494i
\(898\) 1.36285 + 1.36285i 0.0454790 + 0.0454790i
\(899\) −8.38650 31.2989i −0.279706 1.04388i
\(900\) 0 0
\(901\) −38.0765 + 21.9835i −1.26851 + 0.732376i
\(902\) −3.40844 −0.113489
\(903\) −17.1666 + 9.91117i −0.571270 + 0.329823i
\(904\) 1.37835 5.14407i 0.0458432 0.171089i
\(905\) 0 0
\(906\) 0.111619 + 0.193329i 0.00370829 + 0.00642294i
\(907\) 53.6498 14.3754i 1.78141 0.477328i 0.790573 0.612367i \(-0.209783\pi\)
0.990840 + 0.135039i \(0.0431160\pi\)
\(908\) 24.1827 41.8856i 0.802531 1.39002i
\(909\) −4.83244 −0.160282
\(910\) 0 0
\(911\) −15.2824 −0.506330 −0.253165 0.967423i \(-0.581472\pi\)
−0.253165 + 0.967423i \(0.581472\pi\)
\(912\) 15.9940 27.7025i 0.529616 0.917321i
\(913\) −28.3025 + 7.58363i −0.936675 + 0.250981i
\(914\) 0.281678 + 0.487880i 0.00931706 + 0.0161376i
\(915\) 0 0
\(916\) 6.58985 24.5937i 0.217735 0.812597i
\(917\) −4.25860 + 2.45870i −0.140631 + 0.0811935i
\(918\) 0.611947 0.0201973
\(919\) 15.6355 9.02717i 0.515768 0.297779i −0.219433 0.975628i \(-0.570421\pi\)
0.735202 + 0.677848i \(0.237087\pi\)
\(920\) 0 0
\(921\) 11.5593 + 43.1400i 0.380893 + 1.42151i
\(922\) 0.479048 + 0.479048i 0.0157766 + 0.0157766i
\(923\) −6.87543 57.1059i −0.226307 1.87966i
\(924\) 39.5760i 1.30195i
\(925\) 0 0
\(926\) −2.15457 + 3.73182i −0.0708035 + 0.122635i
\(927\) −3.56293 + 13.2970i −0.117022 + 0.436732i
\(928\) 5.09690i 0.167314i
\(929\) 40.3925 + 10.8231i 1.32524 + 0.355096i 0.850937 0.525268i \(-0.176035\pi\)
0.474299 + 0.880364i \(0.342702\pi\)
\(930\) 0 0
\(931\) 0.277192 0.277192i 0.00908461 0.00908461i
\(932\) 9.26069 + 2.48139i 0.303344 + 0.0812808i
\(933\) 11.8281 + 44.1430i 0.387234 + 1.44518i
\(934\) −0.0597469 + 0.0160091i −0.00195498 + 0.000523835i
\(935\) 0 0
\(936\) −3.69765 + 4.70990i −0.120862 + 0.153948i
\(937\) 10.8603 10.8603i 0.354791 0.354791i −0.507098 0.861889i \(-0.669282\pi\)
0.861889 + 0.507098i \(0.169282\pi\)
\(938\) 2.23722 + 1.29166i 0.0730477 + 0.0421741i
\(939\) 24.3985 + 14.0865i 0.796215 + 0.459695i
\(940\) 0 0
\(941\) 33.9949 + 33.9949i 1.10820 + 1.10820i 0.993387 + 0.114815i \(0.0366274\pi\)
0.114815 + 0.993387i \(0.463373\pi\)
\(942\) −2.61033 4.52122i −0.0850490 0.147309i
\(943\) −28.5099 49.3806i −0.928411 1.60805i
\(944\) −35.6491 35.6491i −1.16028 1.16028i
\(945\) 0 0
\(946\) −0.973134 0.561839i −0.0316393 0.0182670i
\(947\) 40.6489 + 23.4687i 1.32091 + 0.762629i 0.983874 0.178862i \(-0.0572416\pi\)
0.337038 + 0.941491i \(0.390575\pi\)
\(948\) 20.8814 20.8814i 0.678197 0.678197i
\(949\) −23.2790 + 9.34169i −0.755668 + 0.303244i
\(950\) 0 0
\(951\) −19.5605 + 5.24121i −0.634291 + 0.169958i
\(952\) −1.85348 6.91729i −0.0600717 0.224191i
\(953\) 3.06703 + 0.821808i 0.0993508 + 0.0266210i 0.308152 0.951337i \(-0.400289\pi\)
−0.208801 + 0.977958i \(0.566956\pi\)
\(954\) 2.34979 2.34979i 0.0760771 0.0760771i
\(955\) 0 0
\(956\) 4.08094 + 1.09349i 0.131987 + 0.0353658i
\(957\) 26.2589i 0.848829i
\(958\) 0.562905 2.10079i 0.0181866 0.0678735i
\(959\) 1.09221 1.89177i 0.0352694 0.0610883i
\(960\) 0 0
\(961\) 57.0256i 1.83953i
\(962\) 0.605888 0.771753i 0.0195346 0.0248823i
\(963\) −2.37775 2.37775i −0.0766219 0.0766219i
\(964\) 8.98111 + 33.5179i 0.289262 + 1.07954i
\(965\) 0 0
\(966\) −4.46095 + 2.57553i −0.143529 + 0.0828664i
\(967\) 18.3290 0.589421 0.294711 0.955587i \(-0.404777\pi\)
0.294711 + 0.955587i \(0.404777\pi\)
\(968\) −0.815733 + 0.470964i −0.0262187 + 0.0151374i
\(969\) −11.6839 + 43.6047i −0.375339 + 1.40079i
\(970\) 0 0
\(971\) 11.2202 + 19.4339i 0.360073 + 0.623664i 0.987972 0.154630i \(-0.0494185\pi\)
−0.627900 + 0.778294i \(0.716085\pi\)
\(972\) −42.8829 + 11.4904i −1.37547 + 0.368556i
\(973\) −18.5835 + 32.1875i −0.595758 + 1.03188i
\(974\) −0.892786 −0.0286067
\(975\) 0 0
\(976\) −21.8247 −0.698590
\(977\) 21.2868 36.8699i 0.681026 1.17957i −0.293642 0.955915i \(-0.594867\pi\)
0.974668 0.223656i \(-0.0717993\pi\)
\(978\) 1.20172 0.321999i 0.0384267 0.0102964i
\(979\) 19.2900 + 33.4112i 0.616510 + 1.06783i
\(980\) 0 0
\(981\) −11.9089 + 44.4445i −0.380221 + 1.41900i
\(982\) 1.29972 0.750396i 0.0414758 0.0239461i
\(983\) 2.26298 0.0721778 0.0360889 0.999349i \(-0.488510\pi\)
0.0360889 + 0.999349i \(0.488510\pi\)
\(984\) −9.82961 + 5.67513i −0.313357 + 0.180917i
\(985\) 0 0
\(986\) 0.612515 + 2.28594i 0.0195065 + 0.0727991i
\(987\) −10.5842 10.5842i −0.336898 0.336898i
\(988\) −13.9407 18.5908i −0.443514 0.591452i
\(989\) 18.7981i 0.597743i
\(990\) 0 0
\(991\) 2.17856 3.77337i 0.0692042 0.119865i −0.829347 0.558734i \(-0.811287\pi\)
0.898551 + 0.438869i \(0.144621\pi\)
\(992\) −3.58366 + 13.3744i −0.113781 + 0.424637i
\(993\) 33.3841i 1.05941i
\(994\) −5.02203 1.34565i −0.159289 0.0426814i
\(995\) 0 0
\(996\) −34.3637 + 34.3637i −1.08886 + 1.08886i
\(997\) −10.8817 2.91575i −0.344627 0.0923426i 0.0823538 0.996603i \(-0.473756\pi\)
−0.426981 + 0.904261i \(0.640423\pi\)
\(998\) −1.20284 4.48905i −0.0380751 0.142098i
\(999\) −1.88913 + 0.506192i −0.0597695 + 0.0160152i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.2.s.c.293.5 yes 40
5.2 odd 4 325.2.x.c.7.5 yes 40
5.3 odd 4 325.2.x.c.7.6 yes 40
5.4 even 2 inner 325.2.s.c.293.6 yes 40
13.2 odd 12 325.2.x.c.93.5 yes 40
65.2 even 12 inner 325.2.s.c.132.5 40
65.28 even 12 inner 325.2.s.c.132.6 yes 40
65.54 odd 12 325.2.x.c.93.6 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
325.2.s.c.132.5 40 65.2 even 12 inner
325.2.s.c.132.6 yes 40 65.28 even 12 inner
325.2.s.c.293.5 yes 40 1.1 even 1 trivial
325.2.s.c.293.6 yes 40 5.4 even 2 inner
325.2.x.c.7.5 yes 40 5.2 odd 4
325.2.x.c.7.6 yes 40 5.3 odd 4
325.2.x.c.93.5 yes 40 13.2 odd 12
325.2.x.c.93.6 yes 40 65.54 odd 12