Properties

Label 325.2.x.c.318.4
Level $325$
Weight $2$
Character 325.318
Analytic conductor $2.595$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [325,2,Mod(7,325)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(325, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([3, 11])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("325.7"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 325.x (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.59513806569\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(10\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 318.4
Character \(\chi\) \(=\) 325.318
Dual form 325.2.x.c.232.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.791616 - 0.457039i) q^{2} +(0.325736 - 0.0872808i) q^{3} +(-0.582230 - 1.00845i) q^{4} +(-0.297749 - 0.0797815i) q^{6} +(2.08500 + 3.61133i) q^{7} +2.89257i q^{8} +(-2.49959 + 1.44314i) q^{9} +(5.01101 - 1.34269i) q^{11} +(-0.277672 - 0.277672i) q^{12} +(2.17194 + 2.87797i) q^{13} -3.81171i q^{14} +(0.157557 - 0.272897i) q^{16} +(0.780215 - 2.91180i) q^{17} +2.63829 q^{18} +(1.43417 - 5.35240i) q^{19} +(0.994360 + 0.994360i) q^{21} +(-4.58045 - 1.22733i) q^{22} +(-0.442222 - 1.65039i) q^{23} +(0.252465 + 0.942213i) q^{24} +(-0.403995 - 3.27090i) q^{26} +(-1.40362 + 1.40362i) q^{27} +(2.42790 - 4.20525i) q^{28} +(7.08218 + 4.08890i) q^{29} +(-2.64703 + 2.64703i) q^{31} +(4.76062 - 2.74855i) q^{32} +(1.51507 - 0.874729i) q^{33} +(-1.94844 + 1.94844i) q^{34} +(2.91067 + 1.68048i) q^{36} +(-3.88050 + 6.72122i) q^{37} +(-3.58157 + 3.58157i) q^{38} +(0.958670 + 0.747890i) q^{39} +(-0.228680 - 0.853445i) q^{41} +(-0.332689 - 1.24161i) q^{42} +(0.839677 + 0.224991i) q^{43} +(-4.27160 - 4.27160i) q^{44} +(-0.404226 + 1.50859i) q^{46} +1.44206 q^{47} +(0.0275034 - 0.102644i) q^{48} +(-5.19446 + 8.99707i) q^{49} -1.01658i q^{51} +(1.63772 - 3.86593i) q^{52} +(0.405781 + 0.405781i) q^{53} +(1.75263 - 0.469616i) q^{54} +(-10.4460 + 6.03100i) q^{56} -1.86865i q^{57} +(-3.73758 - 6.47367i) q^{58} +(9.44885 + 2.53181i) q^{59} +(-2.28425 - 3.95643i) q^{61} +(3.30523 - 0.885633i) q^{62} +(-10.4233 - 6.01789i) q^{63} -5.65500 q^{64} -1.59914 q^{66} +(-6.15361 - 3.55279i) q^{67} +(-3.39068 + 0.908530i) q^{68} +(-0.288095 - 0.498996i) q^{69} +(-2.65984 - 0.712701i) q^{71} +(-4.17437 - 7.23023i) q^{72} -6.02847i q^{73} +(6.14372 - 3.54708i) q^{74} +(-6.23266 + 1.67004i) q^{76} +(15.2969 + 15.2969i) q^{77} +(-0.417083 - 1.03019i) q^{78} +12.5840i q^{79} +(3.99472 - 6.91905i) q^{81} +(-0.209031 + 0.780116i) q^{82} -8.44351 q^{83} +(0.423818 - 1.58171i) q^{84} +(-0.561871 - 0.561871i) q^{86} +(2.66380 + 0.713764i) q^{87} +(3.88383 + 14.4947i) q^{88} +(-3.79160 - 14.1504i) q^{89} +(-5.86479 + 13.8441i) q^{91} +(-1.40687 + 1.40687i) q^{92} +(-0.631199 + 1.09327i) q^{93} +(-1.14156 - 0.659078i) q^{94} +(1.31081 - 1.31081i) q^{96} +(0.670125 - 0.386897i) q^{97} +(8.22403 - 4.74815i) q^{98} +(-10.5878 + 10.5878i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 24 q^{4} - 12 q^{6} - 24 q^{9} + 8 q^{11} - 32 q^{16} + 24 q^{19} + 32 q^{21} - 56 q^{24} + 76 q^{26} + 36 q^{29} + 8 q^{31} - 44 q^{34} - 60 q^{36} - 44 q^{39} - 52 q^{41} + 80 q^{44} - 60 q^{46}+ \cdots - 208 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/325\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{5}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.791616 0.457039i −0.559757 0.323176i 0.193291 0.981141i \(-0.438084\pi\)
−0.753048 + 0.657966i \(0.771417\pi\)
\(3\) 0.325736 0.0872808i 0.188064 0.0503916i −0.163558 0.986534i \(-0.552297\pi\)
0.351622 + 0.936142i \(0.385630\pi\)
\(4\) −0.582230 1.00845i −0.291115 0.504226i
\(5\) 0 0
\(6\) −0.297749 0.0797815i −0.121555 0.0325707i
\(7\) 2.08500 + 3.61133i 0.788056 + 1.36495i 0.927156 + 0.374675i \(0.122246\pi\)
−0.139100 + 0.990278i \(0.544421\pi\)
\(8\) 2.89257i 1.02268i
\(9\) −2.49959 + 1.44314i −0.833197 + 0.481046i
\(10\) 0 0
\(11\) 5.01101 1.34269i 1.51088 0.404838i 0.594149 0.804355i \(-0.297489\pi\)
0.916726 + 0.399517i \(0.130822\pi\)
\(12\) −0.277672 0.277672i −0.0801569 0.0801569i
\(13\) 2.17194 + 2.87797i 0.602387 + 0.798204i
\(14\) 3.81171i 1.01872i
\(15\) 0 0
\(16\) 0.157557 0.272897i 0.0393892 0.0682241i
\(17\) 0.780215 2.91180i 0.189230 0.706216i −0.804455 0.594013i \(-0.797543\pi\)
0.993685 0.112203i \(-0.0357907\pi\)
\(18\) 2.63829 0.621850
\(19\) 1.43417 5.35240i 0.329022 1.22793i −0.581185 0.813771i \(-0.697411\pi\)
0.910207 0.414154i \(-0.135922\pi\)
\(20\) 0 0
\(21\) 0.994360 + 0.994360i 0.216987 + 0.216987i
\(22\) −4.58045 1.22733i −0.976556 0.261667i
\(23\) −0.442222 1.65039i −0.0922096 0.344131i 0.904372 0.426745i \(-0.140340\pi\)
−0.996582 + 0.0826140i \(0.973673\pi\)
\(24\) 0.252465 + 0.942213i 0.0515343 + 0.192329i
\(25\) 0 0
\(26\) −0.403995 3.27090i −0.0792299 0.641477i
\(27\) −1.40362 + 1.40362i −0.270126 + 0.270126i
\(28\) 2.42790 4.20525i 0.458830 0.794717i
\(29\) 7.08218 + 4.08890i 1.31513 + 0.759289i 0.982940 0.183924i \(-0.0588800\pi\)
0.332187 + 0.943213i \(0.392213\pi\)
\(30\) 0 0
\(31\) −2.64703 + 2.64703i −0.475421 + 0.475421i −0.903664 0.428243i \(-0.859133\pi\)
0.428243 + 0.903664i \(0.359133\pi\)
\(32\) 4.76062 2.74855i 0.841567 0.485879i
\(33\) 1.51507 0.874729i 0.263741 0.152271i
\(34\) −1.94844 + 1.94844i −0.334155 + 0.334155i
\(35\) 0 0
\(36\) 2.91067 + 1.68048i 0.485112 + 0.280080i
\(37\) −3.88050 + 6.72122i −0.637950 + 1.10496i 0.347932 + 0.937520i \(0.386884\pi\)
−0.985882 + 0.167442i \(0.946449\pi\)
\(38\) −3.58157 + 3.58157i −0.581008 + 0.581008i
\(39\) 0.958670 + 0.747890i 0.153510 + 0.119758i
\(40\) 0 0
\(41\) −0.228680 0.853445i −0.0357138 0.133286i 0.945767 0.324845i \(-0.105312\pi\)
−0.981481 + 0.191559i \(0.938646\pi\)
\(42\) −0.332689 1.24161i −0.0513350 0.191585i
\(43\) 0.839677 + 0.224991i 0.128049 + 0.0343108i 0.322275 0.946646i \(-0.395553\pi\)
−0.194225 + 0.980957i \(0.562219\pi\)
\(44\) −4.27160 4.27160i −0.643968 0.643968i
\(45\) 0 0
\(46\) −0.404226 + 1.50859i −0.0595998 + 0.222430i
\(47\) 1.44206 0.210346 0.105173 0.994454i \(-0.466460\pi\)
0.105173 + 0.994454i \(0.466460\pi\)
\(48\) 0.0275034 0.102644i 0.00396977 0.0148154i
\(49\) −5.19446 + 8.99707i −0.742066 + 1.28530i
\(50\) 0 0
\(51\) 1.01658i 0.142349i
\(52\) 1.63772 3.86593i 0.227111 0.536108i
\(53\) 0.405781 + 0.405781i 0.0557384 + 0.0557384i 0.734427 0.678688i \(-0.237451\pi\)
−0.678688 + 0.734427i \(0.737451\pi\)
\(54\) 1.75263 0.469616i 0.238503 0.0639066i
\(55\) 0 0
\(56\) −10.4460 + 6.03100i −1.39591 + 0.805927i
\(57\) 1.86865i 0.247508i
\(58\) −3.73758 6.47367i −0.490768 0.850035i
\(59\) 9.44885 + 2.53181i 1.23014 + 0.329614i 0.814632 0.579978i \(-0.196939\pi\)
0.415504 + 0.909592i \(0.363605\pi\)
\(60\) 0 0
\(61\) −2.28425 3.95643i −0.292468 0.506569i 0.681925 0.731422i \(-0.261143\pi\)
−0.974393 + 0.224853i \(0.927810\pi\)
\(62\) 3.30523 0.885633i 0.419764 0.112476i
\(63\) −10.4233 6.01789i −1.31321 0.758183i
\(64\) −5.65500 −0.706875
\(65\) 0 0
\(66\) −1.59914 −0.196841
\(67\) −6.15361 3.55279i −0.751783 0.434042i 0.0745551 0.997217i \(-0.476246\pi\)
−0.826338 + 0.563175i \(0.809580\pi\)
\(68\) −3.39068 + 0.908530i −0.411180 + 0.110175i
\(69\) −0.288095 0.498996i −0.0346826 0.0600720i
\(70\) 0 0
\(71\) −2.65984 0.712701i −0.315664 0.0845820i 0.0975083 0.995235i \(-0.468913\pi\)
−0.413173 + 0.910653i \(0.635579\pi\)
\(72\) −4.17437 7.23023i −0.491955 0.852091i
\(73\) 6.02847i 0.705579i −0.935703 0.352789i \(-0.885233\pi\)
0.935703 0.352789i \(-0.114767\pi\)
\(74\) 6.14372 3.54708i 0.714193 0.412340i
\(75\) 0 0
\(76\) −6.23266 + 1.67004i −0.714935 + 0.191566i
\(77\) 15.2969 + 15.2969i 1.74324 + 1.74324i
\(78\) −0.417083 1.03019i −0.0472253 0.116646i
\(79\) 12.5840i 1.41582i 0.706305 + 0.707908i \(0.250361\pi\)
−0.706305 + 0.707908i \(0.749639\pi\)
\(80\) 0 0
\(81\) 3.99472 6.91905i 0.443857 0.768784i
\(82\) −0.209031 + 0.780116i −0.0230837 + 0.0861494i
\(83\) −8.44351 −0.926796 −0.463398 0.886150i \(-0.653370\pi\)
−0.463398 + 0.886150i \(0.653370\pi\)
\(84\) 0.423818 1.58171i 0.0462423 0.172579i
\(85\) 0 0
\(86\) −0.561871 0.561871i −0.0605882 0.0605882i
\(87\) 2.66380 + 0.713764i 0.285590 + 0.0765236i
\(88\) 3.88383 + 14.4947i 0.414018 + 1.54514i
\(89\) −3.79160 14.1504i −0.401908 1.49994i −0.809687 0.586862i \(-0.800363\pi\)
0.407779 0.913081i \(-0.366304\pi\)
\(90\) 0 0
\(91\) −5.86479 + 13.8441i −0.614797 + 1.45126i
\(92\) −1.40687 + 1.40687i −0.146676 + 0.146676i
\(93\) −0.631199 + 1.09327i −0.0654523 + 0.113367i
\(94\) −1.14156 0.659078i −0.117743 0.0679788i
\(95\) 0 0
\(96\) 1.31081 1.31081i 0.133784 0.133784i
\(97\) 0.670125 0.386897i 0.0680408 0.0392834i −0.465594 0.884999i \(-0.654159\pi\)
0.533634 + 0.845715i \(0.320826\pi\)
\(98\) 8.22403 4.74815i 0.830752 0.479635i
\(99\) −10.5878 + 10.5878i −1.06411 + 1.06411i
\(100\) 0 0
\(101\) −7.74418 4.47110i −0.770575 0.444892i 0.0625048 0.998045i \(-0.480091\pi\)
−0.833080 + 0.553153i \(0.813424\pi\)
\(102\) −0.464616 + 0.804739i −0.0460038 + 0.0796810i
\(103\) −13.3476 + 13.3476i −1.31518 + 1.31518i −0.397641 + 0.917541i \(0.630171\pi\)
−0.917541 + 0.397641i \(0.869829\pi\)
\(104\) −8.32471 + 6.28247i −0.816305 + 0.616047i
\(105\) 0 0
\(106\) −0.135765 0.506681i −0.0131866 0.0492132i
\(107\) −1.27306 4.75112i −0.123071 0.459308i 0.876692 0.481051i \(-0.159745\pi\)
−0.999764 + 0.0217436i \(0.993078\pi\)
\(108\) 2.23270 + 0.598251i 0.214842 + 0.0575668i
\(109\) −1.95993 1.95993i −0.187727 0.187727i 0.606986 0.794713i \(-0.292379\pi\)
−0.794713 + 0.606986i \(0.792379\pi\)
\(110\) 0 0
\(111\) −0.677385 + 2.52804i −0.0642946 + 0.239951i
\(112\) 1.31402 0.124164
\(113\) 2.09813 7.83033i 0.197376 0.736616i −0.794264 0.607573i \(-0.792143\pi\)
0.991639 0.129042i \(-0.0411903\pi\)
\(114\) −0.854045 + 1.47925i −0.0799887 + 0.138544i
\(115\) 0 0
\(116\) 9.52272i 0.884162i
\(117\) −9.58226 4.05933i −0.885880 0.375285i
\(118\) −6.32272 6.32272i −0.582054 0.582054i
\(119\) 12.1422 3.25350i 1.11308 0.298248i
\(120\) 0 0
\(121\) 13.7811 7.95650i 1.25282 0.723319i
\(122\) 4.17596i 0.378074i
\(123\) −0.148979 0.258039i −0.0134330 0.0232666i
\(124\) 4.21058 + 1.12822i 0.378122 + 0.101317i
\(125\) 0 0
\(126\) 5.50083 + 9.52771i 0.490053 + 0.848796i
\(127\) −3.04192 + 0.815081i −0.269927 + 0.0723268i −0.391244 0.920287i \(-0.627955\pi\)
0.121317 + 0.992614i \(0.461288\pi\)
\(128\) −5.04466 2.91253i −0.445889 0.257434i
\(129\) 0.293150 0.0258105
\(130\) 0 0
\(131\) 8.63029 0.754032 0.377016 0.926207i \(-0.376950\pi\)
0.377016 + 0.926207i \(0.376950\pi\)
\(132\) −1.76424 1.01859i −0.153558 0.0886566i
\(133\) 22.3195 5.98050i 1.93535 0.518575i
\(134\) 3.24753 + 5.62488i 0.280544 + 0.485916i
\(135\) 0 0
\(136\) 8.42258 + 2.25682i 0.722231 + 0.193521i
\(137\) −5.56872 9.64530i −0.475768 0.824054i 0.523847 0.851812i \(-0.324496\pi\)
−0.999615 + 0.0277585i \(0.991163\pi\)
\(138\) 0.526684i 0.0448343i
\(139\) 12.0068 6.93216i 1.01841 0.587978i 0.104765 0.994497i \(-0.466591\pi\)
0.913642 + 0.406519i \(0.133258\pi\)
\(140\) 0 0
\(141\) 0.469731 0.125864i 0.0395585 0.0105997i
\(142\) 1.77983 + 1.77983i 0.149360 + 0.149360i
\(143\) 14.7478 + 11.5053i 1.23327 + 0.962118i
\(144\) 0.909506i 0.0757922i
\(145\) 0 0
\(146\) −2.75525 + 4.77223i −0.228026 + 0.394952i
\(147\) −0.906753 + 3.38405i −0.0747877 + 0.279111i
\(148\) 9.03737 0.742867
\(149\) 4.63818 17.3099i 0.379974 1.41808i −0.465965 0.884803i \(-0.654293\pi\)
0.845939 0.533280i \(-0.179041\pi\)
\(150\) 0 0
\(151\) −1.97852 1.97852i −0.161010 0.161010i 0.622004 0.783014i \(-0.286319\pi\)
−0.783014 + 0.622004i \(0.786319\pi\)
\(152\) 15.4822 + 4.14844i 1.25577 + 0.336483i
\(153\) 2.25192 + 8.40427i 0.182057 + 0.679445i
\(154\) −5.11797 19.1005i −0.412417 1.53916i
\(155\) 0 0
\(156\) 0.196045 1.40222i 0.0156961 0.112267i
\(157\) −10.4990 + 10.4990i −0.837914 + 0.837914i −0.988584 0.150670i \(-0.951857\pi\)
0.150670 + 0.988584i \(0.451857\pi\)
\(158\) 5.75140 9.96172i 0.457557 0.792512i
\(159\) 0.167595 + 0.0967608i 0.0132911 + 0.00767363i
\(160\) 0 0
\(161\) 5.03808 5.03808i 0.397057 0.397057i
\(162\) −6.32456 + 3.65149i −0.496904 + 0.286888i
\(163\) 2.48103 1.43243i 0.194330 0.112196i −0.399678 0.916655i \(-0.630878\pi\)
0.594008 + 0.804459i \(0.297545\pi\)
\(164\) −0.727514 + 0.727514i −0.0568093 + 0.0568093i
\(165\) 0 0
\(166\) 6.68401 + 3.85902i 0.518780 + 0.299518i
\(167\) 1.82320 3.15787i 0.141083 0.244363i −0.786822 0.617180i \(-0.788275\pi\)
0.927905 + 0.372817i \(0.121608\pi\)
\(168\) −2.87625 + 2.87625i −0.221908 + 0.221908i
\(169\) −3.56538 + 12.5015i −0.274260 + 0.961656i
\(170\) 0 0
\(171\) 4.13942 + 15.4485i 0.316549 + 1.18138i
\(172\) −0.261993 0.977770i −0.0199767 0.0745542i
\(173\) 7.11663 + 1.90689i 0.541067 + 0.144978i 0.518994 0.854778i \(-0.326307\pi\)
0.0220730 + 0.999756i \(0.492973\pi\)
\(174\) −1.78249 1.78249i −0.135130 0.135130i
\(175\) 0 0
\(176\) 0.423102 1.57904i 0.0318925 0.119024i
\(177\) 3.29881 0.247954
\(178\) −3.46582 + 12.9346i −0.259774 + 0.969490i
\(179\) −5.02174 + 8.69791i −0.375343 + 0.650113i −0.990378 0.138387i \(-0.955808\pi\)
0.615036 + 0.788499i \(0.289142\pi\)
\(180\) 0 0
\(181\) 10.0395i 0.746233i −0.927785 0.373116i \(-0.878289\pi\)
0.927785 0.373116i \(-0.121711\pi\)
\(182\) 10.9700 8.27880i 0.813149 0.613665i
\(183\) −1.08938 1.08938i −0.0805295 0.0805295i
\(184\) 4.77387 1.27916i 0.351935 0.0943006i
\(185\) 0 0
\(186\) 0.999334 0.576966i 0.0732747 0.0423052i
\(187\) 15.6387i 1.14361i
\(188\) −0.839611 1.45425i −0.0612349 0.106062i
\(189\) −7.99545 2.14238i −0.581584 0.155835i
\(190\) 0 0
\(191\) −8.40440 14.5568i −0.608121 1.05330i −0.991550 0.129726i \(-0.958590\pi\)
0.383429 0.923570i \(-0.374743\pi\)
\(192\) −1.84204 + 0.493573i −0.132938 + 0.0356206i
\(193\) −14.7083 8.49185i −1.05873 0.611257i −0.133648 0.991029i \(-0.542669\pi\)
−0.925080 + 0.379772i \(0.876002\pi\)
\(194\) −0.707308 −0.0507818
\(195\) 0 0
\(196\) 12.0975 0.864106
\(197\) 3.91848 + 2.26234i 0.279180 + 0.161185i 0.633052 0.774109i \(-0.281802\pi\)
−0.353872 + 0.935294i \(0.615135\pi\)
\(198\) 13.2205 3.54241i 0.939538 0.251748i
\(199\) −4.08425 7.07413i −0.289525 0.501472i 0.684171 0.729321i \(-0.260164\pi\)
−0.973696 + 0.227849i \(0.926831\pi\)
\(200\) 0 0
\(201\) −2.31454 0.620180i −0.163255 0.0437441i
\(202\) 4.08694 + 7.07879i 0.287556 + 0.498062i
\(203\) 34.1014i 2.39345i
\(204\) −1.02517 + 0.591882i −0.0717762 + 0.0414400i
\(205\) 0 0
\(206\) 16.6666 4.46580i 1.16122 0.311147i
\(207\) 3.48712 + 3.48712i 0.242372 + 0.242372i
\(208\) 1.12759 0.139271i 0.0781843 0.00965668i
\(209\) 28.7466i 1.98844i
\(210\) 0 0
\(211\) −7.05655 + 12.2223i −0.485793 + 0.841418i −0.999867 0.0163277i \(-0.994802\pi\)
0.514074 + 0.857746i \(0.328136\pi\)
\(212\) 0.172953 0.645469i 0.0118785 0.0443310i
\(213\) −0.928610 −0.0636273
\(214\) −1.16368 + 4.34289i −0.0795472 + 0.296874i
\(215\) 0 0
\(216\) −4.06005 4.06005i −0.276251 0.276251i
\(217\) −15.0784 4.04023i −1.02359 0.274269i
\(218\) 0.655745 + 2.44727i 0.0444127 + 0.165750i
\(219\) −0.526169 1.96369i −0.0355552 0.132694i
\(220\) 0 0
\(221\) 10.0747 4.07882i 0.677694 0.274371i
\(222\) 1.69164 1.69164i 0.113536 0.113536i
\(223\) 10.6155 18.3866i 0.710865 1.23125i −0.253667 0.967291i \(-0.581637\pi\)
0.964533 0.263963i \(-0.0850298\pi\)
\(224\) 19.8518 + 11.4614i 1.32640 + 0.765800i
\(225\) 0 0
\(226\) −5.23968 + 5.23968i −0.348539 + 0.348539i
\(227\) −13.3865 + 7.72867i −0.888490 + 0.512970i −0.873448 0.486917i \(-0.838121\pi\)
−0.0150418 + 0.999887i \(0.504788\pi\)
\(228\) −1.88444 + 1.08798i −0.124800 + 0.0720534i
\(229\) −4.47959 + 4.47959i −0.296020 + 0.296020i −0.839453 0.543433i \(-0.817124\pi\)
0.543433 + 0.839453i \(0.317124\pi\)
\(230\) 0 0
\(231\) 6.31786 + 3.64762i 0.415685 + 0.239996i
\(232\) −11.8274 + 20.4857i −0.776507 + 1.34495i
\(233\) −3.54772 + 3.54772i −0.232419 + 0.232419i −0.813702 0.581283i \(-0.802551\pi\)
0.581283 + 0.813702i \(0.302551\pi\)
\(234\) 5.73019 + 7.59290i 0.374594 + 0.496363i
\(235\) 0 0
\(236\) −2.94819 11.0028i −0.191911 0.716222i
\(237\) 1.09834 + 4.09908i 0.0713452 + 0.266264i
\(238\) −11.0990 2.97396i −0.719438 0.192773i
\(239\) 3.55914 + 3.55914i 0.230222 + 0.230222i 0.812785 0.582563i \(-0.197950\pi\)
−0.582563 + 0.812785i \(0.697950\pi\)
\(240\) 0 0
\(241\) −0.187912 + 0.701296i −0.0121044 + 0.0451744i −0.971714 0.236161i \(-0.924111\pi\)
0.959609 + 0.281335i \(0.0907774\pi\)
\(242\) −14.5457 −0.935036
\(243\) 2.23860 8.35457i 0.143606 0.535946i
\(244\) −2.65991 + 4.60711i −0.170284 + 0.294940i
\(245\) 0 0
\(246\) 0.272356i 0.0173648i
\(247\) 18.5190 7.49758i 1.17833 0.477060i
\(248\) −7.65671 7.65671i −0.486202 0.486202i
\(249\) −2.75036 + 0.736956i −0.174297 + 0.0467027i
\(250\) 0 0
\(251\) −12.5444 + 7.24253i −0.791797 + 0.457144i −0.840595 0.541664i \(-0.817794\pi\)
0.0487976 + 0.998809i \(0.484461\pi\)
\(252\) 14.0152i 0.882874i
\(253\) −4.43195 7.67637i −0.278634 0.482609i
\(254\) 2.78056 + 0.745049i 0.174468 + 0.0467485i
\(255\) 0 0
\(256\) 8.31729 + 14.4060i 0.519831 + 0.900373i
\(257\) 30.2770 8.11269i 1.88862 0.506056i 0.889868 0.456219i \(-0.150797\pi\)
0.998757 0.0498367i \(-0.0158701\pi\)
\(258\) −0.232062 0.133981i −0.0144476 0.00834131i
\(259\) −32.3634 −2.01096
\(260\) 0 0
\(261\) −23.6034 −1.46101
\(262\) −6.83187 3.94438i −0.422074 0.243685i
\(263\) −19.6281 + 5.25932i −1.21032 + 0.324304i −0.806887 0.590706i \(-0.798849\pi\)
−0.403431 + 0.915010i \(0.632183\pi\)
\(264\) 2.53021 + 4.38245i 0.155724 + 0.269721i
\(265\) 0 0
\(266\) −20.4018 5.46665i −1.25092 0.335182i
\(267\) −2.47012 4.27837i −0.151169 0.261832i
\(268\) 8.27415i 0.505424i
\(269\) −20.6369 + 11.9147i −1.25825 + 0.726453i −0.972735 0.231919i \(-0.925499\pi\)
−0.285519 + 0.958373i \(0.592166\pi\)
\(270\) 0 0
\(271\) −6.39629 + 1.71388i −0.388547 + 0.104111i −0.447804 0.894132i \(-0.647794\pi\)
0.0592568 + 0.998243i \(0.481127\pi\)
\(272\) −0.671693 0.671693i −0.0407274 0.0407274i
\(273\) −0.702047 + 5.02142i −0.0424898 + 0.303910i
\(274\) 10.1805i 0.615026i
\(275\) 0 0
\(276\) −0.335475 + 0.581061i −0.0201932 + 0.0349757i
\(277\) 6.59777 24.6232i 0.396422 1.47947i −0.422923 0.906165i \(-0.638996\pi\)
0.819345 0.573301i \(-0.194337\pi\)
\(278\) −12.6731 −0.760081
\(279\) 2.79646 10.4365i 0.167420 0.624818i
\(280\) 0 0
\(281\) 9.24115 + 9.24115i 0.551281 + 0.551281i 0.926810 0.375530i \(-0.122539\pi\)
−0.375530 + 0.926810i \(0.622539\pi\)
\(282\) −0.429371 0.115050i −0.0255687 0.00685111i
\(283\) −2.62440 9.79438i −0.156004 0.582216i −0.999017 0.0443225i \(-0.985887\pi\)
0.843013 0.537893i \(-0.180780\pi\)
\(284\) 0.829911 + 3.09727i 0.0492462 + 0.183789i
\(285\) 0 0
\(286\) −6.41625 15.8481i −0.379401 0.937116i
\(287\) 2.60527 2.60527i 0.153784 0.153784i
\(288\) −7.93307 + 13.7405i −0.467461 + 0.809665i
\(289\) 6.85257 + 3.95633i 0.403092 + 0.232725i
\(290\) 0 0
\(291\) 0.184515 0.184515i 0.0108165 0.0108165i
\(292\) −6.07942 + 3.50995i −0.355771 + 0.205405i
\(293\) 10.2409 5.91259i 0.598280 0.345417i −0.170085 0.985429i \(-0.554404\pi\)
0.768365 + 0.640012i \(0.221071\pi\)
\(294\) 2.26444 2.26444i 0.132065 0.132065i
\(295\) 0 0
\(296\) −19.4416 11.2246i −1.13002 0.652416i
\(297\) −5.14890 + 8.91815i −0.298769 + 0.517484i
\(298\) −11.5830 + 11.5830i −0.670983 + 0.670983i
\(299\) 3.78930 4.85725i 0.219141 0.280902i
\(300\) 0 0
\(301\) 0.938212 + 3.50145i 0.0540776 + 0.201820i
\(302\) 0.661966 + 2.47049i 0.0380918 + 0.142161i
\(303\) −2.91280 0.780483i −0.167336 0.0448376i
\(304\) −1.23469 1.23469i −0.0708142 0.0708142i
\(305\) 0 0
\(306\) 2.05843 7.68217i 0.117673 0.439160i
\(307\) 24.7916 1.41493 0.707467 0.706747i \(-0.249838\pi\)
0.707467 + 0.706747i \(0.249838\pi\)
\(308\) 6.51986 24.3324i 0.371503 1.38647i
\(309\) −3.18282 + 5.51280i −0.181064 + 0.313612i
\(310\) 0 0
\(311\) 24.3734i 1.38209i 0.722812 + 0.691045i \(0.242849\pi\)
−0.722812 + 0.691045i \(0.757151\pi\)
\(312\) −2.16332 + 2.77301i −0.122474 + 0.156991i
\(313\) 8.82280 + 8.82280i 0.498694 + 0.498694i 0.911031 0.412337i \(-0.135287\pi\)
−0.412337 + 0.911031i \(0.635287\pi\)
\(314\) 13.1097 3.51273i 0.739822 0.198235i
\(315\) 0 0
\(316\) 12.6904 7.32681i 0.713891 0.412165i
\(317\) 3.43365i 0.192853i −0.995340 0.0964266i \(-0.969259\pi\)
0.995340 0.0964266i \(-0.0307413\pi\)
\(318\) −0.0884470 0.153195i −0.00495986 0.00859073i
\(319\) 40.9790 + 10.9803i 2.29438 + 0.614778i
\(320\) 0 0
\(321\) −0.829362 1.43650i −0.0462905 0.0801774i
\(322\) −6.29083 + 1.68562i −0.350574 + 0.0939360i
\(323\) −14.4662 8.35205i −0.804920 0.464721i
\(324\) −9.30338 −0.516854
\(325\) 0 0
\(326\) −2.61870 −0.145036
\(327\) −0.809483 0.467355i −0.0447645 0.0258448i
\(328\) 2.46865 0.661472i 0.136308 0.0365237i
\(329\) 3.00670 + 5.20775i 0.165765 + 0.287113i
\(330\) 0 0
\(331\) −4.89235 1.31090i −0.268908 0.0720536i 0.121845 0.992549i \(-0.461119\pi\)
−0.390753 + 0.920495i \(0.627785\pi\)
\(332\) 4.91606 + 8.51487i 0.269804 + 0.467314i
\(333\) 22.4004i 1.22753i
\(334\) −2.88654 + 1.66654i −0.157944 + 0.0911893i
\(335\) 0 0
\(336\) 0.428026 0.114689i 0.0233507 0.00625680i
\(337\) −6.10952 6.10952i −0.332807 0.332807i 0.520845 0.853651i \(-0.325617\pi\)
−0.853651 + 0.520845i \(0.825617\pi\)
\(338\) 8.53610 8.26688i 0.464303 0.449659i
\(339\) 2.73375i 0.148477i
\(340\) 0 0
\(341\) −9.71013 + 16.8184i −0.525833 + 0.910770i
\(342\) 3.78375 14.1212i 0.204602 0.763585i
\(343\) −14.1318 −0.763045
\(344\) −0.650800 + 2.42882i −0.0350888 + 0.130953i
\(345\) 0 0
\(346\) −4.76211 4.76211i −0.256012 0.256012i
\(347\) −28.0458 7.51485i −1.50558 0.403418i −0.590614 0.806954i \(-0.701114\pi\)
−0.914964 + 0.403536i \(0.867781\pi\)
\(348\) −0.831150 3.10189i −0.0445543 0.166279i
\(349\) 0.992964 + 3.70579i 0.0531522 + 0.198367i 0.987396 0.158268i \(-0.0505909\pi\)
−0.934244 + 0.356634i \(0.883924\pi\)
\(350\) 0 0
\(351\) −7.08812 0.990994i −0.378336 0.0528953i
\(352\) 20.1650 20.1650i 1.07480 1.07480i
\(353\) 12.7844 22.1433i 0.680446 1.17857i −0.294399 0.955683i \(-0.595119\pi\)
0.974845 0.222884i \(-0.0715472\pi\)
\(354\) −2.61139 1.50769i −0.138794 0.0801327i
\(355\) 0 0
\(356\) −12.0624 + 12.0624i −0.639308 + 0.639308i
\(357\) 3.67120 2.11957i 0.194300 0.112179i
\(358\) 7.95058 4.59027i 0.420201 0.242603i
\(359\) 16.4517 16.4517i 0.868286 0.868286i −0.123997 0.992283i \(-0.539571\pi\)
0.992283 + 0.123997i \(0.0395713\pi\)
\(360\) 0 0
\(361\) −10.1369 5.85252i −0.533519 0.308028i
\(362\) −4.58846 + 7.94745i −0.241164 + 0.417709i
\(363\) 3.79454 3.79454i 0.199162 0.199162i
\(364\) 17.3758 2.14611i 0.910740 0.112487i
\(365\) 0 0
\(366\) 0.364481 + 1.36026i 0.0190517 + 0.0711021i
\(367\) −3.07127 11.4621i −0.160319 0.598319i −0.998591 0.0530664i \(-0.983101\pi\)
0.838272 0.545252i \(-0.183566\pi\)
\(368\) −0.520062 0.139350i −0.0271101 0.00726413i
\(369\) 1.80325 + 1.80325i 0.0938732 + 0.0938732i
\(370\) 0 0
\(371\) −0.619355 + 2.31146i −0.0321553 + 0.120005i
\(372\) 1.47001 0.0762166
\(373\) −1.08081 + 4.03365i −0.0559624 + 0.208855i −0.988246 0.152875i \(-0.951147\pi\)
0.932283 + 0.361729i \(0.117814\pi\)
\(374\) −7.14748 + 12.3798i −0.369588 + 0.640144i
\(375\) 0 0
\(376\) 4.17125i 0.215116i
\(377\) 3.61434 + 29.2631i 0.186148 + 1.50713i
\(378\) 5.35018 + 5.35018i 0.275183 + 0.275183i
\(379\) −10.7615 + 2.88353i −0.552781 + 0.148117i −0.524388 0.851480i \(-0.675706\pi\)
−0.0283931 + 0.999597i \(0.509039\pi\)
\(380\) 0 0
\(381\) −0.919724 + 0.531003i −0.0471189 + 0.0272041i
\(382\) 15.3646i 0.786119i
\(383\) 3.67047 + 6.35744i 0.187552 + 0.324850i 0.944434 0.328702i \(-0.106611\pi\)
−0.756881 + 0.653552i \(0.773278\pi\)
\(384\) −1.89743 0.508416i −0.0968281 0.0259450i
\(385\) 0 0
\(386\) 7.76222 + 13.4446i 0.395087 + 0.684310i
\(387\) −2.42354 + 0.649386i −0.123195 + 0.0330101i
\(388\) −0.780333 0.450526i −0.0396154 0.0228720i
\(389\) −26.6060 −1.34898 −0.674488 0.738286i \(-0.735636\pi\)
−0.674488 + 0.738286i \(0.735636\pi\)
\(390\) 0 0
\(391\) −5.15065 −0.260480
\(392\) −26.0246 15.0253i −1.31444 0.758893i
\(393\) 2.81120 0.753258i 0.141806 0.0379969i
\(394\) −2.06796 3.58180i −0.104182 0.180449i
\(395\) 0 0
\(396\) 16.8418 + 4.51274i 0.846330 + 0.226774i
\(397\) −10.5686 18.3053i −0.530421 0.918717i −0.999370 0.0354913i \(-0.988700\pi\)
0.468949 0.883225i \(-0.344633\pi\)
\(398\) 7.46666i 0.374270i
\(399\) 6.74830 3.89613i 0.337837 0.195050i
\(400\) 0 0
\(401\) 6.09429 1.63296i 0.304334 0.0815461i −0.103420 0.994638i \(-0.532979\pi\)
0.407754 + 0.913092i \(0.366312\pi\)
\(402\) 1.54878 + 1.54878i 0.0772462 + 0.0772462i
\(403\) −13.3673 1.86888i −0.665870 0.0930957i
\(404\) 10.4128i 0.518058i
\(405\) 0 0
\(406\) 15.5857 26.9952i 0.773505 1.33975i
\(407\) −10.4206 + 38.8904i −0.516532 + 1.92772i
\(408\) 2.94052 0.145577
\(409\) −3.27126 + 12.2085i −0.161753 + 0.603672i 0.836679 + 0.547694i \(0.184494\pi\)
−0.998432 + 0.0559775i \(0.982172\pi\)
\(410\) 0 0
\(411\) −2.65578 2.65578i −0.131000 0.131000i
\(412\) 21.2318 + 5.68906i 1.04602 + 0.280280i
\(413\) 10.5577 + 39.4017i 0.519509 + 1.93883i
\(414\) −1.16671 4.35421i −0.0573406 0.213998i
\(415\) 0 0
\(416\) 18.2500 + 7.73124i 0.894780 + 0.379055i
\(417\) 3.30602 3.30602i 0.161897 0.161897i
\(418\) −13.1383 + 22.7562i −0.642616 + 1.11304i
\(419\) −19.9068 11.4932i −0.972511 0.561480i −0.0725104 0.997368i \(-0.523101\pi\)
−0.900001 + 0.435888i \(0.856434\pi\)
\(420\) 0 0
\(421\) 25.2576 25.2576i 1.23098 1.23098i 0.267395 0.963587i \(-0.413837\pi\)
0.963587 0.267395i \(-0.0861627\pi\)
\(422\) 11.1722 6.45025i 0.543852 0.313993i
\(423\) −3.60456 + 2.08109i −0.175260 + 0.101186i
\(424\) −1.17375 + 1.17375i −0.0570023 + 0.0570023i
\(425\) 0 0
\(426\) 0.735102 + 0.424411i 0.0356158 + 0.0205628i
\(427\) 9.52532 16.4983i 0.460962 0.798410i
\(428\) −4.05006 + 4.05006i −0.195767 + 0.195767i
\(429\) 5.80809 + 2.46048i 0.280417 + 0.118793i
\(430\) 0 0
\(431\) 1.01246 + 3.77857i 0.0487687 + 0.182007i 0.986014 0.166664i \(-0.0532996\pi\)
−0.937245 + 0.348671i \(0.886633\pi\)
\(432\) 0.161892 + 0.604191i 0.00778905 + 0.0290691i
\(433\) 33.2862 + 8.91900i 1.59963 + 0.428620i 0.944931 0.327269i \(-0.106128\pi\)
0.654700 + 0.755889i \(0.272795\pi\)
\(434\) 10.0897 + 10.0897i 0.484322 + 0.484322i
\(435\) 0 0
\(436\) −0.835364 + 3.11762i −0.0400067 + 0.149307i
\(437\) −9.46780 −0.452906
\(438\) −0.480960 + 1.79497i −0.0229812 + 0.0857669i
\(439\) 11.1274 19.2732i 0.531081 0.919859i −0.468261 0.883590i \(-0.655119\pi\)
0.999342 0.0362692i \(-0.0115474\pi\)
\(440\) 0 0
\(441\) 29.9853i 1.42787i
\(442\) −9.83943 1.37566i −0.468014 0.0654333i
\(443\) −2.45786 2.45786i −0.116776 0.116776i 0.646304 0.763080i \(-0.276314\pi\)
−0.763080 + 0.646304i \(0.776314\pi\)
\(444\) 2.94380 0.788788i 0.139706 0.0374342i
\(445\) 0 0
\(446\) −16.8068 + 9.70339i −0.795823 + 0.459469i
\(447\) 6.04329i 0.285838i
\(448\) −11.7907 20.4221i −0.557058 0.964852i
\(449\) −27.1100 7.26410i −1.27940 0.342814i −0.445775 0.895145i \(-0.647072\pi\)
−0.833625 + 0.552331i \(0.813738\pi\)
\(450\) 0 0
\(451\) −2.29183 3.96957i −0.107918 0.186920i
\(452\) −9.11811 + 2.44319i −0.428880 + 0.114918i
\(453\) −0.817163 0.471789i −0.0383936 0.0221666i
\(454\) 14.1292 0.663118
\(455\) 0 0
\(456\) 5.40518 0.253121
\(457\) 32.0795 + 18.5211i 1.50062 + 0.866381i 1.00000 0.000712325i \(0.000226740\pi\)
0.500617 + 0.865669i \(0.333107\pi\)
\(458\) 5.59346 1.49876i 0.261365 0.0700326i
\(459\) 2.99193 + 5.18217i 0.139651 + 0.241883i
\(460\) 0 0
\(461\) 38.7623 + 10.3863i 1.80534 + 0.483740i 0.994792 0.101931i \(-0.0325020\pi\)
0.810549 + 0.585670i \(0.199169\pi\)
\(462\) −3.33421 5.77503i −0.155122 0.268679i
\(463\) 3.45704i 0.160663i −0.996768 0.0803313i \(-0.974402\pi\)
0.996768 0.0803313i \(-0.0255978\pi\)
\(464\) 2.23169 1.28847i 0.103604 0.0598156i
\(465\) 0 0
\(466\) 4.42988 1.18698i 0.205210 0.0549859i
\(467\) −4.75622 4.75622i −0.220092 0.220092i 0.588445 0.808537i \(-0.299740\pi\)
−0.808537 + 0.588445i \(0.799740\pi\)
\(468\) 1.48544 + 12.0267i 0.0686644 + 0.555935i
\(469\) 29.6302i 1.36820i
\(470\) 0 0
\(471\) −2.50355 + 4.33628i −0.115358 + 0.199805i
\(472\) −7.32344 + 27.3314i −0.337088 + 1.25803i
\(473\) 4.50972 0.207357
\(474\) 1.00397 3.74688i 0.0461140 0.172100i
\(475\) 0 0
\(476\) −10.3506 10.3506i −0.474417 0.474417i
\(477\) −1.59989 0.428688i −0.0732538 0.0196283i
\(478\) −1.19080 4.44414i −0.0544661 0.203270i
\(479\) −0.0302527 0.112905i −0.00138228 0.00515874i 0.965231 0.261397i \(-0.0841833\pi\)
−0.966614 + 0.256239i \(0.917517\pi\)
\(480\) 0 0
\(481\) −27.7716 + 3.43012i −1.26628 + 0.156400i
\(482\) 0.469273 0.469273i 0.0213748 0.0213748i
\(483\) 1.20136 2.08081i 0.0546637 0.0946803i
\(484\) −16.0475 9.26503i −0.729432 0.421138i
\(485\) 0 0
\(486\) −5.59048 + 5.59048i −0.253589 + 0.253589i
\(487\) −9.21841 + 5.32225i −0.417726 + 0.241174i −0.694104 0.719875i \(-0.744199\pi\)
0.276378 + 0.961049i \(0.410866\pi\)
\(488\) 11.4442 6.60734i 0.518057 0.299100i
\(489\) 0.683139 0.683139i 0.0308926 0.0308926i
\(490\) 0 0
\(491\) 27.0138 + 15.5964i 1.21912 + 0.703857i 0.964729 0.263246i \(-0.0847929\pi\)
0.254387 + 0.967102i \(0.418126\pi\)
\(492\) −0.173480 + 0.300476i −0.00782107 + 0.0135465i
\(493\) 17.4317 17.4317i 0.785084 0.785084i
\(494\) −18.0866 2.52870i −0.813754 0.113771i
\(495\) 0 0
\(496\) 0.305308 + 1.13942i 0.0137087 + 0.0511616i
\(497\) −2.97196 11.0915i −0.133311 0.497523i
\(498\) 2.51404 + 0.673636i 0.112657 + 0.0301863i
\(499\) −6.58133 6.58133i −0.294621 0.294621i 0.544282 0.838903i \(-0.316802\pi\)
−0.838903 + 0.544282i \(0.816802\pi\)
\(500\) 0 0
\(501\) 0.318260 1.18776i 0.0142188 0.0530653i
\(502\) 13.2405 0.590952
\(503\) −11.0497 + 41.2382i −0.492683 + 1.83872i 0.0499533 + 0.998752i \(0.484093\pi\)
−0.542637 + 0.839968i \(0.682574\pi\)
\(504\) 17.4072 30.1501i 0.775376 1.34299i
\(505\) 0 0
\(506\) 8.10231i 0.360192i
\(507\) −0.0702315 + 4.38339i −0.00311909 + 0.194673i
\(508\) 2.59307 + 2.59307i 0.115049 + 0.115049i
\(509\) 11.1097 2.97683i 0.492429 0.131946i −0.00405535 0.999992i \(-0.501291\pi\)
0.496484 + 0.868046i \(0.334624\pi\)
\(510\) 0 0
\(511\) 21.7708 12.5694i 0.963082 0.556036i
\(512\) 3.55518i 0.157118i
\(513\) 5.49969 + 9.52574i 0.242817 + 0.420572i
\(514\) −27.6755 7.41564i −1.22072 0.327090i
\(515\) 0 0
\(516\) −0.170681 0.295628i −0.00751381 0.0130143i
\(517\) 7.22617 1.93625i 0.317807 0.0851561i
\(518\) 25.6193 + 14.7913i 1.12565 + 0.649894i
\(519\) 2.48458 0.109061
\(520\) 0 0
\(521\) 9.73221 0.426376 0.213188 0.977011i \(-0.431615\pi\)
0.213188 + 0.977011i \(0.431615\pi\)
\(522\) 18.6848 + 10.7877i 0.817812 + 0.472164i
\(523\) 11.3473 3.04051i 0.496184 0.132952i −0.00204420 0.999998i \(-0.500651\pi\)
0.498229 + 0.867046i \(0.333984\pi\)
\(524\) −5.02481 8.70323i −0.219510 0.380202i
\(525\) 0 0
\(526\) 17.9416 + 4.80744i 0.782291 + 0.209614i
\(527\) 5.64238 + 9.77289i 0.245786 + 0.425714i
\(528\) 0.551278i 0.0239913i
\(529\) 17.3903 10.0403i 0.756102 0.436536i
\(530\) 0 0
\(531\) −27.2720 + 7.30752i −1.18350 + 0.317119i
\(532\) −19.0261 19.0261i −0.824888 0.824888i
\(533\) 1.95951 2.51176i 0.0848757 0.108796i
\(534\) 4.51577i 0.195416i
\(535\) 0 0
\(536\) 10.2767 17.7997i 0.443884 0.768830i
\(537\) −0.876603 + 3.27153i −0.0378282 + 0.141177i
\(538\) 21.7820 0.939088
\(539\) −13.9491 + 52.0589i −0.600832 + 2.24234i
\(540\) 0 0
\(541\) 14.8972 + 14.8972i 0.640479 + 0.640479i 0.950673 0.310194i \(-0.100394\pi\)
−0.310194 + 0.950673i \(0.600394\pi\)
\(542\) 5.84671 + 1.56662i 0.251138 + 0.0672922i
\(543\) −0.876258 3.27024i −0.0376038 0.140339i
\(544\) −4.28892 16.0065i −0.183886 0.686271i
\(545\) 0 0
\(546\) 2.85074 3.65417i 0.122000 0.156384i
\(547\) −32.7790 + 32.7790i −1.40153 + 1.40153i −0.606266 + 0.795262i \(0.707333\pi\)
−0.795262 + 0.606266i \(0.792667\pi\)
\(548\) −6.48455 + 11.2316i −0.277006 + 0.479789i
\(549\) 11.4194 + 6.59297i 0.487367 + 0.281381i
\(550\) 0 0
\(551\) 32.0425 32.0425i 1.36506 1.36506i
\(552\) 1.44338 0.833335i 0.0614343 0.0354691i
\(553\) −45.4451 + 26.2377i −1.93252 + 1.11574i
\(554\) −16.4767 + 16.4767i −0.700027 + 0.700027i
\(555\) 0 0
\(556\) −13.9815 8.07222i −0.592947 0.342338i
\(557\) 18.9999 32.9089i 0.805053 1.39439i −0.111202 0.993798i \(-0.535470\pi\)
0.916255 0.400595i \(-0.131197\pi\)
\(558\) −6.98362 + 6.98362i −0.295640 + 0.295640i
\(559\) 1.17621 + 2.90523i 0.0497483 + 0.122878i
\(560\) 0 0
\(561\) −1.36495 5.09408i −0.0576284 0.215072i
\(562\) −3.09187 11.5390i −0.130423 0.486744i
\(563\) −27.3048 7.31631i −1.15076 0.308346i −0.367492 0.930027i \(-0.619783\pi\)
−0.783270 + 0.621681i \(0.786450\pi\)
\(564\) −0.400419 0.400419i −0.0168607 0.0168607i
\(565\) 0 0
\(566\) −2.39891 + 8.95284i −0.100834 + 0.376316i
\(567\) 33.3160 1.39914
\(568\) 2.06153 7.69375i 0.0865000 0.322823i
\(569\) 7.77409 13.4651i 0.325907 0.564487i −0.655789 0.754945i \(-0.727664\pi\)
0.981695 + 0.190457i \(0.0609971\pi\)
\(570\) 0 0
\(571\) 27.1740i 1.13720i 0.822616 + 0.568598i \(0.192514\pi\)
−0.822616 + 0.568598i \(0.807486\pi\)
\(572\) 3.01588 21.5712i 0.126100 0.901936i
\(573\) −4.00815 4.00815i −0.167443 0.167443i
\(574\) −3.25309 + 0.871662i −0.135781 + 0.0363825i
\(575\) 0 0
\(576\) 14.1352 8.16096i 0.588966 0.340040i
\(577\) 36.9310i 1.53746i 0.639574 + 0.768730i \(0.279111\pi\)
−0.639574 + 0.768730i \(0.720889\pi\)
\(578\) −3.61640 6.26379i −0.150422 0.260539i
\(579\) −5.53221 1.48235i −0.229911 0.0616044i
\(580\) 0 0
\(581\) −17.6047 30.4923i −0.730367 1.26503i
\(582\) −0.230396 + 0.0617344i −0.00955022 + 0.00255897i
\(583\) 2.57821 + 1.48853i 0.106779 + 0.0616487i
\(584\) 17.4377 0.721579
\(585\) 0 0
\(586\) −10.8091 −0.446522
\(587\) −22.2508 12.8465i −0.918388 0.530232i −0.0352676 0.999378i \(-0.511228\pi\)
−0.883120 + 0.469146i \(0.844562\pi\)
\(588\) 3.94059 1.05588i 0.162507 0.0435436i
\(589\) 10.3717 + 17.9643i 0.427357 + 0.740205i
\(590\) 0 0
\(591\) 1.47385 + 0.394917i 0.0606261 + 0.0162447i
\(592\) 1.22280 + 2.11795i 0.0502567 + 0.0870471i
\(593\) 21.2325i 0.871915i −0.899967 0.435958i \(-0.856410\pi\)
0.899967 0.435958i \(-0.143590\pi\)
\(594\) 8.15189 4.70650i 0.334476 0.193110i
\(595\) 0 0
\(596\) −20.1567 + 5.40097i −0.825650 + 0.221232i
\(597\) −1.94782 1.94782i −0.0797191 0.0797191i
\(598\) −5.21963 + 2.11322i −0.213446 + 0.0864158i
\(599\) 21.3026i 0.870403i 0.900333 + 0.435201i \(0.143323\pi\)
−0.900333 + 0.435201i \(0.856677\pi\)
\(600\) 0 0
\(601\) −0.552019 + 0.956124i −0.0225173 + 0.0390011i −0.877064 0.480373i \(-0.840501\pi\)
0.854547 + 0.519374i \(0.173835\pi\)
\(602\) 0.857599 3.20060i 0.0349531 0.130447i
\(603\) 20.5087 0.835177
\(604\) −0.843289 + 3.14720i −0.0343129 + 0.128058i
\(605\) 0 0
\(606\) 1.94911 + 1.94911i 0.0791771 + 0.0791771i
\(607\) 20.4911 + 5.49058i 0.831709 + 0.222856i 0.649459 0.760397i \(-0.274995\pi\)
0.182250 + 0.983252i \(0.441662\pi\)
\(608\) −7.88377 29.4226i −0.319729 1.19325i
\(609\) 2.97640 + 11.1081i 0.120610 + 0.450122i
\(610\) 0 0
\(611\) 3.13206 + 4.15020i 0.126710 + 0.167899i
\(612\) 7.16417 7.16417i 0.289594 0.289594i
\(613\) −4.40529 + 7.63018i −0.177928 + 0.308180i −0.941171 0.337932i \(-0.890273\pi\)
0.763243 + 0.646112i \(0.223606\pi\)
\(614\) −19.6254 11.3308i −0.792018 0.457272i
\(615\) 0 0
\(616\) −44.2472 + 44.2472i −1.78277 + 1.78277i
\(617\) −36.1750 + 20.8856i −1.45635 + 0.840825i −0.998829 0.0483741i \(-0.984596\pi\)
−0.457521 + 0.889199i \(0.651263\pi\)
\(618\) 5.03914 2.90935i 0.202704 0.117031i
\(619\) 0.180435 0.180435i 0.00725231 0.00725231i −0.703471 0.710724i \(-0.748368\pi\)
0.710724 + 0.703471i \(0.248368\pi\)
\(620\) 0 0
\(621\) 2.93723 + 1.69581i 0.117867 + 0.0680505i
\(622\) 11.1396 19.2944i 0.446658 0.773634i
\(623\) 43.1964 43.1964i 1.73063 1.73063i
\(624\) 0.355141 0.143782i 0.0142170 0.00575590i
\(625\) 0 0
\(626\) −2.95190 11.0166i −0.117982 0.440313i
\(627\) −2.50902 9.36380i −0.100201 0.373954i
\(628\) 16.7006 + 4.47492i 0.666427 + 0.178569i
\(629\) 16.5432 + 16.5432i 0.659622 + 0.659622i
\(630\) 0 0
\(631\) −2.63181 + 9.82203i −0.104771 + 0.391009i −0.998319 0.0579577i \(-0.981541\pi\)
0.893549 + 0.448967i \(0.148208\pi\)
\(632\) −36.4002 −1.44792
\(633\) −1.23180 + 4.59715i −0.0489598 + 0.182720i
\(634\) −1.56931 + 2.71813i −0.0623254 + 0.107951i
\(635\) 0 0
\(636\) 0.225348i 0.00893563i
\(637\) −37.1753 + 4.59158i −1.47294 + 0.181925i
\(638\) −27.4212 27.4212i −1.08562 1.08562i
\(639\) 7.67702 2.05705i 0.303698 0.0813757i
\(640\) 0 0
\(641\) −3.87783 + 2.23887i −0.153165 + 0.0884299i −0.574624 0.818418i \(-0.694852\pi\)
0.421459 + 0.906848i \(0.361518\pi\)
\(642\) 1.51620i 0.0598398i
\(643\) 9.40328 + 16.2870i 0.370829 + 0.642295i 0.989693 0.143203i \(-0.0457402\pi\)
−0.618864 + 0.785498i \(0.712407\pi\)
\(644\) −8.01399 2.14734i −0.315795 0.0846171i
\(645\) 0 0
\(646\) 7.63443 + 13.2232i 0.300373 + 0.520261i
\(647\) −13.7267 + 3.67805i −0.539652 + 0.144599i −0.518342 0.855174i \(-0.673450\pi\)
−0.0213101 + 0.999773i \(0.506784\pi\)
\(648\) 20.0138 + 11.5550i 0.786217 + 0.453923i
\(649\) 50.7477 1.99202
\(650\) 0 0
\(651\) −5.26420 −0.206320
\(652\) −2.88906 1.66800i −0.113144 0.0653240i
\(653\) −36.5885 + 9.80386i −1.43182 + 0.383655i −0.889661 0.456622i \(-0.849059\pi\)
−0.542158 + 0.840277i \(0.682393\pi\)
\(654\) 0.427200 + 0.739932i 0.0167048 + 0.0289336i
\(655\) 0 0
\(656\) −0.268932 0.0720602i −0.0105000 0.00281348i
\(657\) 8.69992 + 15.0687i 0.339416 + 0.587886i
\(658\) 5.49672i 0.214284i
\(659\) −10.6520 + 6.14995i −0.414944 + 0.239568i −0.692912 0.721022i \(-0.743672\pi\)
0.277968 + 0.960590i \(0.410339\pi\)
\(660\) 0 0
\(661\) 5.05178 1.35362i 0.196491 0.0526497i −0.159231 0.987241i \(-0.550901\pi\)
0.355722 + 0.934592i \(0.384235\pi\)
\(662\) 3.27373 + 3.27373i 0.127237 + 0.127237i
\(663\) 2.92568 2.20794i 0.113624 0.0857494i
\(664\) 24.4234i 0.947812i
\(665\) 0 0
\(666\) −10.2379 + 17.7325i −0.396709 + 0.687120i
\(667\) 3.61640 13.4966i 0.140028 0.522590i
\(668\) −4.24608 −0.164286
\(669\) 1.85305 6.91569i 0.0716432 0.267376i
\(670\) 0 0
\(671\) −16.7587 16.7587i −0.646961 0.646961i
\(672\) 7.46682 + 2.00073i 0.288039 + 0.0771797i
\(673\) −9.39092 35.0474i −0.361993 1.35098i −0.871452 0.490482i \(-0.836821\pi\)
0.509458 0.860495i \(-0.329846\pi\)
\(674\) 2.04410 + 7.62868i 0.0787357 + 0.293846i
\(675\) 0 0
\(676\) 14.6831 3.68325i 0.564733 0.141663i
\(677\) 17.7672 17.7672i 0.682851 0.682851i −0.277791 0.960642i \(-0.589602\pi\)
0.960642 + 0.277791i \(0.0896022\pi\)
\(678\) −1.24943 + 2.16408i −0.0479841 + 0.0831109i
\(679\) 2.79442 + 1.61336i 0.107240 + 0.0619151i
\(680\) 0 0
\(681\) −3.68589 + 3.68589i −0.141244 + 0.141244i
\(682\) 15.3734 8.87583i 0.588677 0.339873i
\(683\) 18.3363 10.5865i 0.701619 0.405080i −0.106331 0.994331i \(-0.533910\pi\)
0.807950 + 0.589251i \(0.200577\pi\)
\(684\) 13.1690 13.1690i 0.503529 0.503529i
\(685\) 0 0
\(686\) 11.1870 + 6.45879i 0.427120 + 0.246598i
\(687\) −1.06818 + 1.85015i −0.0407537 + 0.0705875i
\(688\) 0.193696 0.193696i 0.00738459 0.00738459i
\(689\) −0.286494 + 2.04916i −0.0109145 + 0.0780667i
\(690\) 0 0
\(691\) −9.75426 36.4034i −0.371069 1.38485i −0.859004 0.511970i \(-0.828916\pi\)
0.487934 0.872880i \(-0.337751\pi\)
\(692\) −2.22050 8.28702i −0.0844108 0.315025i
\(693\) −60.3114 16.1604i −2.29104 0.613882i
\(694\) 18.7669 + 18.7669i 0.712382 + 0.712382i
\(695\) 0 0
\(696\) −2.06461 + 7.70523i −0.0782589 + 0.292066i
\(697\) −2.66348 −0.100887
\(698\) 0.907648 3.38739i 0.0343550 0.128214i
\(699\) −0.845974 + 1.46527i −0.0319977 + 0.0554216i
\(700\) 0 0
\(701\) 24.9114i 0.940889i 0.882430 + 0.470445i \(0.155906\pi\)
−0.882430 + 0.470445i \(0.844094\pi\)
\(702\) 5.15814 + 4.02404i 0.194682 + 0.151877i
\(703\) 30.4094 + 30.4094i 1.14691 + 1.14691i
\(704\) −28.3373 + 7.59295i −1.06800 + 0.286170i
\(705\) 0 0
\(706\) −20.2407 + 11.6860i −0.761768 + 0.439807i
\(707\) 37.2890i 1.40240i
\(708\) −1.92067 3.32669i −0.0721831 0.125025i
\(709\) −17.2592 4.62459i −0.648183 0.173680i −0.0802760 0.996773i \(-0.525580\pi\)
−0.567907 + 0.823092i \(0.692247\pi\)
\(710\) 0 0
\(711\) −18.1605 31.4550i −0.681073 1.17965i
\(712\) 40.9311 10.9674i 1.53396 0.411022i
\(713\) 5.53922 + 3.19807i 0.207445 + 0.119769i
\(714\) −3.87490 −0.145014
\(715\) 0 0
\(716\) 11.6952 0.437071
\(717\) 1.46999 + 0.848697i 0.0548976 + 0.0316952i
\(718\) −20.5424 + 5.50433i −0.766637 + 0.205420i
\(719\) 3.20390 + 5.54933i 0.119485 + 0.206955i 0.919564 0.392941i \(-0.128542\pi\)
−0.800078 + 0.599895i \(0.795209\pi\)
\(720\) 0 0
\(721\) −76.0325 20.3729i −2.83160 0.758725i
\(722\) 5.34967 + 9.26590i 0.199094 + 0.344841i
\(723\) 0.244838i 0.00910564i
\(724\) −10.1244 + 5.84532i −0.376270 + 0.217239i
\(725\) 0 0
\(726\) −4.73808 + 1.26956i −0.175846 + 0.0471179i
\(727\) 17.2216 + 17.2216i 0.638714 + 0.638714i 0.950238 0.311524i \(-0.100839\pi\)
−0.311524 + 0.950238i \(0.600839\pi\)
\(728\) −40.0451 16.9643i −1.48417 0.628738i
\(729\) 21.0515i 0.779686i
\(730\) 0 0
\(731\) 1.31026 2.26943i 0.0484616 0.0839380i
\(732\) −0.464319 + 1.73286i −0.0171617 + 0.0640484i
\(733\) −34.7895 −1.28498 −0.642489 0.766295i \(-0.722098\pi\)
−0.642489 + 0.766295i \(0.722098\pi\)
\(734\) −2.80738 + 10.4773i −0.103622 + 0.386724i
\(735\) 0 0
\(736\) −6.64144 6.64144i −0.244807 0.244807i
\(737\) −35.6061 9.54061i −1.31157 0.351433i
\(738\) −0.603323 2.25163i −0.0222086 0.0828837i
\(739\) 10.1339 + 37.8203i 0.372782 + 1.39124i 0.856558 + 0.516051i \(0.172598\pi\)
−0.483776 + 0.875192i \(0.660735\pi\)
\(740\) 0 0
\(741\) 5.37790 4.05858i 0.197562 0.149096i
\(742\) 1.54672 1.54672i 0.0567819 0.0567819i
\(743\) −18.2574 + 31.6228i −0.669801 + 1.16013i 0.308159 + 0.951335i \(0.400287\pi\)
−0.977960 + 0.208794i \(0.933046\pi\)
\(744\) −3.16235 1.82578i −0.115937 0.0669365i
\(745\) 0 0
\(746\) 2.69913 2.69913i 0.0988221 0.0988221i
\(747\) 21.1053 12.1852i 0.772203 0.445832i
\(748\) −15.7708 + 9.10529i −0.576639 + 0.332922i
\(749\) 14.5035 14.5035i 0.529947 0.529947i
\(750\) 0 0
\(751\) −12.0184 6.93885i −0.438559 0.253202i 0.264427 0.964406i \(-0.414817\pi\)
−0.702986 + 0.711203i \(0.748150\pi\)
\(752\) 0.227207 0.393533i 0.00828537 0.0143507i
\(753\) −3.45404 + 3.45404i −0.125872 + 0.125872i
\(754\) 10.5132 24.8170i 0.382869 0.903783i
\(755\) 0 0
\(756\) 2.49471 + 9.31038i 0.0907317 + 0.338615i
\(757\) 9.72706 + 36.3019i 0.353536 + 1.31941i 0.882317 + 0.470656i \(0.155983\pi\)
−0.528781 + 0.848758i \(0.677351\pi\)
\(758\) 9.83685 + 2.63578i 0.357291 + 0.0957357i
\(759\) −2.11365 2.11365i −0.0767205 0.0767205i
\(760\) 0 0
\(761\) −6.97074 + 26.0152i −0.252689 + 0.943049i 0.716672 + 0.697410i \(0.245664\pi\)
−0.969361 + 0.245639i \(0.921002\pi\)
\(762\) 0.970757 0.0351668
\(763\) 2.99149 11.1644i 0.108299 0.404178i
\(764\) −9.78658 + 16.9509i −0.354066 + 0.613261i
\(765\) 0 0
\(766\) 6.71020i 0.242449i
\(767\) 13.2358 + 32.6924i 0.477919 + 1.18045i
\(768\) 3.96661 + 3.96661i 0.143133 + 0.143133i
\(769\) −41.7992 + 11.2001i −1.50732 + 0.403885i −0.915544 0.402218i \(-0.868239\pi\)
−0.591775 + 0.806103i \(0.701573\pi\)
\(770\) 0 0
\(771\) 9.15422 5.28519i 0.329681 0.190342i
\(772\) 19.7768i 0.711784i
\(773\) 8.28981 + 14.3584i 0.298164 + 0.516435i 0.975716 0.219040i \(-0.0702925\pi\)
−0.677552 + 0.735475i \(0.736959\pi\)
\(774\) 2.21531 + 0.593590i 0.0796276 + 0.0213361i
\(775\) 0 0
\(776\) 1.11912 + 1.93838i 0.0401742 + 0.0695838i
\(777\) −10.5419 + 2.82470i −0.378189 + 0.101336i
\(778\) 21.0617 + 12.1600i 0.755098 + 0.435956i
\(779\) −4.89595 −0.175415
\(780\) 0 0
\(781\) −14.2854 −0.511171
\(782\) 4.07734 + 2.35405i 0.145805 + 0.0841807i
\(783\) −15.6799 + 4.20142i −0.560354 + 0.150146i
\(784\) 1.63685 + 2.83510i 0.0584588 + 0.101254i
\(785\) 0 0
\(786\) −2.56966 0.688537i −0.0916566 0.0245593i
\(787\) −0.500090 0.866181i −0.0178263 0.0308760i 0.856975 0.515359i \(-0.172341\pi\)
−0.874801 + 0.484483i \(0.839008\pi\)
\(788\) 5.26880i 0.187693i
\(789\) −5.93453 + 3.42630i −0.211275 + 0.121980i
\(790\) 0 0
\(791\) 32.6525 8.74921i 1.16099 0.311086i
\(792\) −30.6258 30.6258i −1.08824 1.08824i
\(793\) 6.42524 15.1671i 0.228167 0.538600i
\(794\) 19.3210i 0.685677i
\(795\) 0 0
\(796\) −4.75595 + 8.23754i −0.168570 + 0.291972i
\(797\) −0.123918 + 0.462469i −0.00438941 + 0.0163815i −0.968086 0.250619i \(-0.919366\pi\)
0.963696 + 0.267000i \(0.0860325\pi\)
\(798\) −7.12274 −0.252142
\(799\) 1.12512 4.19900i 0.0398038 0.148550i
\(800\) 0 0
\(801\) 29.8985 + 29.8985i 1.05641 + 1.05641i
\(802\) −5.57066 1.49265i −0.196707 0.0527074i
\(803\) −8.09439 30.2087i −0.285645 1.06604i
\(804\) 0.722174 + 2.69519i 0.0254691 + 0.0950521i
\(805\) 0 0
\(806\) 9.72757 + 7.58880i 0.342639 + 0.267304i
\(807\) −5.68226 + 5.68226i −0.200025 + 0.200025i
\(808\) 12.9330 22.4006i 0.454980 0.788049i
\(809\) −17.8417 10.3009i −0.627280 0.362160i 0.152418 0.988316i \(-0.451294\pi\)
−0.779698 + 0.626156i \(0.784627\pi\)
\(810\) 0 0
\(811\) −0.752500 + 0.752500i −0.0264239 + 0.0264239i −0.720195 0.693771i \(-0.755948\pi\)
0.693771 + 0.720195i \(0.255948\pi\)
\(812\) 34.3897 19.8549i 1.20684 0.696770i
\(813\) −1.93391 + 1.11655i −0.0678253 + 0.0391590i
\(814\) 26.0236 26.0236i 0.912126 0.912126i
\(815\) 0 0
\(816\) −0.277420 0.160169i −0.00971166 0.00560703i
\(817\) 2.40848 4.17161i 0.0842621 0.145946i
\(818\) 8.16934 8.16934i 0.285634 0.285634i
\(819\) −5.31945 43.0684i −0.185877 1.50493i
\(820\) 0 0
\(821\) 7.34022 + 27.3941i 0.256175 + 0.956059i 0.967433 + 0.253128i \(0.0814593\pi\)
−0.711258 + 0.702931i \(0.751874\pi\)
\(822\) 0.888561 + 3.31616i 0.0309921 + 0.115664i
\(823\) −1.47628 0.395567i −0.0514598 0.0137886i 0.232997 0.972477i \(-0.425147\pi\)
−0.284457 + 0.958689i \(0.591813\pi\)
\(824\) −38.6089 38.6089i −1.34501 1.34501i
\(825\) 0 0
\(826\) 9.65054 36.0163i 0.335785 1.25317i
\(827\) −34.9791 −1.21634 −0.608171 0.793806i \(-0.708097\pi\)
−0.608171 + 0.793806i \(0.708097\pi\)
\(828\) 1.48629 5.54690i 0.0516521 0.192768i
\(829\) 5.70269 9.87735i 0.198063 0.343055i −0.749838 0.661622i \(-0.769868\pi\)
0.947900 + 0.318567i \(0.103202\pi\)
\(830\) 0 0
\(831\) 8.59653i 0.298210i
\(832\) −12.2823 16.2749i −0.425813 0.564231i
\(833\) 22.1449 + 22.1449i 0.767275 + 0.767275i
\(834\) −4.12808 + 1.10612i −0.142944 + 0.0383016i
\(835\) 0 0
\(836\) −28.9895 + 16.7371i −1.00262 + 0.578865i
\(837\) 7.43083i 0.256847i
\(838\) 10.5057 + 18.1964i 0.362913 + 0.628584i
\(839\) 28.6789 + 7.68448i 0.990105 + 0.265298i 0.717295 0.696770i \(-0.245380\pi\)
0.272810 + 0.962068i \(0.412047\pi\)
\(840\) 0 0
\(841\) 18.9382 + 32.8019i 0.653041 + 1.13110i
\(842\) −31.5381 + 8.45060i −1.08687 + 0.291227i
\(843\) 3.81675 + 2.20360i 0.131456 + 0.0758961i
\(844\) 16.4341 0.565687
\(845\) 0 0
\(846\) 3.80457 0.130804
\(847\) 57.4671 + 33.1786i 1.97459 + 1.14003i
\(848\) 0.174670 0.0468027i 0.00599819 0.00160721i
\(849\) −1.70972 2.96133i −0.0586775 0.101632i
\(850\) 0 0
\(851\) 12.8087 + 3.43208i 0.439077 + 0.117650i
\(852\) 0.540664 + 0.936458i 0.0185229 + 0.0320825i
\(853\) 15.2934i 0.523636i −0.965117 0.261818i \(-0.915678\pi\)
0.965117 0.261818i \(-0.0843220\pi\)
\(854\) −15.0808 + 8.70689i −0.516054 + 0.297944i
\(855\) 0 0
\(856\) 13.7429 3.68240i 0.469723 0.125862i
\(857\) −12.3837 12.3837i −0.423018 0.423018i 0.463223 0.886242i \(-0.346693\pi\)
−0.886242 + 0.463223i \(0.846693\pi\)
\(858\) −3.47324 4.60228i −0.118574 0.157119i
\(859\) 8.73070i 0.297888i 0.988846 + 0.148944i \(0.0475874\pi\)
−0.988846 + 0.148944i \(0.952413\pi\)
\(860\) 0 0
\(861\) 0.621241 1.07602i 0.0211718 0.0366707i
\(862\) 0.925473 3.45391i 0.0315217 0.117641i
\(863\) 8.33598 0.283760 0.141880 0.989884i \(-0.454685\pi\)
0.141880 + 0.989884i \(0.454685\pi\)
\(864\) −2.82418 + 10.5400i −0.0960805 + 0.358577i
\(865\) 0 0
\(866\) −22.2735 22.2735i −0.756885 0.756885i
\(867\) 2.57744 + 0.690623i 0.0875345 + 0.0234548i
\(868\) 4.70469 + 17.5581i 0.159688 + 0.595962i
\(869\) 16.8965 + 63.0587i 0.573176 + 2.13912i
\(870\) 0 0
\(871\) −3.14044 25.4263i −0.106410 0.861537i
\(872\) 5.66922 5.66922i 0.191984 0.191984i
\(873\) −1.11669 + 1.93417i −0.0377943 + 0.0654616i
\(874\) 7.49485 + 4.32716i 0.253517 + 0.146368i
\(875\) 0 0
\(876\) −1.67394 + 1.67394i −0.0565570 + 0.0565570i
\(877\) 10.7132 6.18525i 0.361758 0.208861i −0.308094 0.951356i \(-0.599691\pi\)
0.669852 + 0.742495i \(0.266358\pi\)
\(878\) −17.6172 + 10.1713i −0.594552 + 0.343265i
\(879\) 2.81978 2.81978i 0.0951088 0.0951088i
\(880\) 0 0
\(881\) 12.0765 + 6.97237i 0.406868 + 0.234905i 0.689443 0.724340i \(-0.257855\pi\)
−0.282575 + 0.959245i \(0.591189\pi\)
\(882\) −13.7045 + 23.7368i −0.461453 + 0.799261i
\(883\) −8.89171 + 8.89171i −0.299230 + 0.299230i −0.840712 0.541482i \(-0.817863\pi\)
0.541482 + 0.840712i \(0.317863\pi\)
\(884\) −9.97906 7.78499i −0.335632 0.261838i
\(885\) 0 0
\(886\) 0.822340 + 3.06901i 0.0276270 + 0.103106i
\(887\) 13.8300 + 51.6144i 0.464367 + 1.73304i 0.658980 + 0.752160i \(0.270988\pi\)
−0.194613 + 0.980880i \(0.562345\pi\)
\(888\) −7.31251 1.95938i −0.245392 0.0657526i
\(889\) −9.28594 9.28594i −0.311440 0.311440i
\(890\) 0 0
\(891\) 10.7274 40.0351i 0.359381 1.34123i
\(892\) −24.7226 −0.827774
\(893\) 2.06816 7.71849i 0.0692084 0.258289i
\(894\) −2.76202 + 4.78396i −0.0923758 + 0.160000i
\(895\) 0 0
\(896\) 24.2905i 0.811490i
\(897\) 0.810368 1.91292i 0.0270574 0.0638704i
\(898\) 18.1407 + 18.1407i 0.605363 + 0.605363i
\(899\) −29.5702 + 7.92331i −0.986221 + 0.264257i
\(900\) 0 0
\(901\) 1.49815 0.864959i 0.0499107 0.0288160i
\(902\) 4.18983i 0.139506i
\(903\) 0.611219 + 1.05866i 0.0203401 + 0.0352301i
\(904\) 22.6498 + 6.06898i 0.753320 + 0.201851i
\(905\) 0 0
\(906\) 0.431252 + 0.746951i 0.0143274 + 0.0248158i
\(907\) −40.4677 + 10.8433i −1.34371 + 0.360045i −0.857808 0.513970i \(-0.828174\pi\)
−0.485899 + 0.874015i \(0.661508\pi\)
\(908\) 15.5880 + 8.99973i 0.517306 + 0.298666i
\(909\) 25.8097 0.856054
\(910\) 0 0
\(911\) 13.0974 0.433937 0.216968 0.976179i \(-0.430383\pi\)
0.216968 + 0.976179i \(0.430383\pi\)
\(912\) −0.509947 0.294418i −0.0168860 0.00974916i
\(913\) −42.3105 + 11.3371i −1.40027 + 0.375202i
\(914\) −16.9298 29.3232i −0.559987 0.969926i
\(915\) 0 0
\(916\) 7.12560 + 1.90930i 0.235437 + 0.0630850i
\(917\) 17.9942 + 31.1668i 0.594220 + 1.02922i
\(918\) 5.46972i 0.180528i
\(919\) −31.8713 + 18.4009i −1.05134 + 0.606990i −0.923023 0.384744i \(-0.874290\pi\)
−0.128314 + 0.991734i \(0.540957\pi\)
\(920\) 0 0
\(921\) 8.07553 2.16383i 0.266098 0.0713007i
\(922\) −25.9379 25.9379i −0.854219 0.854219i
\(923\) −3.72587 9.20286i −0.122638 0.302916i
\(924\) 8.49502i 0.279465i
\(925\) 0 0
\(926\) −1.58001 + 2.73665i −0.0519222 + 0.0899319i
\(927\) 14.1011 52.6261i 0.463142 1.72847i
\(928\) 44.9541 1.47569
\(929\) 10.4741 39.0897i 0.343643 1.28249i −0.550547 0.834804i \(-0.685581\pi\)
0.894190 0.447688i \(-0.147752\pi\)
\(930\) 0 0
\(931\) 40.7062 + 40.7062i 1.33409 + 1.33409i
\(932\) 5.64330 + 1.51212i 0.184852 + 0.0495310i
\(933\) 2.12733 + 7.93930i 0.0696456 + 0.259921i
\(934\) 1.59132 + 5.93888i 0.0520695 + 0.194326i
\(935\) 0 0
\(936\) 11.7419 27.7173i 0.383795 0.905969i
\(937\) 17.2306 17.2306i 0.562898 0.562898i −0.367232 0.930129i \(-0.619694\pi\)
0.930129 + 0.367232i \(0.119694\pi\)
\(938\) −13.5422 + 23.4558i −0.442168 + 0.765858i
\(939\) 3.64397 + 2.10385i 0.118916 + 0.0686564i
\(940\) 0 0
\(941\) 17.6729 17.6729i 0.576119 0.576119i −0.357712 0.933832i \(-0.616443\pi\)
0.933832 + 0.357712i \(0.116443\pi\)
\(942\) 3.96370 2.28844i 0.129144 0.0745615i
\(943\) −1.30739 + 0.754824i −0.0425746 + 0.0245805i
\(944\) 2.17965 2.17965i 0.0709417 0.0709417i
\(945\) 0 0
\(946\) −3.56996 2.06112i −0.116070 0.0670128i
\(947\) 9.13678 15.8254i 0.296905 0.514255i −0.678521 0.734581i \(-0.737379\pi\)
0.975426 + 0.220326i \(0.0707121\pi\)
\(948\) 3.49423 3.49423i 0.113487 0.113487i
\(949\) 17.3497 13.0934i 0.563196 0.425031i
\(950\) 0 0
\(951\) −0.299692 1.11846i −0.00971817 0.0362687i
\(952\) 9.41096 + 35.1222i 0.305011 + 1.13832i
\(953\) 57.2081 + 15.3289i 1.85315 + 0.496551i 0.999697 0.0246142i \(-0.00783574\pi\)
0.853456 + 0.521165i \(0.174502\pi\)
\(954\) 1.07057 + 1.07057i 0.0346609 + 0.0346609i
\(955\) 0 0
\(956\) 1.51698 5.66146i 0.0490628 0.183105i
\(957\) 14.3067 0.462470
\(958\) −0.0276534 + 0.103204i −0.000893439 + 0.00333436i
\(959\) 23.2216 40.2209i 0.749864 1.29880i
\(960\) 0 0
\(961\) 16.9865i 0.547950i
\(962\) 23.5522 + 9.97740i 0.759352 + 0.321684i
\(963\) 10.0386 + 10.0386i 0.323491 + 0.323491i
\(964\) 0.816630 0.218815i 0.0263019 0.00704757i
\(965\) 0 0
\(966\) −1.90203 + 1.09814i −0.0611967 + 0.0353320i
\(967\) 53.6313i 1.72467i −0.506341 0.862333i \(-0.669002\pi\)
0.506341 0.862333i \(-0.330998\pi\)
\(968\) 23.0147 + 39.8627i 0.739721 + 1.28123i
\(969\) −5.44113 1.45795i −0.174794 0.0468360i
\(970\) 0 0
\(971\) 5.90908 + 10.2348i 0.189631 + 0.328451i 0.945127 0.326702i \(-0.105937\pi\)
−0.755496 + 0.655153i \(0.772604\pi\)
\(972\) −9.72856 + 2.60676i −0.312044 + 0.0836119i
\(973\) 50.0686 + 28.9071i 1.60512 + 0.926719i
\(974\) 9.72992 0.311767
\(975\) 0 0
\(976\) −1.43960 −0.0460803
\(977\) −17.6850 10.2104i −0.565793 0.326661i 0.189674 0.981847i \(-0.439257\pi\)
−0.755467 + 0.655186i \(0.772590\pi\)
\(978\) −0.853005 + 0.228562i −0.0272761 + 0.00730861i
\(979\) −37.9994 65.8169i −1.21447 2.10352i
\(980\) 0 0
\(981\) 7.72746 + 2.07057i 0.246719 + 0.0661081i
\(982\) −14.2564 24.6927i −0.454939 0.787977i
\(983\) 25.2690i 0.805957i −0.915209 0.402979i \(-0.867975\pi\)
0.915209 0.402979i \(-0.132025\pi\)
\(984\) 0.746394 0.430931i 0.0237942 0.0137376i
\(985\) 0 0
\(986\) −21.7662 + 5.83223i −0.693176 + 0.185736i
\(987\) 1.43393 + 1.43393i 0.0456424 + 0.0456424i
\(988\) −18.3432 14.3102i −0.583576 0.455267i
\(989\) 1.48529i 0.0472296i
\(990\) 0 0
\(991\) 10.5834 18.3311i 0.336194 0.582305i −0.647519 0.762049i \(-0.724193\pi\)
0.983713 + 0.179744i \(0.0575268\pi\)
\(992\) −5.32603 + 19.8770i −0.169102 + 0.631095i
\(993\) −1.70803 −0.0542027
\(994\) −2.71661 + 10.1385i −0.0861656 + 0.321574i
\(995\) 0 0
\(996\) 2.34452 + 2.34452i 0.0742891 + 0.0742891i
\(997\) −9.00051 2.41168i −0.285049 0.0763786i 0.113462 0.993542i \(-0.463806\pi\)
−0.398511 + 0.917164i \(0.630473\pi\)
\(998\) 2.20196 + 8.21781i 0.0697017 + 0.260130i
\(999\) −3.98728 14.8807i −0.126152 0.470805i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.2.x.c.318.4 yes 40
5.2 odd 4 325.2.s.c.32.7 yes 40
5.3 odd 4 325.2.s.c.32.4 40
5.4 even 2 inner 325.2.x.c.318.7 yes 40
13.11 odd 12 325.2.s.c.193.7 yes 40
65.24 odd 12 325.2.s.c.193.4 yes 40
65.37 even 12 inner 325.2.x.c.232.4 yes 40
65.63 even 12 inner 325.2.x.c.232.7 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
325.2.s.c.32.4 40 5.3 odd 4
325.2.s.c.32.7 yes 40 5.2 odd 4
325.2.s.c.193.4 yes 40 65.24 odd 12
325.2.s.c.193.7 yes 40 13.11 odd 12
325.2.x.c.232.4 yes 40 65.37 even 12 inner
325.2.x.c.232.7 yes 40 65.63 even 12 inner
325.2.x.c.318.4 yes 40 1.1 even 1 trivial
325.2.x.c.318.7 yes 40 5.4 even 2 inner