Properties

Label 325.2.s.c.32.4
Level $325$
Weight $2$
Character 325.32
Analytic conductor $2.595$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [325,2,Mod(32,325)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(325, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([3, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("325.32"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 325.s (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.59513806569\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(10\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 32.4
Character \(\chi\) \(=\) 325.32
Dual form 325.2.s.c.193.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.457039 + 0.791616i) q^{2} +(0.0872808 + 0.325736i) q^{3} +(0.582230 + 1.00845i) q^{4} +(-0.297749 - 0.0797815i) q^{6} +(3.61133 - 2.08500i) q^{7} -2.89257 q^{8} +(2.49959 - 1.44314i) q^{9} +(5.01101 - 1.34269i) q^{11} +(-0.277672 + 0.277672i) q^{12} +(-2.87797 + 2.17194i) q^{13} +3.81171i q^{14} +(0.157557 - 0.272897i) q^{16} +(-2.91180 - 0.780215i) q^{17} +2.63829i q^{18} +(-1.43417 + 5.35240i) q^{19} +(0.994360 + 0.994360i) q^{21} +(-1.22733 + 4.58045i) q^{22} +(1.65039 - 0.442222i) q^{23} +(-0.252465 - 0.942213i) q^{24} +(-0.403995 - 3.27090i) q^{26} +(1.40362 + 1.40362i) q^{27} +(4.20525 + 2.42790i) q^{28} +(-7.08218 - 4.08890i) q^{29} +(-2.64703 + 2.64703i) q^{31} +(-2.74855 - 4.76062i) q^{32} +(0.874729 + 1.51507i) q^{33} +(1.94844 - 1.94844i) q^{34} +(2.91067 + 1.68048i) q^{36} +(6.72122 + 3.88050i) q^{37} +(-3.58157 - 3.58157i) q^{38} +(-0.958670 - 0.747890i) q^{39} +(-0.228680 - 0.853445i) q^{41} +(-1.24161 + 0.332689i) q^{42} +(-0.224991 + 0.839677i) q^{43} +(4.27160 + 4.27160i) q^{44} +(-0.404226 + 1.50859i) q^{46} -1.44206i q^{47} +(0.102644 + 0.0275034i) q^{48} +(5.19446 - 8.99707i) q^{49} -1.01658i q^{51} +(-3.86593 - 1.63772i) q^{52} +(-0.405781 + 0.405781i) q^{53} +(-1.75263 + 0.469616i) q^{54} +(-10.4460 + 6.03100i) q^{56} -1.86865 q^{57} +(6.47367 - 3.73758i) q^{58} +(-9.44885 - 2.53181i) q^{59} +(-2.28425 - 3.95643i) q^{61} +(-0.885633 - 3.30523i) q^{62} +(6.01789 - 10.4233i) q^{63} +5.65500 q^{64} -1.59914 q^{66} +(-3.55279 + 6.15361i) q^{67} +(-0.908530 - 3.39068i) q^{68} +(0.288095 + 0.498996i) q^{69} +(-2.65984 - 0.712701i) q^{71} +(-7.23023 + 4.17437i) q^{72} +6.02847 q^{73} +(-6.14372 + 3.54708i) q^{74} +(-6.23266 + 1.67004i) q^{76} +(15.2969 - 15.2969i) q^{77} +(1.03019 - 0.417083i) q^{78} -12.5840i q^{79} +(3.99472 - 6.91905i) q^{81} +(0.780116 + 0.209031i) q^{82} -8.44351i q^{83} +(-0.423818 + 1.58171i) q^{84} +(-0.561871 - 0.561871i) q^{86} +(0.713764 - 2.66380i) q^{87} +(-14.4947 + 3.88383i) q^{88} +(3.79160 + 14.1504i) q^{89} +(-5.86479 + 13.8441i) q^{91} +(1.40687 + 1.40687i) q^{92} +(-1.09327 - 0.631199i) q^{93} +(1.14156 + 0.659078i) q^{94} +(1.31081 - 1.31081i) q^{96} +(-0.386897 - 0.670125i) q^{97} +(4.74815 + 8.22403i) q^{98} +(10.5878 - 10.5878i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 24 q^{4} - 12 q^{6} + 24 q^{9} + 8 q^{11} - 32 q^{16} - 24 q^{19} + 32 q^{21} + 56 q^{24} + 76 q^{26} - 36 q^{29} + 8 q^{31} + 44 q^{34} - 60 q^{36} + 44 q^{39} - 52 q^{41} - 80 q^{44} - 60 q^{46}+ \cdots + 208 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/325\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{5}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.457039 + 0.791616i −0.323176 + 0.559757i −0.981141 0.193291i \(-0.938084\pi\)
0.657966 + 0.753048i \(0.271417\pi\)
\(3\) 0.0872808 + 0.325736i 0.0503916 + 0.188064i 0.986534 0.163558i \(-0.0522970\pi\)
−0.936142 + 0.351622i \(0.885630\pi\)
\(4\) 0.582230 + 1.00845i 0.291115 + 0.504226i
\(5\) 0 0
\(6\) −0.297749 0.0797815i −0.121555 0.0325707i
\(7\) 3.61133 2.08500i 1.36495 0.788056i 0.374675 0.927156i \(-0.377754\pi\)
0.990278 + 0.139100i \(0.0444209\pi\)
\(8\) −2.89257 −1.02268
\(9\) 2.49959 1.44314i 0.833197 0.481046i
\(10\) 0 0
\(11\) 5.01101 1.34269i 1.51088 0.404838i 0.594149 0.804355i \(-0.297489\pi\)
0.916726 + 0.399517i \(0.130822\pi\)
\(12\) −0.277672 + 0.277672i −0.0801569 + 0.0801569i
\(13\) −2.87797 + 2.17194i −0.798204 + 0.602387i
\(14\) 3.81171i 1.01872i
\(15\) 0 0
\(16\) 0.157557 0.272897i 0.0393892 0.0682241i
\(17\) −2.91180 0.780215i −0.706216 0.189230i −0.112203 0.993685i \(-0.535791\pi\)
−0.594013 + 0.804455i \(0.702457\pi\)
\(18\) 2.63829i 0.621850i
\(19\) −1.43417 + 5.35240i −0.329022 + 1.22793i 0.581185 + 0.813771i \(0.302589\pi\)
−0.910207 + 0.414154i \(0.864078\pi\)
\(20\) 0 0
\(21\) 0.994360 + 0.994360i 0.216987 + 0.216987i
\(22\) −1.22733 + 4.58045i −0.261667 + 0.976556i
\(23\) 1.65039 0.442222i 0.344131 0.0922096i −0.0826140 0.996582i \(-0.526327\pi\)
0.426745 + 0.904372i \(0.359660\pi\)
\(24\) −0.252465 0.942213i −0.0515343 0.192329i
\(25\) 0 0
\(26\) −0.403995 3.27090i −0.0792299 0.641477i
\(27\) 1.40362 + 1.40362i 0.270126 + 0.270126i
\(28\) 4.20525 + 2.42790i 0.794717 + 0.458830i
\(29\) −7.08218 4.08890i −1.31513 0.759289i −0.332187 0.943213i \(-0.607787\pi\)
−0.982940 + 0.183924i \(0.941120\pi\)
\(30\) 0 0
\(31\) −2.64703 + 2.64703i −0.475421 + 0.475421i −0.903664 0.428243i \(-0.859133\pi\)
0.428243 + 0.903664i \(0.359133\pi\)
\(32\) −2.74855 4.76062i −0.485879 0.841567i
\(33\) 0.874729 + 1.51507i 0.152271 + 0.263741i
\(34\) 1.94844 1.94844i 0.334155 0.334155i
\(35\) 0 0
\(36\) 2.91067 + 1.68048i 0.485112 + 0.280080i
\(37\) 6.72122 + 3.88050i 1.10496 + 0.637950i 0.937520 0.347932i \(-0.113116\pi\)
0.167442 + 0.985882i \(0.446449\pi\)
\(38\) −3.58157 3.58157i −0.581008 0.581008i
\(39\) −0.958670 0.747890i −0.153510 0.119758i
\(40\) 0 0
\(41\) −0.228680 0.853445i −0.0357138 0.133286i 0.945767 0.324845i \(-0.105312\pi\)
−0.981481 + 0.191559i \(0.938646\pi\)
\(42\) −1.24161 + 0.332689i −0.191585 + 0.0513350i
\(43\) −0.224991 + 0.839677i −0.0343108 + 0.128049i −0.980957 0.194225i \(-0.937781\pi\)
0.946646 + 0.322275i \(0.104447\pi\)
\(44\) 4.27160 + 4.27160i 0.643968 + 0.643968i
\(45\) 0 0
\(46\) −0.404226 + 1.50859i −0.0595998 + 0.222430i
\(47\) 1.44206i 0.210346i −0.994454 0.105173i \(-0.966460\pi\)
0.994454 0.105173i \(-0.0335397\pi\)
\(48\) 0.102644 + 0.0275034i 0.0148154 + 0.00396977i
\(49\) 5.19446 8.99707i 0.742066 1.28530i
\(50\) 0 0
\(51\) 1.01658i 0.142349i
\(52\) −3.86593 1.63772i −0.536108 0.227111i
\(53\) −0.405781 + 0.405781i −0.0557384 + 0.0557384i −0.734427 0.678688i \(-0.762549\pi\)
0.678688 + 0.734427i \(0.262549\pi\)
\(54\) −1.75263 + 0.469616i −0.238503 + 0.0639066i
\(55\) 0 0
\(56\) −10.4460 + 6.03100i −1.39591 + 0.805927i
\(57\) −1.86865 −0.247508
\(58\) 6.47367 3.73758i 0.850035 0.490768i
\(59\) −9.44885 2.53181i −1.23014 0.329614i −0.415504 0.909592i \(-0.636395\pi\)
−0.814632 + 0.579978i \(0.803061\pi\)
\(60\) 0 0
\(61\) −2.28425 3.95643i −0.292468 0.506569i 0.681925 0.731422i \(-0.261143\pi\)
−0.974393 + 0.224853i \(0.927810\pi\)
\(62\) −0.885633 3.30523i −0.112476 0.419764i
\(63\) 6.01789 10.4233i 0.758183 1.31321i
\(64\) 5.65500 0.706875
\(65\) 0 0
\(66\) −1.59914 −0.196841
\(67\) −3.55279 + 6.15361i −0.434042 + 0.751783i −0.997217 0.0745551i \(-0.976246\pi\)
0.563175 + 0.826338i \(0.309580\pi\)
\(68\) −0.908530 3.39068i −0.110175 0.411180i
\(69\) 0.288095 + 0.498996i 0.0346826 + 0.0600720i
\(70\) 0 0
\(71\) −2.65984 0.712701i −0.315664 0.0845820i 0.0975083 0.995235i \(-0.468913\pi\)
−0.413173 + 0.910653i \(0.635579\pi\)
\(72\) −7.23023 + 4.17437i −0.852091 + 0.491955i
\(73\) 6.02847 0.705579 0.352789 0.935703i \(-0.385233\pi\)
0.352789 + 0.935703i \(0.385233\pi\)
\(74\) −6.14372 + 3.54708i −0.714193 + 0.412340i
\(75\) 0 0
\(76\) −6.23266 + 1.67004i −0.714935 + 0.191566i
\(77\) 15.2969 15.2969i 1.74324 1.74324i
\(78\) 1.03019 0.417083i 0.116646 0.0472253i
\(79\) 12.5840i 1.41582i −0.706305 0.707908i \(-0.749639\pi\)
0.706305 0.707908i \(-0.250361\pi\)
\(80\) 0 0
\(81\) 3.99472 6.91905i 0.443857 0.768784i
\(82\) 0.780116 + 0.209031i 0.0861494 + 0.0230837i
\(83\) 8.44351i 0.926796i −0.886150 0.463398i \(-0.846630\pi\)
0.886150 0.463398i \(-0.153370\pi\)
\(84\) −0.423818 + 1.58171i −0.0462423 + 0.172579i
\(85\) 0 0
\(86\) −0.561871 0.561871i −0.0605882 0.0605882i
\(87\) 0.713764 2.66380i 0.0765236 0.285590i
\(88\) −14.4947 + 3.88383i −1.54514 + 0.414018i
\(89\) 3.79160 + 14.1504i 0.401908 + 1.49994i 0.809687 + 0.586862i \(0.199637\pi\)
−0.407779 + 0.913081i \(0.633696\pi\)
\(90\) 0 0
\(91\) −5.86479 + 13.8441i −0.614797 + 1.45126i
\(92\) 1.40687 + 1.40687i 0.146676 + 0.146676i
\(93\) −1.09327 0.631199i −0.113367 0.0654523i
\(94\) 1.14156 + 0.659078i 0.117743 + 0.0679788i
\(95\) 0 0
\(96\) 1.31081 1.31081i 0.133784 0.133784i
\(97\) −0.386897 0.670125i −0.0392834 0.0680408i 0.845715 0.533634i \(-0.179174\pi\)
−0.884999 + 0.465594i \(0.845841\pi\)
\(98\) 4.74815 + 8.22403i 0.479635 + 0.830752i
\(99\) 10.5878 10.5878i 1.06411 1.06411i
\(100\) 0 0
\(101\) −7.74418 4.47110i −0.770575 0.444892i 0.0625048 0.998045i \(-0.480091\pi\)
−0.833080 + 0.553153i \(0.813424\pi\)
\(102\) 0.804739 + 0.464616i 0.0796810 + 0.0460038i
\(103\) −13.3476 13.3476i −1.31518 1.31518i −0.917541 0.397641i \(-0.869829\pi\)
−0.397641 0.917541i \(-0.630171\pi\)
\(104\) 8.32471 6.28247i 0.816305 0.616047i
\(105\) 0 0
\(106\) −0.135765 0.506681i −0.0131866 0.0492132i
\(107\) −4.75112 + 1.27306i −0.459308 + 0.123071i −0.481051 0.876692i \(-0.659745\pi\)
0.0217436 + 0.999764i \(0.493078\pi\)
\(108\) −0.598251 + 2.23270i −0.0575668 + 0.214842i
\(109\) 1.95993 + 1.95993i 0.187727 + 0.187727i 0.794713 0.606986i \(-0.207621\pi\)
−0.606986 + 0.794713i \(0.707621\pi\)
\(110\) 0 0
\(111\) −0.677385 + 2.52804i −0.0642946 + 0.239951i
\(112\) 1.31402i 0.124164i
\(113\) 7.83033 + 2.09813i 0.736616 + 0.197376i 0.607573 0.794264i \(-0.292143\pi\)
0.129042 + 0.991639i \(0.458810\pi\)
\(114\) 0.854045 1.47925i 0.0799887 0.138544i
\(115\) 0 0
\(116\) 9.52272i 0.884162i
\(117\) −4.05933 + 9.58226i −0.375285 + 0.885880i
\(118\) 6.32272 6.32272i 0.582054 0.582054i
\(119\) −12.1422 + 3.25350i −1.11308 + 0.298248i
\(120\) 0 0
\(121\) 13.7811 7.95650i 1.25282 0.723319i
\(122\) 4.17596 0.378074
\(123\) 0.258039 0.148979i 0.0232666 0.0134330i
\(124\) −4.21058 1.12822i −0.378122 0.101317i
\(125\) 0 0
\(126\) 5.50083 + 9.52771i 0.490053 + 0.848796i
\(127\) 0.815081 + 3.04192i 0.0723268 + 0.269927i 0.992614 0.121317i \(-0.0387116\pi\)
−0.920287 + 0.391244i \(0.872045\pi\)
\(128\) 2.91253 5.04466i 0.257434 0.445889i
\(129\) −0.293150 −0.0258105
\(130\) 0 0
\(131\) 8.63029 0.754032 0.377016 0.926207i \(-0.376950\pi\)
0.377016 + 0.926207i \(0.376950\pi\)
\(132\) −1.01859 + 1.76424i −0.0886566 + 0.153558i
\(133\) 5.98050 + 22.3195i 0.518575 + 1.93535i
\(134\) −3.24753 5.62488i −0.280544 0.485916i
\(135\) 0 0
\(136\) 8.42258 + 2.25682i 0.722231 + 0.193521i
\(137\) −9.64530 + 5.56872i −0.824054 + 0.475768i −0.851812 0.523847i \(-0.824496\pi\)
0.0277585 + 0.999615i \(0.491163\pi\)
\(138\) −0.526684 −0.0448343
\(139\) −12.0068 + 6.93216i −1.01841 + 0.587978i −0.913642 0.406519i \(-0.866742\pi\)
−0.104765 + 0.994497i \(0.533409\pi\)
\(140\) 0 0
\(141\) 0.469731 0.125864i 0.0395585 0.0105997i
\(142\) 1.77983 1.77983i 0.149360 0.149360i
\(143\) −11.5053 + 14.7478i −0.962118 + 1.23327i
\(144\) 0.909506i 0.0757922i
\(145\) 0 0
\(146\) −2.75525 + 4.77223i −0.228026 + 0.394952i
\(147\) 3.38405 + 0.906753i 0.279111 + 0.0747877i
\(148\) 9.03737i 0.742867i
\(149\) −4.63818 + 17.3099i −0.379974 + 1.41808i 0.465965 + 0.884803i \(0.345707\pi\)
−0.845939 + 0.533280i \(0.820959\pi\)
\(150\) 0 0
\(151\) −1.97852 1.97852i −0.161010 0.161010i 0.622004 0.783014i \(-0.286319\pi\)
−0.783014 + 0.622004i \(0.786319\pi\)
\(152\) 4.14844 15.4822i 0.336483 1.25577i
\(153\) −8.40427 + 2.25192i −0.679445 + 0.182057i
\(154\) 5.11797 + 19.1005i 0.412417 + 1.53916i
\(155\) 0 0
\(156\) 0.196045 1.40222i 0.0156961 0.112267i
\(157\) 10.4990 + 10.4990i 0.837914 + 0.837914i 0.988584 0.150670i \(-0.0481431\pi\)
−0.150670 + 0.988584i \(0.548143\pi\)
\(158\) 9.96172 + 5.75140i 0.792512 + 0.457557i
\(159\) −0.167595 0.0967608i −0.0132911 0.00767363i
\(160\) 0 0
\(161\) 5.03808 5.03808i 0.397057 0.397057i
\(162\) 3.65149 + 6.32456i 0.286888 + 0.496904i
\(163\) 1.43243 + 2.48103i 0.112196 + 0.194330i 0.916655 0.399678i \(-0.130878\pi\)
−0.804459 + 0.594008i \(0.797545\pi\)
\(164\) 0.727514 0.727514i 0.0568093 0.0568093i
\(165\) 0 0
\(166\) 6.68401 + 3.85902i 0.518780 + 0.299518i
\(167\) −3.15787 1.82320i −0.244363 0.141083i 0.372817 0.927905i \(-0.378392\pi\)
−0.617180 + 0.786822i \(0.711725\pi\)
\(168\) −2.87625 2.87625i −0.221908 0.221908i
\(169\) 3.56538 12.5015i 0.274260 0.961656i
\(170\) 0 0
\(171\) 4.13942 + 15.4485i 0.316549 + 1.18138i
\(172\) −0.977770 + 0.261993i −0.0745542 + 0.0199767i
\(173\) −1.90689 + 7.11663i −0.144978 + 0.541067i 0.854778 + 0.518994i \(0.173693\pi\)
−0.999756 + 0.0220730i \(0.992973\pi\)
\(174\) 1.78249 + 1.78249i 0.135130 + 0.135130i
\(175\) 0 0
\(176\) 0.423102 1.57904i 0.0318925 0.119024i
\(177\) 3.29881i 0.247954i
\(178\) −12.9346 3.46582i −0.969490 0.259774i
\(179\) 5.02174 8.69791i 0.375343 0.650113i −0.615036 0.788499i \(-0.710858\pi\)
0.990378 + 0.138387i \(0.0441917\pi\)
\(180\) 0 0
\(181\) 10.0395i 0.746233i −0.927785 0.373116i \(-0.878289\pi\)
0.927785 0.373116i \(-0.121711\pi\)
\(182\) −8.27880 10.9700i −0.613665 0.813149i
\(183\) 1.08938 1.08938i 0.0805295 0.0805295i
\(184\) −4.77387 + 1.27916i −0.351935 + 0.0943006i
\(185\) 0 0
\(186\) 0.999334 0.576966i 0.0732747 0.0423052i
\(187\) −15.6387 −1.14361
\(188\) 1.45425 0.839611i 0.106062 0.0612349i
\(189\) 7.99545 + 2.14238i 0.581584 + 0.155835i
\(190\) 0 0
\(191\) −8.40440 14.5568i −0.608121 1.05330i −0.991550 0.129726i \(-0.958590\pi\)
0.383429 0.923570i \(-0.374743\pi\)
\(192\) 0.493573 + 1.84204i 0.0356206 + 0.132938i
\(193\) 8.49185 14.7083i 0.611257 1.05873i −0.379772 0.925080i \(-0.623998\pi\)
0.991029 0.133648i \(-0.0426691\pi\)
\(194\) 0.707308 0.0507818
\(195\) 0 0
\(196\) 12.0975 0.864106
\(197\) 2.26234 3.91848i 0.161185 0.279180i −0.774109 0.633052i \(-0.781802\pi\)
0.935294 + 0.353872i \(0.115135\pi\)
\(198\) 3.54241 + 13.2205i 0.251748 + 0.939538i
\(199\) 4.08425 + 7.07413i 0.289525 + 0.501472i 0.973696 0.227849i \(-0.0731694\pi\)
−0.684171 + 0.729321i \(0.739836\pi\)
\(200\) 0 0
\(201\) −2.31454 0.620180i −0.163255 0.0437441i
\(202\) 7.07879 4.08694i 0.498062 0.287556i
\(203\) −34.1014 −2.39345
\(204\) 1.02517 0.591882i 0.0717762 0.0414400i
\(205\) 0 0
\(206\) 16.6666 4.46580i 1.16122 0.311147i
\(207\) 3.48712 3.48712i 0.242372 0.242372i
\(208\) 0.139271 + 1.12759i 0.00965668 + 0.0781843i
\(209\) 28.7466i 1.98844i
\(210\) 0 0
\(211\) −7.05655 + 12.2223i −0.485793 + 0.841418i −0.999867 0.0163277i \(-0.994802\pi\)
0.514074 + 0.857746i \(0.328136\pi\)
\(212\) −0.645469 0.172953i −0.0443310 0.0118785i
\(213\) 0.928610i 0.0636273i
\(214\) 1.16368 4.34289i 0.0795472 0.296874i
\(215\) 0 0
\(216\) −4.06005 4.06005i −0.276251 0.276251i
\(217\) −4.04023 + 15.0784i −0.274269 + 1.02359i
\(218\) −2.44727 + 0.655745i −0.165750 + 0.0444127i
\(219\) 0.526169 + 1.96369i 0.0355552 + 0.132694i
\(220\) 0 0
\(221\) 10.0747 4.07882i 0.677694 0.274371i
\(222\) −1.69164 1.69164i −0.113536 0.113536i
\(223\) 18.3866 + 10.6155i 1.23125 + 0.710865i 0.967291 0.253667i \(-0.0816369\pi\)
0.263963 + 0.964533i \(0.414970\pi\)
\(224\) −19.8518 11.4614i −1.32640 0.765800i
\(225\) 0 0
\(226\) −5.23968 + 5.23968i −0.348539 + 0.348539i
\(227\) 7.72867 + 13.3865i 0.512970 + 0.888490i 0.999887 + 0.0150418i \(0.00478813\pi\)
−0.486917 + 0.873448i \(0.661879\pi\)
\(228\) −1.08798 1.88444i −0.0720534 0.124800i
\(229\) 4.47959 4.47959i 0.296020 0.296020i −0.543433 0.839453i \(-0.682876\pi\)
0.839453 + 0.543433i \(0.182876\pi\)
\(230\) 0 0
\(231\) 6.31786 + 3.64762i 0.415685 + 0.239996i
\(232\) 20.4857 + 11.8274i 1.34495 + 0.776507i
\(233\) −3.54772 3.54772i −0.232419 0.232419i 0.581283 0.813702i \(-0.302551\pi\)
−0.813702 + 0.581283i \(0.802551\pi\)
\(234\) −5.73019 7.59290i −0.374594 0.496363i
\(235\) 0 0
\(236\) −2.94819 11.0028i −0.191911 0.716222i
\(237\) 4.09908 1.09834i 0.266264 0.0713452i
\(238\) 2.97396 11.0990i 0.192773 0.719438i
\(239\) −3.55914 3.55914i −0.230222 0.230222i 0.582563 0.812785i \(-0.302050\pi\)
−0.812785 + 0.582563i \(0.802050\pi\)
\(240\) 0 0
\(241\) −0.187912 + 0.701296i −0.0121044 + 0.0451744i −0.971714 0.236161i \(-0.924111\pi\)
0.959609 + 0.281335i \(0.0907774\pi\)
\(242\) 14.5457i 0.935036i
\(243\) 8.35457 + 2.23860i 0.535946 + 0.143606i
\(244\) 2.65991 4.60711i 0.170284 0.294940i
\(245\) 0 0
\(246\) 0.272356i 0.0173648i
\(247\) −7.49758 18.5190i −0.477060 1.17833i
\(248\) 7.65671 7.65671i 0.486202 0.486202i
\(249\) 2.75036 0.736956i 0.174297 0.0467027i
\(250\) 0 0
\(251\) −12.5444 + 7.24253i −0.791797 + 0.457144i −0.840595 0.541664i \(-0.817794\pi\)
0.0487976 + 0.998809i \(0.484461\pi\)
\(252\) 14.0152 0.882874
\(253\) 7.67637 4.43195i 0.482609 0.278634i
\(254\) −2.78056 0.745049i −0.174468 0.0467485i
\(255\) 0 0
\(256\) 8.31729 + 14.4060i 0.519831 + 0.900373i
\(257\) −8.11269 30.2770i −0.506056 1.88862i −0.456219 0.889868i \(-0.650797\pi\)
−0.0498367 0.998757i \(-0.515870\pi\)
\(258\) 0.133981 0.232062i 0.00834131 0.0144476i
\(259\) 32.3634 2.01096
\(260\) 0 0
\(261\) −23.6034 −1.46101
\(262\) −3.94438 + 6.83187i −0.243685 + 0.422074i
\(263\) −5.25932 19.6281i −0.324304 1.21032i −0.915010 0.403431i \(-0.867817\pi\)
0.590706 0.806887i \(-0.298849\pi\)
\(264\) −2.53021 4.38245i −0.155724 0.269721i
\(265\) 0 0
\(266\) −20.4018 5.46665i −1.25092 0.335182i
\(267\) −4.27837 + 2.47012i −0.261832 + 0.151169i
\(268\) −8.27415 −0.505424
\(269\) 20.6369 11.9147i 1.25825 0.726453i 0.285519 0.958373i \(-0.407834\pi\)
0.972735 + 0.231919i \(0.0745006\pi\)
\(270\) 0 0
\(271\) −6.39629 + 1.71388i −0.388547 + 0.104111i −0.447804 0.894132i \(-0.647794\pi\)
0.0592568 + 0.998243i \(0.481127\pi\)
\(272\) −0.671693 + 0.671693i −0.0407274 + 0.0407274i
\(273\) −5.02142 0.702047i −0.303910 0.0424898i
\(274\) 10.1805i 0.615026i
\(275\) 0 0
\(276\) −0.335475 + 0.581061i −0.0201932 + 0.0349757i
\(277\) −24.6232 6.59777i −1.47947 0.396422i −0.573301 0.819345i \(-0.694337\pi\)
−0.906165 + 0.422923i \(0.861004\pi\)
\(278\) 12.6731i 0.760081i
\(279\) −2.79646 + 10.4365i −0.167420 + 0.624818i
\(280\) 0 0
\(281\) 9.24115 + 9.24115i 0.551281 + 0.551281i 0.926810 0.375530i \(-0.122539\pi\)
−0.375530 + 0.926810i \(0.622539\pi\)
\(282\) −0.115050 + 0.429371i −0.00685111 + 0.0255687i
\(283\) 9.79438 2.62440i 0.582216 0.156004i 0.0443225 0.999017i \(-0.485887\pi\)
0.537893 + 0.843013i \(0.319220\pi\)
\(284\) −0.829911 3.09727i −0.0492462 0.183789i
\(285\) 0 0
\(286\) −6.41625 15.8481i −0.379401 0.937116i
\(287\) −2.60527 2.60527i −0.153784 0.153784i
\(288\) −13.7405 7.93307i −0.809665 0.467461i
\(289\) −6.85257 3.95633i −0.403092 0.232725i
\(290\) 0 0
\(291\) 0.184515 0.184515i 0.0108165 0.0108165i
\(292\) 3.50995 + 6.07942i 0.205405 + 0.355771i
\(293\) 5.91259 + 10.2409i 0.345417 + 0.598280i 0.985429 0.170085i \(-0.0544041\pi\)
−0.640012 + 0.768365i \(0.721071\pi\)
\(294\) −2.26444 + 2.26444i −0.132065 + 0.132065i
\(295\) 0 0
\(296\) −19.4416 11.2246i −1.13002 0.652416i
\(297\) 8.91815 + 5.14890i 0.517484 + 0.298769i
\(298\) −11.5830 11.5830i −0.670983 0.670983i
\(299\) −3.78930 + 4.85725i −0.219141 + 0.280902i
\(300\) 0 0
\(301\) 0.938212 + 3.50145i 0.0540776 + 0.201820i
\(302\) 2.47049 0.661966i 0.142161 0.0380918i
\(303\) 0.780483 2.91280i 0.0448376 0.167336i
\(304\) 1.23469 + 1.23469i 0.0708142 + 0.0708142i
\(305\) 0 0
\(306\) 2.05843 7.68217i 0.117673 0.439160i
\(307\) 24.7916i 1.41493i −0.706747 0.707467i \(-0.749838\pi\)
0.706747 0.707467i \(-0.250162\pi\)
\(308\) 24.3324 + 6.51986i 1.38647 + 0.371503i
\(309\) 3.18282 5.51280i 0.181064 0.313612i
\(310\) 0 0
\(311\) 24.3734i 1.38209i 0.722812 + 0.691045i \(0.242849\pi\)
−0.722812 + 0.691045i \(0.757151\pi\)
\(312\) 2.77301 + 2.16332i 0.156991 + 0.122474i
\(313\) −8.82280 + 8.82280i −0.498694 + 0.498694i −0.911031 0.412337i \(-0.864713\pi\)
0.412337 + 0.911031i \(0.364713\pi\)
\(314\) −13.1097 + 3.51273i −0.739822 + 0.198235i
\(315\) 0 0
\(316\) 12.6904 7.32681i 0.713891 0.412165i
\(317\) −3.43365 −0.192853 −0.0964266 0.995340i \(-0.530741\pi\)
−0.0964266 + 0.995340i \(0.530741\pi\)
\(318\) 0.153195 0.0884470i 0.00859073 0.00495986i
\(319\) −40.9790 10.9803i −2.29438 0.614778i
\(320\) 0 0
\(321\) −0.829362 1.43650i −0.0462905 0.0801774i
\(322\) 1.68562 + 6.29083i 0.0939360 + 0.350574i
\(323\) 8.35205 14.4662i 0.464721 0.804920i
\(324\) 9.30338 0.516854
\(325\) 0 0
\(326\) −2.61870 −0.145036
\(327\) −0.467355 + 0.809483i −0.0258448 + 0.0447645i
\(328\) 0.661472 + 2.46865i 0.0365237 + 0.136308i
\(329\) −3.00670 5.20775i −0.165765 0.287113i
\(330\) 0 0
\(331\) −4.89235 1.31090i −0.268908 0.0720536i 0.121845 0.992549i \(-0.461119\pi\)
−0.390753 + 0.920495i \(0.627785\pi\)
\(332\) 8.51487 4.91606i 0.467314 0.269804i
\(333\) 22.4004 1.22753
\(334\) 2.88654 1.66654i 0.157944 0.0911893i
\(335\) 0 0
\(336\) 0.428026 0.114689i 0.0233507 0.00625680i
\(337\) −6.10952 + 6.10952i −0.332807 + 0.332807i −0.853651 0.520845i \(-0.825617\pi\)
0.520845 + 0.853651i \(0.325617\pi\)
\(338\) 8.26688 + 8.53610i 0.449659 + 0.464303i
\(339\) 2.73375i 0.148477i
\(340\) 0 0
\(341\) −9.71013 + 16.8184i −0.525833 + 0.910770i
\(342\) −14.1212 3.78375i −0.763585 0.204602i
\(343\) 14.1318i 0.763045i
\(344\) 0.650800 2.42882i 0.0350888 0.130953i
\(345\) 0 0
\(346\) −4.76211 4.76211i −0.256012 0.256012i
\(347\) −7.51485 + 28.0458i −0.403418 + 1.50558i 0.403536 + 0.914964i \(0.367781\pi\)
−0.806954 + 0.590614i \(0.798886\pi\)
\(348\) 3.10189 0.831150i 0.166279 0.0445543i
\(349\) −0.992964 3.70579i −0.0531522 0.198367i 0.934244 0.356634i \(-0.116076\pi\)
−0.987396 + 0.158268i \(0.949409\pi\)
\(350\) 0 0
\(351\) −7.08812 0.990994i −0.378336 0.0528953i
\(352\) −20.1650 20.1650i −1.07480 1.07480i
\(353\) 22.1433 + 12.7844i 1.17857 + 0.680446i 0.955683 0.294399i \(-0.0951195\pi\)
0.222884 + 0.974845i \(0.428453\pi\)
\(354\) 2.61139 + 1.50769i 0.138794 + 0.0801327i
\(355\) 0 0
\(356\) −12.0624 + 12.0624i −0.639308 + 0.639308i
\(357\) −2.11957 3.67120i −0.112179 0.194300i
\(358\) 4.59027 + 7.95058i 0.242603 + 0.420201i
\(359\) −16.4517 + 16.4517i −0.868286 + 0.868286i −0.992283 0.123997i \(-0.960429\pi\)
0.123997 + 0.992283i \(0.460429\pi\)
\(360\) 0 0
\(361\) −10.1369 5.85252i −0.533519 0.308028i
\(362\) 7.94745 + 4.58846i 0.417709 + 0.241164i
\(363\) 3.79454 + 3.79454i 0.199162 + 0.199162i
\(364\) −17.3758 + 2.14611i −0.910740 + 0.112487i
\(365\) 0 0
\(366\) 0.364481 + 1.36026i 0.0190517 + 0.0711021i
\(367\) −11.4621 + 3.07127i −0.598319 + 0.160319i −0.545252 0.838272i \(-0.683566\pi\)
−0.0530664 + 0.998591i \(0.516899\pi\)
\(368\) 0.139350 0.520062i 0.00726413 0.0271101i
\(369\) −1.80325 1.80325i −0.0938732 0.0938732i
\(370\) 0 0
\(371\) −0.619355 + 2.31146i −0.0321553 + 0.120005i
\(372\) 1.47001i 0.0762166i
\(373\) −4.03365 1.08081i −0.208855 0.0559624i 0.152875 0.988246i \(-0.451147\pi\)
−0.361729 + 0.932283i \(0.617814\pi\)
\(374\) 7.14748 12.3798i 0.369588 0.640144i
\(375\) 0 0
\(376\) 4.17125i 0.215116i
\(377\) 29.2631 3.61434i 1.50713 0.186148i
\(378\) −5.35018 + 5.35018i −0.275183 + 0.275183i
\(379\) 10.7615 2.88353i 0.552781 0.148117i 0.0283931 0.999597i \(-0.490961\pi\)
0.524388 + 0.851480i \(0.324294\pi\)
\(380\) 0 0
\(381\) −0.919724 + 0.531003i −0.0471189 + 0.0272041i
\(382\) 15.3646 0.786119
\(383\) −6.35744 + 3.67047i −0.324850 + 0.187552i −0.653552 0.756881i \(-0.726722\pi\)
0.328702 + 0.944434i \(0.393389\pi\)
\(384\) 1.89743 + 0.508416i 0.0968281 + 0.0259450i
\(385\) 0 0
\(386\) 7.76222 + 13.4446i 0.395087 + 0.684310i
\(387\) 0.649386 + 2.42354i 0.0330101 + 0.123195i
\(388\) 0.450526 0.780333i 0.0228720 0.0396154i
\(389\) 26.6060 1.34898 0.674488 0.738286i \(-0.264364\pi\)
0.674488 + 0.738286i \(0.264364\pi\)
\(390\) 0 0
\(391\) −5.15065 −0.260480
\(392\) −15.0253 + 26.0246i −0.758893 + 1.31444i
\(393\) 0.753258 + 2.81120i 0.0379969 + 0.141806i
\(394\) 2.06796 + 3.58180i 0.104182 + 0.180449i
\(395\) 0 0
\(396\) 16.8418 + 4.51274i 0.846330 + 0.226774i
\(397\) −18.3053 + 10.5686i −0.918717 + 0.530421i −0.883225 0.468949i \(-0.844633\pi\)
−0.0354913 + 0.999370i \(0.511300\pi\)
\(398\) −7.46666 −0.374270
\(399\) −6.74830 + 3.89613i −0.337837 + 0.195050i
\(400\) 0 0
\(401\) 6.09429 1.63296i 0.304334 0.0815461i −0.103420 0.994638i \(-0.532979\pi\)
0.407754 + 0.913092i \(0.366312\pi\)
\(402\) 1.54878 1.54878i 0.0772462 0.0772462i
\(403\) 1.86888 13.3673i 0.0930957 0.665870i
\(404\) 10.4128i 0.518058i
\(405\) 0 0
\(406\) 15.5857 26.9952i 0.773505 1.33975i
\(407\) 38.8904 + 10.4206i 1.92772 + 0.516532i
\(408\) 2.94052i 0.145577i
\(409\) 3.27126 12.2085i 0.161753 0.603672i −0.836679 0.547694i \(-0.815506\pi\)
0.998432 0.0559775i \(-0.0178275\pi\)
\(410\) 0 0
\(411\) −2.65578 2.65578i −0.131000 0.131000i
\(412\) 5.68906 21.2318i 0.280280 1.04602i
\(413\) −39.4017 + 10.5577i −1.93883 + 0.519509i
\(414\) 1.16671 + 4.35421i 0.0573406 + 0.213998i
\(415\) 0 0
\(416\) 18.2500 + 7.73124i 0.894780 + 0.379055i
\(417\) −3.30602 3.30602i −0.161897 0.161897i
\(418\) −22.7562 13.1383i −1.11304 0.642616i
\(419\) 19.9068 + 11.4932i 0.972511 + 0.561480i 0.900001 0.435888i \(-0.143566\pi\)
0.0725104 + 0.997368i \(0.476899\pi\)
\(420\) 0 0
\(421\) 25.2576 25.2576i 1.23098 1.23098i 0.267395 0.963587i \(-0.413837\pi\)
0.963587 0.267395i \(-0.0861627\pi\)
\(422\) −6.45025 11.1722i −0.313993 0.543852i
\(423\) −2.08109 3.60456i −0.101186 0.175260i
\(424\) 1.17375 1.17375i 0.0570023 0.0570023i
\(425\) 0 0
\(426\) 0.735102 + 0.424411i 0.0356158 + 0.0205628i
\(427\) −16.4983 9.52532i −0.798410 0.460962i
\(428\) −4.05006 4.05006i −0.195767 0.195767i
\(429\) −5.80809 2.46048i −0.280417 0.118793i
\(430\) 0 0
\(431\) 1.01246 + 3.77857i 0.0487687 + 0.182007i 0.986014 0.166664i \(-0.0532996\pi\)
−0.937245 + 0.348671i \(0.886633\pi\)
\(432\) 0.604191 0.161892i 0.0290691 0.00778905i
\(433\) −8.91900 + 33.2862i −0.428620 + 1.59963i 0.327269 + 0.944931i \(0.393872\pi\)
−0.755889 + 0.654700i \(0.772795\pi\)
\(434\) −10.0897 10.0897i −0.484322 0.484322i
\(435\) 0 0
\(436\) −0.835364 + 3.11762i −0.0400067 + 0.149307i
\(437\) 9.46780i 0.452906i
\(438\) −1.79497 0.480960i −0.0857669 0.0229812i
\(439\) −11.1274 + 19.2732i −0.531081 + 0.919859i 0.468261 + 0.883590i \(0.344881\pi\)
−0.999342 + 0.0362692i \(0.988453\pi\)
\(440\) 0 0
\(441\) 29.9853i 1.42787i
\(442\) −1.37566 + 9.83943i −0.0654333 + 0.468014i
\(443\) 2.45786 2.45786i 0.116776 0.116776i −0.646304 0.763080i \(-0.723686\pi\)
0.763080 + 0.646304i \(0.223686\pi\)
\(444\) −2.94380 + 0.788788i −0.139706 + 0.0374342i
\(445\) 0 0
\(446\) −16.8068 + 9.70339i −0.795823 + 0.459469i
\(447\) −6.04329 −0.285838
\(448\) 20.4221 11.7907i 0.964852 0.557058i
\(449\) 27.1100 + 7.26410i 1.27940 + 0.342814i 0.833625 0.552331i \(-0.186262\pi\)
0.445775 + 0.895145i \(0.352928\pi\)
\(450\) 0 0
\(451\) −2.29183 3.96957i −0.107918 0.186920i
\(452\) 2.44319 + 9.11811i 0.114918 + 0.428880i
\(453\) 0.471789 0.817163i 0.0221666 0.0383936i
\(454\) −14.1292 −0.663118
\(455\) 0 0
\(456\) 5.40518 0.253121
\(457\) 18.5211 32.0795i 0.866381 1.50062i 0.000712325 1.00000i \(-0.499773\pi\)
0.865669 0.500617i \(-0.166893\pi\)
\(458\) 1.49876 + 5.59346i 0.0700326 + 0.261365i
\(459\) −2.99193 5.18217i −0.139651 0.241883i
\(460\) 0 0
\(461\) 38.7623 + 10.3863i 1.80534 + 0.483740i 0.994792 0.101931i \(-0.0325020\pi\)
0.810549 + 0.585670i \(0.199169\pi\)
\(462\) −5.77503 + 3.33421i −0.268679 + 0.155122i
\(463\) 3.45704 0.160663 0.0803313 0.996768i \(-0.474402\pi\)
0.0803313 + 0.996768i \(0.474402\pi\)
\(464\) −2.23169 + 1.28847i −0.103604 + 0.0598156i
\(465\) 0 0
\(466\) 4.42988 1.18698i 0.205210 0.0549859i
\(467\) −4.75622 + 4.75622i −0.220092 + 0.220092i −0.808537 0.588445i \(-0.799740\pi\)
0.588445 + 0.808537i \(0.299740\pi\)
\(468\) −12.0267 + 1.48544i −0.555935 + 0.0686644i
\(469\) 29.6302i 1.36820i
\(470\) 0 0
\(471\) −2.50355 + 4.33628i −0.115358 + 0.199805i
\(472\) 27.3314 + 7.32344i 1.25803 + 0.337088i
\(473\) 4.50972i 0.207357i
\(474\) −1.00397 + 3.74688i −0.0461140 + 0.172100i
\(475\) 0 0
\(476\) −10.3506 10.3506i −0.474417 0.474417i
\(477\) −0.428688 + 1.59989i −0.0196283 + 0.0732538i
\(478\) 4.44414 1.19080i 0.203270 0.0544661i
\(479\) 0.0302527 + 0.112905i 0.00138228 + 0.00515874i 0.966614 0.256239i \(-0.0824833\pi\)
−0.965231 + 0.261397i \(0.915817\pi\)
\(480\) 0 0
\(481\) −27.7716 + 3.43012i −1.26628 + 0.156400i
\(482\) −0.469273 0.469273i −0.0213748 0.0213748i
\(483\) 2.08081 + 1.20136i 0.0946803 + 0.0546637i
\(484\) 16.0475 + 9.26503i 0.729432 + 0.421138i
\(485\) 0 0
\(486\) −5.59048 + 5.59048i −0.253589 + 0.253589i
\(487\) 5.32225 + 9.21841i 0.241174 + 0.417726i 0.961049 0.276378i \(-0.0891341\pi\)
−0.719875 + 0.694104i \(0.755801\pi\)
\(488\) 6.60734 + 11.4442i 0.299100 + 0.518057i
\(489\) −0.683139 + 0.683139i −0.0308926 + 0.0308926i
\(490\) 0 0
\(491\) 27.0138 + 15.5964i 1.21912 + 0.703857i 0.964729 0.263246i \(-0.0847929\pi\)
0.254387 + 0.967102i \(0.418126\pi\)
\(492\) 0.300476 + 0.173480i 0.0135465 + 0.00782107i
\(493\) 17.4317 + 17.4317i 0.785084 + 0.785084i
\(494\) 18.0866 + 2.52870i 0.813754 + 0.113771i
\(495\) 0 0
\(496\) 0.305308 + 1.13942i 0.0137087 + 0.0511616i
\(497\) −11.0915 + 2.97196i −0.497523 + 0.133311i
\(498\) −0.673636 + 2.51404i −0.0301863 + 0.112657i
\(499\) 6.58133 + 6.58133i 0.294621 + 0.294621i 0.838903 0.544282i \(-0.183198\pi\)
−0.544282 + 0.838903i \(0.683198\pi\)
\(500\) 0 0
\(501\) 0.318260 1.18776i 0.0142188 0.0530653i
\(502\) 13.2405i 0.590952i
\(503\) −41.2382 11.0497i −1.83872 0.492683i −0.839968 0.542637i \(-0.817426\pi\)
−0.998752 + 0.0499533i \(0.984093\pi\)
\(504\) −17.4072 + 30.1501i −0.775376 + 1.34299i
\(505\) 0 0
\(506\) 8.10231i 0.360192i
\(507\) 4.38339 + 0.0702315i 0.194673 + 0.00311909i
\(508\) −2.59307 + 2.59307i −0.115049 + 0.115049i
\(509\) −11.1097 + 2.97683i −0.492429 + 0.131946i −0.496484 0.868046i \(-0.665376\pi\)
0.00405535 + 0.999992i \(0.498709\pi\)
\(510\) 0 0
\(511\) 21.7708 12.5694i 0.963082 0.556036i
\(512\) −3.55518 −0.157118
\(513\) −9.52574 + 5.49969i −0.420572 + 0.242817i
\(514\) 27.6755 + 7.41564i 1.22072 + 0.327090i
\(515\) 0 0
\(516\) −0.170681 0.295628i −0.00751381 0.0130143i
\(517\) −1.93625 7.22617i −0.0851561 0.317807i
\(518\) −14.7913 + 25.6193i −0.649894 + 1.12565i
\(519\) −2.48458 −0.109061
\(520\) 0 0
\(521\) 9.73221 0.426376 0.213188 0.977011i \(-0.431615\pi\)
0.213188 + 0.977011i \(0.431615\pi\)
\(522\) 10.7877 18.6848i 0.472164 0.817812i
\(523\) 3.04051 + 11.3473i 0.132952 + 0.496184i 0.999998 0.00204420i \(-0.000650689\pi\)
−0.867046 + 0.498229i \(0.833984\pi\)
\(524\) 5.02481 + 8.70323i 0.219510 + 0.380202i
\(525\) 0 0
\(526\) 17.9416 + 4.80744i 0.782291 + 0.209614i
\(527\) 9.77289 5.64238i 0.425714 0.245786i
\(528\) 0.551278 0.0239913
\(529\) −17.3903 + 10.0403i −0.756102 + 0.436536i
\(530\) 0 0
\(531\) −27.2720 + 7.30752i −1.18350 + 0.317119i
\(532\) −19.0261 + 19.0261i −0.824888 + 0.824888i
\(533\) 2.51176 + 1.95951i 0.108796 + 0.0848757i
\(534\) 4.51577i 0.195416i
\(535\) 0 0
\(536\) 10.2767 17.7997i 0.443884 0.768830i
\(537\) 3.27153 + 0.876603i 0.141177 + 0.0378282i
\(538\) 21.7820i 0.939088i
\(539\) 13.9491 52.0589i 0.600832 2.24234i
\(540\) 0 0
\(541\) 14.8972 + 14.8972i 0.640479 + 0.640479i 0.950673 0.310194i \(-0.100394\pi\)
−0.310194 + 0.950673i \(0.600394\pi\)
\(542\) 1.56662 5.84671i 0.0672922 0.251138i
\(543\) 3.27024 0.876258i 0.140339 0.0376038i
\(544\) 4.28892 + 16.0065i 0.183886 + 0.686271i
\(545\) 0 0
\(546\) 2.85074 3.65417i 0.122000 0.156384i
\(547\) 32.7790 + 32.7790i 1.40153 + 1.40153i 0.795262 + 0.606266i \(0.207333\pi\)
0.606266 + 0.795262i \(0.292667\pi\)
\(548\) −11.2316 6.48455i −0.479789 0.277006i
\(549\) −11.4194 6.59297i −0.487367 0.281381i
\(550\) 0 0
\(551\) 32.0425 32.0425i 1.36506 1.36506i
\(552\) −0.833335 1.44338i −0.0354691 0.0614343i
\(553\) −26.2377 45.4451i −1.11574 1.93252i
\(554\) 16.4767 16.4767i 0.700027 0.700027i
\(555\) 0 0
\(556\) −13.9815 8.07222i −0.592947 0.342338i
\(557\) −32.9089 18.9999i −1.39439 0.805053i −0.400595 0.916255i \(-0.631197\pi\)
−0.993798 + 0.111202i \(0.964530\pi\)
\(558\) −6.98362 6.98362i −0.295640 0.295640i
\(559\) −1.17621 2.90523i −0.0497483 0.122878i
\(560\) 0 0
\(561\) −1.36495 5.09408i −0.0576284 0.215072i
\(562\) −11.5390 + 3.09187i −0.486744 + 0.130423i
\(563\) 7.31631 27.3048i 0.308346 1.15076i −0.621681 0.783270i \(-0.713550\pi\)
0.930027 0.367492i \(-0.119783\pi\)
\(564\) 0.400419 + 0.400419i 0.0168607 + 0.0168607i
\(565\) 0 0
\(566\) −2.39891 + 8.95284i −0.100834 + 0.376316i
\(567\) 33.3160i 1.39914i
\(568\) 7.69375 + 2.06153i 0.322823 + 0.0865000i
\(569\) −7.77409 + 13.4651i −0.325907 + 0.564487i −0.981695 0.190457i \(-0.939003\pi\)
0.655789 + 0.754945i \(0.272336\pi\)
\(570\) 0 0
\(571\) 27.1740i 1.13720i 0.822616 + 0.568598i \(0.192514\pi\)
−0.822616 + 0.568598i \(0.807486\pi\)
\(572\) −21.5712 3.01588i −0.901936 0.126100i
\(573\) 4.00815 4.00815i 0.167443 0.167443i
\(574\) 3.25309 0.871662i 0.135781 0.0363825i
\(575\) 0 0
\(576\) 14.1352 8.16096i 0.588966 0.340040i
\(577\) 36.9310 1.53746 0.768730 0.639574i \(-0.220889\pi\)
0.768730 + 0.639574i \(0.220889\pi\)
\(578\) 6.26379 3.61640i 0.260539 0.150422i
\(579\) 5.53221 + 1.48235i 0.229911 + 0.0616044i
\(580\) 0 0
\(581\) −17.6047 30.4923i −0.730367 1.26503i
\(582\) 0.0617344 + 0.230396i 0.00255897 + 0.00955022i
\(583\) −1.48853 + 2.57821i −0.0616487 + 0.106779i
\(584\) −17.4377 −0.721579
\(585\) 0 0
\(586\) −10.8091 −0.446522
\(587\) −12.8465 + 22.2508i −0.530232 + 0.918388i 0.469146 + 0.883120i \(0.344562\pi\)
−0.999378 + 0.0352676i \(0.988772\pi\)
\(588\) 1.05588 + 3.94059i 0.0435436 + 0.162507i
\(589\) −10.3717 17.9643i −0.427357 0.740205i
\(590\) 0 0
\(591\) 1.47385 + 0.394917i 0.0606261 + 0.0162447i
\(592\) 2.11795 1.22280i 0.0870471 0.0502567i
\(593\) 21.2325 0.871915 0.435958 0.899967i \(-0.356410\pi\)
0.435958 + 0.899967i \(0.356410\pi\)
\(594\) −8.15189 + 4.70650i −0.334476 + 0.193110i
\(595\) 0 0
\(596\) −20.1567 + 5.40097i −0.825650 + 0.221232i
\(597\) −1.94782 + 1.94782i −0.0797191 + 0.0797191i
\(598\) −2.11322 5.21963i −0.0864158 0.213446i
\(599\) 21.3026i 0.870403i −0.900333 0.435201i \(-0.856677\pi\)
0.900333 0.435201i \(-0.143323\pi\)
\(600\) 0 0
\(601\) −0.552019 + 0.956124i −0.0225173 + 0.0390011i −0.877064 0.480373i \(-0.840501\pi\)
0.854547 + 0.519374i \(0.173835\pi\)
\(602\) −3.20060 0.857599i −0.130447 0.0349531i
\(603\) 20.5087i 0.835177i
\(604\) 0.843289 3.14720i 0.0343129 0.128058i
\(605\) 0 0
\(606\) 1.94911 + 1.94911i 0.0791771 + 0.0791771i
\(607\) 5.49058 20.4911i 0.222856 0.831709i −0.760397 0.649459i \(-0.774995\pi\)
0.983252 0.182250i \(-0.0583379\pi\)
\(608\) 29.4226 7.88377i 1.19325 0.319729i
\(609\) −2.97640 11.1081i −0.120610 0.450122i
\(610\) 0 0
\(611\) 3.13206 + 4.15020i 0.126710 + 0.167899i
\(612\) −7.16417 7.16417i −0.289594 0.289594i
\(613\) −7.63018 4.40529i −0.308180 0.177928i 0.337932 0.941171i \(-0.390273\pi\)
−0.646112 + 0.763243i \(0.723606\pi\)
\(614\) 19.6254 + 11.3308i 0.792018 + 0.457272i
\(615\) 0 0
\(616\) −44.2472 + 44.2472i −1.78277 + 1.78277i
\(617\) 20.8856 + 36.1750i 0.840825 + 1.45635i 0.889199 + 0.457521i \(0.151263\pi\)
−0.0483741 + 0.998829i \(0.515404\pi\)
\(618\) 2.90935 + 5.03914i 0.117031 + 0.202704i
\(619\) −0.180435 + 0.180435i −0.00725231 + 0.00725231i −0.710724 0.703471i \(-0.751632\pi\)
0.703471 + 0.710724i \(0.251632\pi\)
\(620\) 0 0
\(621\) 2.93723 + 1.69581i 0.117867 + 0.0680505i
\(622\) −19.2944 11.1396i −0.773634 0.446658i
\(623\) 43.1964 + 43.1964i 1.73063 + 1.73063i
\(624\) −0.355141 + 0.143782i −0.0142170 + 0.00575590i
\(625\) 0 0
\(626\) −2.95190 11.0166i −0.117982 0.440313i
\(627\) −9.36380 + 2.50902i −0.373954 + 0.100201i
\(628\) −4.47492 + 16.7006i −0.178569 + 0.666427i
\(629\) −16.5432 16.5432i −0.659622 0.659622i
\(630\) 0 0
\(631\) −2.63181 + 9.82203i −0.104771 + 0.391009i −0.998319 0.0579577i \(-0.981541\pi\)
0.893549 + 0.448967i \(0.148208\pi\)
\(632\) 36.4002i 1.44792i
\(633\) −4.59715 1.23180i −0.182720 0.0489598i
\(634\) 1.56931 2.71813i 0.0623254 0.107951i
\(635\) 0 0
\(636\) 0.225348i 0.00893563i
\(637\) 4.59158 + 37.1753i 0.181925 + 1.47294i
\(638\) 27.4212 27.4212i 1.08562 1.08562i
\(639\) −7.67702 + 2.05705i −0.303698 + 0.0813757i
\(640\) 0 0
\(641\) −3.87783 + 2.23887i −0.153165 + 0.0884299i −0.574624 0.818418i \(-0.694852\pi\)
0.421459 + 0.906848i \(0.361518\pi\)
\(642\) 1.51620 0.0598398
\(643\) −16.2870 + 9.40328i −0.642295 + 0.370829i −0.785498 0.618864i \(-0.787593\pi\)
0.143203 + 0.989693i \(0.454260\pi\)
\(644\) 8.01399 + 2.14734i 0.315795 + 0.0846171i
\(645\) 0 0
\(646\) 7.63443 + 13.2232i 0.300373 + 0.520261i
\(647\) 3.67805 + 13.7267i 0.144599 + 0.539652i 0.999773 + 0.0213101i \(0.00678373\pi\)
−0.855174 + 0.518342i \(0.826550\pi\)
\(648\) −11.5550 + 20.0138i −0.453923 + 0.786217i
\(649\) −50.7477 −1.99202
\(650\) 0 0
\(651\) −5.26420 −0.206320
\(652\) −1.66800 + 2.88906i −0.0653240 + 0.113144i
\(653\) −9.80386 36.5885i −0.383655 1.43182i −0.840277 0.542158i \(-0.817607\pi\)
0.456622 0.889661i \(-0.349059\pi\)
\(654\) −0.427200 0.739932i −0.0167048 0.0289336i
\(655\) 0 0
\(656\) −0.268932 0.0720602i −0.0105000 0.00281348i
\(657\) 15.0687 8.69992i 0.587886 0.339416i
\(658\) 5.49672 0.214284
\(659\) 10.6520 6.14995i 0.414944 0.239568i −0.277968 0.960590i \(-0.589661\pi\)
0.692912 + 0.721022i \(0.256328\pi\)
\(660\) 0 0
\(661\) 5.05178 1.35362i 0.196491 0.0526497i −0.159231 0.987241i \(-0.550901\pi\)
0.355722 + 0.934592i \(0.384235\pi\)
\(662\) 3.27373 3.27373i 0.127237 0.127237i
\(663\) 2.20794 + 2.92568i 0.0857494 + 0.113624i
\(664\) 24.4234i 0.947812i
\(665\) 0 0
\(666\) −10.2379 + 17.7325i −0.396709 + 0.687120i
\(667\) −13.4966 3.61640i −0.522590 0.140028i
\(668\) 4.24608i 0.164286i
\(669\) −1.85305 + 6.91569i −0.0716432 + 0.267376i
\(670\) 0 0
\(671\) −16.7587 16.7587i −0.646961 0.646961i
\(672\) 2.00073 7.46682i 0.0771797 0.288039i
\(673\) 35.0474 9.39092i 1.35098 0.361993i 0.490482 0.871452i \(-0.336821\pi\)
0.860495 + 0.509458i \(0.170154\pi\)
\(674\) −2.04410 7.62868i −0.0787357 0.293846i
\(675\) 0 0
\(676\) 14.6831 3.68325i 0.564733 0.141663i
\(677\) −17.7672 17.7672i −0.682851 0.682851i 0.277791 0.960642i \(-0.410398\pi\)
−0.960642 + 0.277791i \(0.910398\pi\)
\(678\) −2.16408 1.24943i −0.0831109 0.0479841i
\(679\) −2.79442 1.61336i −0.107240 0.0619151i
\(680\) 0 0
\(681\) −3.68589 + 3.68589i −0.141244 + 0.141244i
\(682\) −8.87583 15.3734i −0.339873 0.588677i
\(683\) 10.5865 + 18.3363i 0.405080 + 0.701619i 0.994331 0.106331i \(-0.0339103\pi\)
−0.589251 + 0.807950i \(0.700577\pi\)
\(684\) −13.1690 + 13.1690i −0.503529 + 0.503529i
\(685\) 0 0
\(686\) 11.1870 + 6.45879i 0.427120 + 0.246598i
\(687\) 1.85015 + 1.06818i 0.0705875 + 0.0407537i
\(688\) 0.193696 + 0.193696i 0.00738459 + 0.00738459i
\(689\) 0.286494 2.04916i 0.0109145 0.0780667i
\(690\) 0 0
\(691\) −9.75426 36.4034i −0.371069 1.38485i −0.859004 0.511970i \(-0.828916\pi\)
0.487934 0.872880i \(-0.337751\pi\)
\(692\) −8.28702 + 2.22050i −0.315025 + 0.0844108i
\(693\) 16.1604 60.3114i 0.613882 2.29104i
\(694\) −18.7669 18.7669i −0.712382 0.712382i
\(695\) 0 0
\(696\) −2.06461 + 7.70523i −0.0782589 + 0.292066i
\(697\) 2.66348i 0.100887i
\(698\) 3.38739 + 0.907648i 0.128214 + 0.0343550i
\(699\) 0.845974 1.46527i 0.0319977 0.0554216i
\(700\) 0 0
\(701\) 24.9114i 0.940889i 0.882430 + 0.470445i \(0.155906\pi\)
−0.882430 + 0.470445i \(0.844094\pi\)
\(702\) 4.02404 5.15814i 0.151877 0.194682i
\(703\) −30.4094 + 30.4094i −1.14691 + 1.14691i
\(704\) 28.3373 7.59295i 1.06800 0.286170i
\(705\) 0 0
\(706\) −20.2407 + 11.6860i −0.761768 + 0.439807i
\(707\) −37.2890 −1.40240
\(708\) 3.32669 1.92067i 0.125025 0.0721831i
\(709\) 17.2592 + 4.62459i 0.648183 + 0.173680i 0.567907 0.823092i \(-0.307753\pi\)
0.0802760 + 0.996773i \(0.474420\pi\)
\(710\) 0 0
\(711\) −18.1605 31.4550i −0.681073 1.17965i
\(712\) −10.9674 40.9311i −0.411022 1.53396i
\(713\) −3.19807 + 5.53922i −0.119769 + 0.207445i
\(714\) 3.87490 0.145014
\(715\) 0 0
\(716\) 11.6952 0.437071
\(717\) 0.848697 1.46999i 0.0316952 0.0548976i
\(718\) −5.50433 20.5424i −0.205420 0.766637i
\(719\) −3.20390 5.54933i −0.119485 0.206955i 0.800078 0.599895i \(-0.204791\pi\)
−0.919564 + 0.392941i \(0.871458\pi\)
\(720\) 0 0
\(721\) −76.0325 20.3729i −2.83160 0.758725i
\(722\) 9.26590 5.34967i 0.344841 0.199094i
\(723\) −0.244838 −0.00910564
\(724\) 10.1244 5.84532i 0.376270 0.217239i
\(725\) 0 0
\(726\) −4.73808 + 1.26956i −0.175846 + 0.0471179i
\(727\) 17.2216 17.2216i 0.638714 0.638714i −0.311524 0.950238i \(-0.600839\pi\)
0.950238 + 0.311524i \(0.100839\pi\)
\(728\) 16.9643 40.0451i 0.628738 1.48417i
\(729\) 21.0515i 0.779686i
\(730\) 0 0
\(731\) 1.31026 2.26943i 0.0484616 0.0839380i
\(732\) 1.73286 + 0.464319i 0.0640484 + 0.0171617i
\(733\) 34.7895i 1.28498i −0.766295 0.642489i \(-0.777902\pi\)
0.766295 0.642489i \(-0.222098\pi\)
\(734\) 2.80738 10.4773i 0.103622 0.386724i
\(735\) 0 0
\(736\) −6.64144 6.64144i −0.244807 0.244807i
\(737\) −9.54061 + 35.6061i −0.351433 + 1.31157i
\(738\) 2.25163 0.603323i 0.0828837 0.0222086i
\(739\) −10.1339 37.8203i −0.372782 1.39124i −0.856558 0.516051i \(-0.827402\pi\)
0.483776 0.875192i \(-0.339265\pi\)
\(740\) 0 0
\(741\) 5.37790 4.05858i 0.197562 0.149096i
\(742\) −1.54672 1.54672i −0.0567819 0.0567819i
\(743\) −31.6228 18.2574i −1.16013 0.669801i −0.208794 0.977960i \(-0.566954\pi\)
−0.951335 + 0.308159i \(0.900287\pi\)
\(744\) 3.16235 + 1.82578i 0.115937 + 0.0669365i
\(745\) 0 0
\(746\) 2.69913 2.69913i 0.0988221 0.0988221i
\(747\) −12.1852 21.1053i −0.445832 0.772203i
\(748\) −9.10529 15.7708i −0.332922 0.576639i
\(749\) −14.5035 + 14.5035i −0.529947 + 0.529947i
\(750\) 0 0
\(751\) −12.0184 6.93885i −0.438559 0.253202i 0.264427 0.964406i \(-0.414817\pi\)
−0.702986 + 0.711203i \(0.748150\pi\)
\(752\) −0.393533 0.227207i −0.0143507 0.00828537i
\(753\) −3.45404 3.45404i −0.125872 0.125872i
\(754\) −10.5132 + 24.8170i −0.382869 + 0.903783i
\(755\) 0 0
\(756\) 2.49471 + 9.31038i 0.0907317 + 0.338615i
\(757\) 36.3019 9.72706i 1.31941 0.353536i 0.470656 0.882317i \(-0.344017\pi\)
0.848758 + 0.528781i \(0.177351\pi\)
\(758\) −2.63578 + 9.83685i −0.0957357 + 0.357291i
\(759\) 2.11365 + 2.11365i 0.0767205 + 0.0767205i
\(760\) 0 0
\(761\) −6.97074 + 26.0152i −0.252689 + 0.943049i 0.716672 + 0.697410i \(0.245664\pi\)
−0.969361 + 0.245639i \(0.921002\pi\)
\(762\) 0.970757i 0.0351668i
\(763\) 11.1644 + 2.99149i 0.404178 + 0.108299i
\(764\) 9.78658 16.9509i 0.354066 0.613261i
\(765\) 0 0
\(766\) 6.71020i 0.242449i
\(767\) 32.6924 13.2358i 1.18045 0.477919i
\(768\) −3.96661 + 3.96661i −0.143133 + 0.143133i
\(769\) 41.7992 11.2001i 1.50732 0.403885i 0.591775 0.806103i \(-0.298427\pi\)
0.915544 + 0.402218i \(0.131761\pi\)
\(770\) 0 0
\(771\) 9.15422 5.28519i 0.329681 0.190342i
\(772\) 19.7768 0.711784
\(773\) −14.3584 + 8.28981i −0.516435 + 0.298164i −0.735475 0.677552i \(-0.763041\pi\)
0.219040 + 0.975716i \(0.429708\pi\)
\(774\) −2.21531 0.593590i −0.0796276 0.0213361i
\(775\) 0 0
\(776\) 1.11912 + 1.93838i 0.0401742 + 0.0695838i
\(777\) 2.82470 + 10.5419i 0.101336 + 0.378189i
\(778\) −12.1600 + 21.0617i −0.435956 + 0.755098i
\(779\) 4.89595 0.175415
\(780\) 0 0
\(781\) −14.2854 −0.511171
\(782\) 2.35405 4.07734i 0.0841807 0.145805i
\(783\) −4.20142 15.6799i −0.150146 0.560354i
\(784\) −1.63685 2.83510i −0.0584588 0.101254i
\(785\) 0 0
\(786\) −2.56966 0.688537i −0.0916566 0.0245593i
\(787\) −0.866181 + 0.500090i −0.0308760 + 0.0178263i −0.515359 0.856975i \(-0.672341\pi\)
0.484483 + 0.874801i \(0.339008\pi\)
\(788\) 5.26880 0.187693
\(789\) 5.93453 3.42630i 0.211275 0.121980i
\(790\) 0 0
\(791\) 32.6525 8.74921i 1.16099 0.311086i
\(792\) −30.6258 + 30.6258i −1.08824 + 1.08824i
\(793\) 15.1671 + 6.42524i 0.538600 + 0.228167i
\(794\) 19.3210i 0.685677i
\(795\) 0 0
\(796\) −4.75595 + 8.23754i −0.168570 + 0.291972i
\(797\) 0.462469 + 0.123918i 0.0163815 + 0.00438941i 0.267000 0.963696i \(-0.413967\pi\)
−0.250619 + 0.968086i \(0.580634\pi\)
\(798\) 7.12274i 0.252142i
\(799\) −1.12512 + 4.19900i −0.0398038 + 0.148550i
\(800\) 0 0
\(801\) 29.8985 + 29.8985i 1.05641 + 1.05641i
\(802\) −1.49265 + 5.57066i −0.0527074 + 0.196707i
\(803\) 30.2087 8.09439i 1.06604 0.285645i
\(804\) −0.722174 2.69519i −0.0254691 0.0950521i
\(805\) 0 0
\(806\) 9.72757 + 7.58880i 0.342639 + 0.267304i
\(807\) 5.68226 + 5.68226i 0.200025 + 0.200025i
\(808\) 22.4006 + 12.9330i 0.788049 + 0.454980i
\(809\) 17.8417 + 10.3009i 0.627280 + 0.362160i 0.779698 0.626156i \(-0.215373\pi\)
−0.152418 + 0.988316i \(0.548706\pi\)
\(810\) 0 0
\(811\) −0.752500 + 0.752500i −0.0264239 + 0.0264239i −0.720195 0.693771i \(-0.755948\pi\)
0.693771 + 0.720195i \(0.255948\pi\)
\(812\) −19.8549 34.3897i −0.696770 1.20684i
\(813\) −1.11655 1.93391i −0.0391590 0.0678253i
\(814\) −26.0236 + 26.0236i −0.912126 + 0.912126i
\(815\) 0 0
\(816\) −0.277420 0.160169i −0.00971166 0.00560703i
\(817\) −4.17161 2.40848i −0.145946 0.0842621i
\(818\) 8.16934 + 8.16934i 0.285634 + 0.285634i
\(819\) 5.31945 + 43.0684i 0.185877 + 1.50493i
\(820\) 0 0
\(821\) 7.34022 + 27.3941i 0.256175 + 0.956059i 0.967433 + 0.253128i \(0.0814593\pi\)
−0.711258 + 0.702931i \(0.751874\pi\)
\(822\) 3.31616 0.888561i 0.115664 0.0309921i
\(823\) 0.395567 1.47628i 0.0137886 0.0514598i −0.958689 0.284457i \(-0.908187\pi\)
0.972477 + 0.232997i \(0.0748533\pi\)
\(824\) 38.6089 + 38.6089i 1.34501 + 1.34501i
\(825\) 0 0
\(826\) 9.65054 36.0163i 0.335785 1.25317i
\(827\) 34.9791i 1.21634i 0.793806 + 0.608171i \(0.208097\pi\)
−0.793806 + 0.608171i \(0.791903\pi\)
\(828\) 5.54690 + 1.48629i 0.192768 + 0.0516521i
\(829\) −5.70269 + 9.87735i −0.198063 + 0.343055i −0.947900 0.318567i \(-0.896798\pi\)
0.749838 + 0.661622i \(0.230132\pi\)
\(830\) 0 0
\(831\) 8.59653i 0.298210i
\(832\) −16.2749 + 12.2823i −0.564231 + 0.425813i
\(833\) −22.1449 + 22.1449i −0.767275 + 0.767275i
\(834\) 4.12808 1.10612i 0.142944 0.0383016i
\(835\) 0 0
\(836\) −28.9895 + 16.7371i −1.00262 + 0.578865i
\(837\) −7.43083 −0.256847
\(838\) −18.1964 + 10.5057i −0.628584 + 0.362913i
\(839\) −28.6789 7.68448i −0.990105 0.265298i −0.272810 0.962068i \(-0.587953\pi\)
−0.717295 + 0.696770i \(0.754620\pi\)
\(840\) 0 0
\(841\) 18.9382 + 32.8019i 0.653041 + 1.13110i
\(842\) 8.45060 + 31.5381i 0.291227 + 1.08687i
\(843\) −2.20360 + 3.81675i −0.0758961 + 0.131456i
\(844\) −16.4341 −0.565687
\(845\) 0 0
\(846\) 3.80457 0.130804
\(847\) 33.1786 57.4671i 1.14003 1.97459i
\(848\) 0.0468027 + 0.174670i 0.00160721 + 0.00599819i
\(849\) 1.70972 + 2.96133i 0.0586775 + 0.101632i
\(850\) 0 0
\(851\) 12.8087 + 3.43208i 0.439077 + 0.117650i
\(852\) 0.936458 0.540664i 0.0320825 0.0185229i
\(853\) 15.2934 0.523636 0.261818 0.965117i \(-0.415678\pi\)
0.261818 + 0.965117i \(0.415678\pi\)
\(854\) 15.0808 8.70689i 0.516054 0.297944i
\(855\) 0 0
\(856\) 13.7429 3.68240i 0.469723 0.125862i
\(857\) −12.3837 + 12.3837i −0.423018 + 0.423018i −0.886242 0.463223i \(-0.846693\pi\)
0.463223 + 0.886242i \(0.346693\pi\)
\(858\) 4.60228 3.47324i 0.157119 0.118574i
\(859\) 8.73070i 0.297888i −0.988846 0.148944i \(-0.952413\pi\)
0.988846 0.148944i \(-0.0475874\pi\)
\(860\) 0 0
\(861\) 0.621241 1.07602i 0.0211718 0.0366707i
\(862\) −3.45391 0.925473i −0.117641 0.0315217i
\(863\) 8.33598i 0.283760i 0.989884 + 0.141880i \(0.0453147\pi\)
−0.989884 + 0.141880i \(0.954685\pi\)
\(864\) 2.82418 10.5400i 0.0960805 0.358577i
\(865\) 0 0
\(866\) −22.2735 22.2735i −0.756885 0.756885i
\(867\) 0.690623 2.57744i 0.0234548 0.0875345i
\(868\) −17.5581 + 4.70469i −0.595962 + 0.159688i
\(869\) −16.8965 63.0587i −0.573176 2.13912i
\(870\) 0 0
\(871\) −3.14044 25.4263i −0.106410 0.861537i
\(872\) −5.66922 5.66922i −0.191984 0.191984i
\(873\) −1.93417 1.11669i −0.0654616 0.0377943i
\(874\) −7.49485 4.32716i −0.253517 0.146368i
\(875\) 0 0
\(876\) −1.67394 + 1.67394i −0.0565570 + 0.0565570i
\(877\) −6.18525 10.7132i −0.208861 0.361758i 0.742495 0.669852i \(-0.233642\pi\)
−0.951356 + 0.308094i \(0.900309\pi\)
\(878\) −10.1713 17.6172i −0.343265 0.594552i
\(879\) −2.81978 + 2.81978i −0.0951088 + 0.0951088i
\(880\) 0 0
\(881\) 12.0765 + 6.97237i 0.406868 + 0.234905i 0.689443 0.724340i \(-0.257855\pi\)
−0.282575 + 0.959245i \(0.591189\pi\)
\(882\) 23.7368 + 13.7045i 0.799261 + 0.461453i
\(883\) −8.89171 8.89171i −0.299230 0.299230i 0.541482 0.840712i \(-0.317863\pi\)
−0.840712 + 0.541482i \(0.817863\pi\)
\(884\) 9.97906 + 7.78499i 0.335632 + 0.261838i
\(885\) 0 0
\(886\) 0.822340 + 3.06901i 0.0276270 + 0.103106i
\(887\) 51.6144 13.8300i 1.73304 0.464367i 0.752160 0.658980i \(-0.229012\pi\)
0.980880 + 0.194613i \(0.0623452\pi\)
\(888\) 1.95938 7.31251i 0.0657526 0.245392i
\(889\) 9.28594 + 9.28594i 0.311440 + 0.311440i
\(890\) 0 0
\(891\) 10.7274 40.0351i 0.359381 1.34123i
\(892\) 24.7226i 0.827774i
\(893\) 7.71849 + 2.06816i 0.258289 + 0.0692084i
\(894\) 2.76202 4.78396i 0.0923758 0.160000i
\(895\) 0 0
\(896\) 24.2905i 0.811490i
\(897\) −1.91292 0.810368i −0.0638704 0.0270574i
\(898\) −18.1407 + 18.1407i −0.605363 + 0.605363i
\(899\) 29.5702 7.92331i 0.986221 0.264257i
\(900\) 0 0
\(901\) 1.49815 0.864959i 0.0499107 0.0288160i
\(902\) 4.18983 0.139506
\(903\) −1.05866 + 0.611219i −0.0352301 + 0.0203401i
\(904\) −22.6498 6.06898i −0.753320 0.201851i
\(905\) 0 0
\(906\) 0.431252 + 0.746951i 0.0143274 + 0.0248158i
\(907\) 10.8433 + 40.4677i 0.360045 + 1.34371i 0.874015 + 0.485899i \(0.161508\pi\)
−0.513970 + 0.857808i \(0.671826\pi\)
\(908\) −8.99973 + 15.5880i −0.298666 + 0.517306i
\(909\) −25.8097 −0.856054
\(910\) 0 0
\(911\) 13.0974 0.433937 0.216968 0.976179i \(-0.430383\pi\)
0.216968 + 0.976179i \(0.430383\pi\)
\(912\) −0.294418 + 0.509947i −0.00974916 + 0.0168860i
\(913\) −11.3371 42.3105i −0.375202 1.40027i
\(914\) 16.9298 + 29.3232i 0.559987 + 0.969926i
\(915\) 0 0
\(916\) 7.12560 + 1.90930i 0.235437 + 0.0630850i
\(917\) 31.1668 17.9942i 1.02922 0.594220i
\(918\) 5.46972 0.180528
\(919\) 31.8713 18.4009i 1.05134 0.606990i 0.128314 0.991734i \(-0.459043\pi\)
0.923023 + 0.384744i \(0.125710\pi\)
\(920\) 0 0
\(921\) 8.07553 2.16383i 0.266098 0.0713007i
\(922\) −25.9379 + 25.9379i −0.854219 + 0.854219i
\(923\) 9.20286 3.72587i 0.302916 0.122638i
\(924\) 8.49502i 0.279465i
\(925\) 0 0
\(926\) −1.58001 + 2.73665i −0.0519222 + 0.0899319i
\(927\) −52.6261 14.1011i −1.72847 0.463142i
\(928\) 44.9541i 1.47569i
\(929\) −10.4741 + 39.0897i −0.343643 + 1.28249i 0.550547 + 0.834804i \(0.314419\pi\)
−0.894190 + 0.447688i \(0.852248\pi\)
\(930\) 0 0
\(931\) 40.7062 + 40.7062i 1.33409 + 1.33409i
\(932\) 1.51212 5.64330i 0.0495310 0.184852i
\(933\) −7.93930 + 2.12733i −0.259921 + 0.0696456i
\(934\) −1.59132 5.93888i −0.0520695 0.194326i
\(935\) 0 0
\(936\) 11.7419 27.7173i 0.383795 0.905969i
\(937\) −17.2306 17.2306i −0.562898 0.562898i 0.367232 0.930129i \(-0.380306\pi\)
−0.930129 + 0.367232i \(0.880306\pi\)
\(938\) −23.4558 13.5422i −0.765858 0.442168i
\(939\) −3.64397 2.10385i −0.118916 0.0686564i
\(940\) 0 0
\(941\) 17.6729 17.6729i 0.576119 0.576119i −0.357712 0.933832i \(-0.616443\pi\)
0.933832 + 0.357712i \(0.116443\pi\)
\(942\) −2.28844 3.96370i −0.0745615 0.129144i
\(943\) −0.754824 1.30739i −0.0245805 0.0425746i
\(944\) −2.17965 + 2.17965i −0.0709417 + 0.0709417i
\(945\) 0 0
\(946\) −3.56996 2.06112i −0.116070 0.0670128i
\(947\) −15.8254 9.13678i −0.514255 0.296905i 0.220326 0.975426i \(-0.429288\pi\)
−0.734581 + 0.678521i \(0.762621\pi\)
\(948\) 3.49423 + 3.49423i 0.113487 + 0.113487i
\(949\) −17.3497 + 13.0934i −0.563196 + 0.425031i
\(950\) 0 0
\(951\) −0.299692 1.11846i −0.00971817 0.0362687i
\(952\) 35.1222 9.41096i 1.13832 0.305011i
\(953\) −15.3289 + 57.2081i −0.496551 + 1.85315i 0.0246142 + 0.999697i \(0.492164\pi\)
−0.521165 + 0.853456i \(0.674502\pi\)
\(954\) −1.07057 1.07057i −0.0346609 0.0346609i
\(955\) 0 0
\(956\) 1.51698 5.66146i 0.0490628 0.183105i
\(957\) 14.3067i 0.462470i
\(958\) −0.103204 0.0276534i −0.00333436 0.000893439i
\(959\) −23.2216 + 40.2209i −0.749864 + 1.29880i
\(960\) 0 0
\(961\) 16.9865i 0.547950i
\(962\) 9.97740 23.5522i 0.321684 0.759352i
\(963\) −10.0386 + 10.0386i −0.323491 + 0.323491i
\(964\) −0.816630 + 0.218815i −0.0263019 + 0.00704757i
\(965\) 0 0
\(966\) −1.90203 + 1.09814i −0.0611967 + 0.0353320i
\(967\) −53.6313 −1.72467 −0.862333 0.506341i \(-0.830998\pi\)
−0.862333 + 0.506341i \(0.830998\pi\)
\(968\) −39.8627 + 23.0147i −1.28123 + 0.739721i
\(969\) 5.44113 + 1.45795i 0.174794 + 0.0468360i
\(970\) 0 0
\(971\) 5.90908 + 10.2348i 0.189631 + 0.328451i 0.945127 0.326702i \(-0.105937\pi\)
−0.755496 + 0.655153i \(0.772604\pi\)
\(972\) 2.60676 + 9.72856i 0.0836119 + 0.312044i
\(973\) −28.9071 + 50.0686i −0.926719 + 1.60512i
\(974\) −9.72992 −0.311767
\(975\) 0 0
\(976\) −1.43960 −0.0460803
\(977\) −10.2104 + 17.6850i −0.326661 + 0.565793i −0.981847 0.189674i \(-0.939257\pi\)
0.655186 + 0.755467i \(0.272590\pi\)
\(978\) −0.228562 0.853005i −0.00730861 0.0272761i
\(979\) 37.9994 + 65.8169i 1.21447 + 2.10352i
\(980\) 0 0
\(981\) 7.72746 + 2.07057i 0.246719 + 0.0661081i
\(982\) −24.6927 + 14.2564i −0.787977 + 0.454939i
\(983\) 25.2690 0.805957 0.402979 0.915209i \(-0.367975\pi\)
0.402979 + 0.915209i \(0.367975\pi\)
\(984\) −0.746394 + 0.430931i −0.0237942 + 0.0137376i
\(985\) 0 0
\(986\) −21.7662 + 5.83223i −0.693176 + 0.185736i
\(987\) 1.43393 1.43393i 0.0456424 0.0456424i
\(988\) 14.3102 18.3432i 0.455267 0.583576i
\(989\) 1.48529i 0.0472296i
\(990\) 0 0
\(991\) 10.5834 18.3311i 0.336194 0.582305i −0.647519 0.762049i \(-0.724193\pi\)
0.983713 + 0.179744i \(0.0575268\pi\)
\(992\) 19.8770 + 5.32603i 0.631095 + 0.169102i
\(993\) 1.70803i 0.0542027i
\(994\) 2.71661 10.1385i 0.0861656 0.321574i
\(995\) 0 0
\(996\) 2.34452 + 2.34452i 0.0742891 + 0.0742891i
\(997\) −2.41168 + 9.00051i −0.0763786 + 0.285049i −0.993542 0.113462i \(-0.963806\pi\)
0.917164 + 0.398511i \(0.130473\pi\)
\(998\) −8.21781 + 2.20196i −0.260130 + 0.0697017i
\(999\) 3.98728 + 14.8807i 0.126152 + 0.470805i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.2.s.c.32.4 40
5.2 odd 4 325.2.x.c.318.4 yes 40
5.3 odd 4 325.2.x.c.318.7 yes 40
5.4 even 2 inner 325.2.s.c.32.7 yes 40
13.11 odd 12 325.2.x.c.232.7 yes 40
65.24 odd 12 325.2.x.c.232.4 yes 40
65.37 even 12 inner 325.2.s.c.193.7 yes 40
65.63 even 12 inner 325.2.s.c.193.4 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
325.2.s.c.32.4 40 1.1 even 1 trivial
325.2.s.c.32.7 yes 40 5.4 even 2 inner
325.2.s.c.193.4 yes 40 65.63 even 12 inner
325.2.s.c.193.7 yes 40 65.37 even 12 inner
325.2.x.c.232.4 yes 40 65.24 odd 12
325.2.x.c.232.7 yes 40 13.11 odd 12
325.2.x.c.318.4 yes 40 5.2 odd 4
325.2.x.c.318.7 yes 40 5.3 odd 4