Properties

Label 324.6.a.c.1.4
Level $324$
Weight $6$
Character 324.1
Self dual yes
Analytic conductor $51.964$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [324,6,Mod(1,324)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("324.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(324, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 324 = 2^{2} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 324.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(51.9643576194\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{3}, \sqrt{91})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 47x^{2} + 484 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{4} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(5.63572\) of defining polynomial
Character \(\chi\) \(=\) 324.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+83.2171 q^{5} +143.136 q^{7} -431.674 q^{11} -1036.95 q^{13} -1659.30 q^{17} -2024.77 q^{19} -2345.43 q^{23} +3800.09 q^{25} -3722.73 q^{29} -441.182 q^{31} +11911.4 q^{35} +7655.95 q^{37} -1349.74 q^{41} -19394.5 q^{43} +14675.8 q^{47} +3680.99 q^{49} +20190.2 q^{53} -35922.7 q^{55} +16468.6 q^{59} -52354.7 q^{61} -86292.3 q^{65} -31879.9 q^{67} +47866.9 q^{71} +5456.25 q^{73} -61788.2 q^{77} +91569.1 q^{79} -14016.9 q^{83} -138082. q^{85} +104964. q^{89} -148426. q^{91} -168496. q^{95} -90500.4 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 176 q^{7} - 1372 q^{13} - 2944 q^{19} + 3304 q^{25} - 4144 q^{31} + 1676 q^{37} - 38320 q^{43} - 20172 q^{49} - 80640 q^{55} - 120196 q^{61} - 107296 q^{67} - 92380 q^{73} + 5024 q^{79} - 329868 q^{85}+ \cdots - 331864 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 83.2171 1.48863 0.744316 0.667827i \(-0.232775\pi\)
0.744316 + 0.667827i \(0.232775\pi\)
\(6\) 0 0
\(7\) 143.136 1.10409 0.552045 0.833814i \(-0.313848\pi\)
0.552045 + 0.833814i \(0.313848\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −431.674 −1.07566 −0.537829 0.843054i \(-0.680755\pi\)
−0.537829 + 0.843054i \(0.680755\pi\)
\(12\) 0 0
\(13\) −1036.95 −1.70177 −0.850885 0.525351i \(-0.823934\pi\)
−0.850885 + 0.525351i \(0.823934\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1659.30 −1.39253 −0.696263 0.717786i \(-0.745155\pi\)
−0.696263 + 0.717786i \(0.745155\pi\)
\(18\) 0 0
\(19\) −2024.77 −1.28674 −0.643372 0.765554i \(-0.722465\pi\)
−0.643372 + 0.765554i \(0.722465\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2345.43 −0.924492 −0.462246 0.886752i \(-0.652956\pi\)
−0.462246 + 0.886752i \(0.652956\pi\)
\(24\) 0 0
\(25\) 3800.09 1.21603
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −3722.73 −0.821989 −0.410995 0.911638i \(-0.634819\pi\)
−0.410995 + 0.911638i \(0.634819\pi\)
\(30\) 0 0
\(31\) −441.182 −0.0824544 −0.0412272 0.999150i \(-0.513127\pi\)
−0.0412272 + 0.999150i \(0.513127\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 11911.4 1.64359
\(36\) 0 0
\(37\) 7655.95 0.919379 0.459690 0.888080i \(-0.347961\pi\)
0.459690 + 0.888080i \(0.347961\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −1349.74 −0.125398 −0.0626990 0.998032i \(-0.519971\pi\)
−0.0626990 + 0.998032i \(0.519971\pi\)
\(42\) 0 0
\(43\) −19394.5 −1.59958 −0.799792 0.600277i \(-0.795057\pi\)
−0.799792 + 0.600277i \(0.795057\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 14675.8 0.969075 0.484537 0.874770i \(-0.338988\pi\)
0.484537 + 0.874770i \(0.338988\pi\)
\(48\) 0 0
\(49\) 3680.99 0.219015
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 20190.2 0.987304 0.493652 0.869659i \(-0.335662\pi\)
0.493652 + 0.869659i \(0.335662\pi\)
\(54\) 0 0
\(55\) −35922.7 −1.60126
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 16468.6 0.615925 0.307962 0.951399i \(-0.400353\pi\)
0.307962 + 0.951399i \(0.400353\pi\)
\(60\) 0 0
\(61\) −52354.7 −1.80149 −0.900743 0.434353i \(-0.856977\pi\)
−0.900743 + 0.434353i \(0.856977\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −86292.3 −2.53331
\(66\) 0 0
\(67\) −31879.9 −0.867622 −0.433811 0.901004i \(-0.642831\pi\)
−0.433811 + 0.901004i \(0.642831\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 47866.9 1.12691 0.563455 0.826147i \(-0.309472\pi\)
0.563455 + 0.826147i \(0.309472\pi\)
\(72\) 0 0
\(73\) 5456.25 0.119836 0.0599179 0.998203i \(-0.480916\pi\)
0.0599179 + 0.998203i \(0.480916\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −61788.2 −1.18762
\(78\) 0 0
\(79\) 91569.1 1.65075 0.825375 0.564585i \(-0.190964\pi\)
0.825375 + 0.564585i \(0.190964\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −14016.9 −0.223335 −0.111667 0.993746i \(-0.535619\pi\)
−0.111667 + 0.993746i \(0.535619\pi\)
\(84\) 0 0
\(85\) −138082. −2.07296
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 104964. 1.40465 0.702323 0.711859i \(-0.252146\pi\)
0.702323 + 0.711859i \(0.252146\pi\)
\(90\) 0 0
\(91\) −148426. −1.87891
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −168496. −1.91549
\(96\) 0 0
\(97\) −90500.4 −0.976610 −0.488305 0.872673i \(-0.662385\pi\)
−0.488305 + 0.872673i \(0.662385\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −109179. −1.06496 −0.532481 0.846442i \(-0.678740\pi\)
−0.532481 + 0.846442i \(0.678740\pi\)
\(102\) 0 0
\(103\) 17554.9 0.163045 0.0815223 0.996672i \(-0.474022\pi\)
0.0815223 + 0.996672i \(0.474022\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 208161. 1.75768 0.878838 0.477120i \(-0.158319\pi\)
0.878838 + 0.477120i \(0.158319\pi\)
\(108\) 0 0
\(109\) 10653.4 0.0858862 0.0429431 0.999078i \(-0.486327\pi\)
0.0429431 + 0.999078i \(0.486327\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 52969.1 0.390235 0.195117 0.980780i \(-0.437491\pi\)
0.195117 + 0.980780i \(0.437491\pi\)
\(114\) 0 0
\(115\) −195180. −1.37623
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −237507. −1.53748
\(120\) 0 0
\(121\) 25291.5 0.157040
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 56178.9 0.321587
\(126\) 0 0
\(127\) −24494.8 −0.134761 −0.0673805 0.997727i \(-0.521464\pi\)
−0.0673805 + 0.997727i \(0.521464\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 345250. 1.75774 0.878872 0.477058i \(-0.158297\pi\)
0.878872 + 0.477058i \(0.158297\pi\)
\(132\) 0 0
\(133\) −289818. −1.42068
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 285552. 1.29982 0.649911 0.760010i \(-0.274806\pi\)
0.649911 + 0.760010i \(0.274806\pi\)
\(138\) 0 0
\(139\) −172780. −0.758502 −0.379251 0.925294i \(-0.623818\pi\)
−0.379251 + 0.925294i \(0.623818\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 447626. 1.83052
\(144\) 0 0
\(145\) −309795. −1.22364
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −277228. −1.02299 −0.511496 0.859286i \(-0.670908\pi\)
−0.511496 + 0.859286i \(0.670908\pi\)
\(150\) 0 0
\(151\) −101615. −0.362674 −0.181337 0.983421i \(-0.558043\pi\)
−0.181337 + 0.983421i \(0.558043\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −36713.9 −0.122744
\(156\) 0 0
\(157\) −175821. −0.569275 −0.284638 0.958635i \(-0.591873\pi\)
−0.284638 + 0.958635i \(0.591873\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −335716. −1.02072
\(162\) 0 0
\(163\) 533498. 1.57277 0.786383 0.617740i \(-0.211951\pi\)
0.786383 + 0.617740i \(0.211951\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −637208. −1.76803 −0.884016 0.467457i \(-0.845170\pi\)
−0.884016 + 0.467457i \(0.845170\pi\)
\(168\) 0 0
\(169\) 703980. 1.89602
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −507234. −1.28853 −0.644263 0.764804i \(-0.722836\pi\)
−0.644263 + 0.764804i \(0.722836\pi\)
\(174\) 0 0
\(175\) 543930. 1.34260
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −576195. −1.34412 −0.672058 0.740498i \(-0.734590\pi\)
−0.672058 + 0.740498i \(0.734590\pi\)
\(180\) 0 0
\(181\) −474013. −1.07546 −0.537730 0.843117i \(-0.680718\pi\)
−0.537730 + 0.843117i \(0.680718\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 637106. 1.36862
\(186\) 0 0
\(187\) 716278. 1.49788
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 239287. 0.474608 0.237304 0.971435i \(-0.423736\pi\)
0.237304 + 0.971435i \(0.423736\pi\)
\(192\) 0 0
\(193\) −139272. −0.269134 −0.134567 0.990904i \(-0.542964\pi\)
−0.134567 + 0.990904i \(0.542964\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 350045. 0.642626 0.321313 0.946973i \(-0.395876\pi\)
0.321313 + 0.946973i \(0.395876\pi\)
\(198\) 0 0
\(199\) 494321. 0.884863 0.442432 0.896802i \(-0.354116\pi\)
0.442432 + 0.896802i \(0.354116\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −532857. −0.907550
\(204\) 0 0
\(205\) −112322. −0.186672
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 874041. 1.38410
\(210\) 0 0
\(211\) −504307. −0.779809 −0.389905 0.920855i \(-0.627492\pi\)
−0.389905 + 0.920855i \(0.627492\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −1.61395e6 −2.38119
\(216\) 0 0
\(217\) −63149.2 −0.0910371
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 1.72062e6 2.36976
\(222\) 0 0
\(223\) −607535. −0.818105 −0.409052 0.912511i \(-0.634141\pi\)
−0.409052 + 0.912511i \(0.634141\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 924635. 1.19098 0.595491 0.803362i \(-0.296957\pi\)
0.595491 + 0.803362i \(0.296957\pi\)
\(228\) 0 0
\(229\) 804772. 1.01411 0.507054 0.861914i \(-0.330735\pi\)
0.507054 + 0.861914i \(0.330735\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −1.16946e6 −1.41122 −0.705611 0.708599i \(-0.749327\pi\)
−0.705611 + 0.708599i \(0.749327\pi\)
\(234\) 0 0
\(235\) 1.22128e6 1.44260
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 311300. 0.352520 0.176260 0.984344i \(-0.443600\pi\)
0.176260 + 0.984344i \(0.443600\pi\)
\(240\) 0 0
\(241\) −384343. −0.426262 −0.213131 0.977024i \(-0.568366\pi\)
−0.213131 + 0.977024i \(0.568366\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 306322. 0.326034
\(246\) 0 0
\(247\) 2.09959e6 2.18974
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 1.01398e6 1.01589 0.507944 0.861390i \(-0.330406\pi\)
0.507944 + 0.861390i \(0.330406\pi\)
\(252\) 0 0
\(253\) 1.01246e6 0.994437
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 814731. 0.769452 0.384726 0.923031i \(-0.374296\pi\)
0.384726 + 0.923031i \(0.374296\pi\)
\(258\) 0 0
\(259\) 1.09584e6 1.01508
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 611094. 0.544777 0.272388 0.962187i \(-0.412186\pi\)
0.272388 + 0.962187i \(0.412186\pi\)
\(264\) 0 0
\(265\) 1.68017e6 1.46973
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −1.21595e6 −1.02456 −0.512279 0.858819i \(-0.671198\pi\)
−0.512279 + 0.858819i \(0.671198\pi\)
\(270\) 0 0
\(271\) −1.06241e6 −0.878759 −0.439379 0.898302i \(-0.644802\pi\)
−0.439379 + 0.898302i \(0.644802\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1.64040e6 −1.30803
\(276\) 0 0
\(277\) 1.05276e6 0.824386 0.412193 0.911097i \(-0.364763\pi\)
0.412193 + 0.911097i \(0.364763\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −52689.9 −0.0398072 −0.0199036 0.999802i \(-0.506336\pi\)
−0.0199036 + 0.999802i \(0.506336\pi\)
\(282\) 0 0
\(283\) −1.59276e6 −1.18218 −0.591091 0.806605i \(-0.701302\pi\)
−0.591091 + 0.806605i \(0.701302\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −193197. −0.138451
\(288\) 0 0
\(289\) 1.33343e6 0.939131
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −365026. −0.248402 −0.124201 0.992257i \(-0.539637\pi\)
−0.124201 + 0.992257i \(0.539637\pi\)
\(294\) 0 0
\(295\) 1.37047e6 0.916886
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 2.43210e6 1.57327
\(300\) 0 0
\(301\) −2.77606e6 −1.76609
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −4.35680e6 −2.68175
\(306\) 0 0
\(307\) 1.58303e6 0.958613 0.479307 0.877648i \(-0.340888\pi\)
0.479307 + 0.877648i \(0.340888\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −603966. −0.354088 −0.177044 0.984203i \(-0.556654\pi\)
−0.177044 + 0.984203i \(0.556654\pi\)
\(312\) 0 0
\(313\) −212876. −0.122819 −0.0614097 0.998113i \(-0.519560\pi\)
−0.0614097 + 0.998113i \(0.519560\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −2.05080e6 −1.14624 −0.573120 0.819471i \(-0.694267\pi\)
−0.573120 + 0.819471i \(0.694267\pi\)
\(318\) 0 0
\(319\) 1.60700e6 0.884179
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 3.35971e6 1.79182
\(324\) 0 0
\(325\) −3.94052e6 −2.06940
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 2.10064e6 1.06995
\(330\) 0 0
\(331\) 2.88851e6 1.44912 0.724560 0.689211i \(-0.242043\pi\)
0.724560 + 0.689211i \(0.242043\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −2.65296e6 −1.29157
\(336\) 0 0
\(337\) −2.43591e6 −1.16838 −0.584192 0.811615i \(-0.698589\pi\)
−0.584192 + 0.811615i \(0.698589\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 190447. 0.0886928
\(342\) 0 0
\(343\) −1.87881e6 −0.862278
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 377025. 0.168092 0.0840459 0.996462i \(-0.473216\pi\)
0.0840459 + 0.996462i \(0.473216\pi\)
\(348\) 0 0
\(349\) −4.41483e6 −1.94022 −0.970109 0.242671i \(-0.921977\pi\)
−0.970109 + 0.242671i \(0.921977\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −3.16286e6 −1.35096 −0.675481 0.737378i \(-0.736064\pi\)
−0.675481 + 0.737378i \(0.736064\pi\)
\(354\) 0 0
\(355\) 3.98334e6 1.67756
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −140929. −0.0577116 −0.0288558 0.999584i \(-0.509186\pi\)
−0.0288558 + 0.999584i \(0.509186\pi\)
\(360\) 0 0
\(361\) 1.62360e6 0.655709
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 454053. 0.178392
\(366\) 0 0
\(367\) −2.21624e6 −0.858919 −0.429460 0.903086i \(-0.641296\pi\)
−0.429460 + 0.903086i \(0.641296\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 2.88995e6 1.09007
\(372\) 0 0
\(373\) −3.86169e6 −1.43716 −0.718581 0.695444i \(-0.755208\pi\)
−0.718581 + 0.695444i \(0.755208\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 3.86030e6 1.39884
\(378\) 0 0
\(379\) 1.70193e6 0.608616 0.304308 0.952574i \(-0.401575\pi\)
0.304308 + 0.952574i \(0.401575\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −3.20471e6 −1.11633 −0.558164 0.829731i \(-0.688494\pi\)
−0.558164 + 0.829731i \(0.688494\pi\)
\(384\) 0 0
\(385\) −5.14184e6 −1.76794
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 4.80401e6 1.60964 0.804821 0.593517i \(-0.202261\pi\)
0.804821 + 0.593517i \(0.202261\pi\)
\(390\) 0 0
\(391\) 3.89178e6 1.28738
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 7.62012e6 2.45736
\(396\) 0 0
\(397\) −1.31595e6 −0.419047 −0.209524 0.977804i \(-0.567191\pi\)
−0.209524 + 0.977804i \(0.567191\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −3.47348e6 −1.07871 −0.539354 0.842079i \(-0.681331\pi\)
−0.539354 + 0.842079i \(0.681331\pi\)
\(402\) 0 0
\(403\) 457486. 0.140319
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −3.30487e6 −0.988938
\(408\) 0 0
\(409\) −3.66596e6 −1.08363 −0.541813 0.840499i \(-0.682262\pi\)
−0.541813 + 0.840499i \(0.682262\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 2.35726e6 0.680036
\(414\) 0 0
\(415\) −1.16644e6 −0.332464
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 1.32948e6 0.369953 0.184977 0.982743i \(-0.440779\pi\)
0.184977 + 0.982743i \(0.440779\pi\)
\(420\) 0 0
\(421\) −2.40202e6 −0.660498 −0.330249 0.943894i \(-0.607133\pi\)
−0.330249 + 0.943894i \(0.607133\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −6.30550e6 −1.69335
\(426\) 0 0
\(427\) −7.49385e6 −1.98900
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 5.55904e6 1.44147 0.720737 0.693208i \(-0.243803\pi\)
0.720737 + 0.693208i \(0.243803\pi\)
\(432\) 0 0
\(433\) −4.82056e6 −1.23560 −0.617800 0.786335i \(-0.711976\pi\)
−0.617800 + 0.786335i \(0.711976\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 4.74896e6 1.18958
\(438\) 0 0
\(439\) 5.68814e6 1.40867 0.704334 0.709868i \(-0.251246\pi\)
0.704334 + 0.709868i \(0.251246\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −2.06512e6 −0.499960 −0.249980 0.968251i \(-0.580424\pi\)
−0.249980 + 0.968251i \(0.580424\pi\)
\(444\) 0 0
\(445\) 8.73483e6 2.09100
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −1.12412e6 −0.263146 −0.131573 0.991306i \(-0.542003\pi\)
−0.131573 + 0.991306i \(0.542003\pi\)
\(450\) 0 0
\(451\) 582648. 0.134885
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −1.23516e7 −2.79701
\(456\) 0 0
\(457\) −83388.1 −0.0186773 −0.00933863 0.999956i \(-0.502973\pi\)
−0.00933863 + 0.999956i \(0.502973\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −8.17734e6 −1.79209 −0.896045 0.443963i \(-0.853572\pi\)
−0.896045 + 0.443963i \(0.853572\pi\)
\(462\) 0 0
\(463\) −6.44616e6 −1.39749 −0.698745 0.715371i \(-0.746258\pi\)
−0.698745 + 0.715371i \(0.746258\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −4.62654e6 −0.981666 −0.490833 0.871254i \(-0.663308\pi\)
−0.490833 + 0.871254i \(0.663308\pi\)
\(468\) 0 0
\(469\) −4.56318e6 −0.957933
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 8.37210e6 1.72061
\(474\) 0 0
\(475\) −7.69431e6 −1.56472
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −2.78505e6 −0.554618 −0.277309 0.960781i \(-0.589443\pi\)
−0.277309 + 0.960781i \(0.589443\pi\)
\(480\) 0 0
\(481\) −7.93886e6 −1.56457
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −7.53118e6 −1.45381
\(486\) 0 0
\(487\) −437677. −0.0836241 −0.0418120 0.999125i \(-0.513313\pi\)
−0.0418120 + 0.999125i \(0.513313\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −9.94924e6 −1.86246 −0.931228 0.364437i \(-0.881261\pi\)
−0.931228 + 0.364437i \(0.881261\pi\)
\(492\) 0 0
\(493\) 6.17713e6 1.14464
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 6.85149e6 1.24421
\(498\) 0 0
\(499\) −2.59137e6 −0.465885 −0.232942 0.972491i \(-0.574835\pi\)
−0.232942 + 0.972491i \(0.574835\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 8.37988e6 1.47679 0.738393 0.674370i \(-0.235585\pi\)
0.738393 + 0.674370i \(0.235585\pi\)
\(504\) 0 0
\(505\) −9.08552e6 −1.58534
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 6.72852e6 1.15113 0.575566 0.817755i \(-0.304782\pi\)
0.575566 + 0.817755i \(0.304782\pi\)
\(510\) 0 0
\(511\) 780987. 0.132310
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 1.46087e6 0.242714
\(516\) 0 0
\(517\) −6.33517e6 −1.04239
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 9.01162e6 1.45448 0.727241 0.686382i \(-0.240802\pi\)
0.727241 + 0.686382i \(0.240802\pi\)
\(522\) 0 0
\(523\) 5.74204e6 0.917936 0.458968 0.888453i \(-0.348219\pi\)
0.458968 + 0.888453i \(0.348219\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 732055. 0.114820
\(528\) 0 0
\(529\) −935293. −0.145314
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 1.39962e6 0.213399
\(534\) 0 0
\(535\) 1.73225e7 2.61654
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −1.58899e6 −0.235586
\(540\) 0 0
\(541\) 8.40455e6 1.23459 0.617293 0.786733i \(-0.288229\pi\)
0.617293 + 0.786733i \(0.288229\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 886548. 0.127853
\(546\) 0 0
\(547\) −3.27309e6 −0.467724 −0.233862 0.972270i \(-0.575136\pi\)
−0.233862 + 0.972270i \(0.575136\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 7.53767e6 1.05769
\(552\) 0 0
\(553\) 1.31069e7 1.82258
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −2.71812e6 −0.371219 −0.185610 0.982624i \(-0.559426\pi\)
−0.185610 + 0.982624i \(0.559426\pi\)
\(558\) 0 0
\(559\) 2.01112e7 2.72213
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 3.84509e6 0.511252 0.255626 0.966776i \(-0.417718\pi\)
0.255626 + 0.966776i \(0.417718\pi\)
\(564\) 0 0
\(565\) 4.40793e6 0.580917
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −2.68747e6 −0.347986 −0.173993 0.984747i \(-0.555667\pi\)
−0.173993 + 0.984747i \(0.555667\pi\)
\(570\) 0 0
\(571\) 2.24220e6 0.287796 0.143898 0.989593i \(-0.454036\pi\)
0.143898 + 0.989593i \(0.454036\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −8.91285e6 −1.12421
\(576\) 0 0
\(577\) −484542. −0.0605887 −0.0302944 0.999541i \(-0.509644\pi\)
−0.0302944 + 0.999541i \(0.509644\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −2.00633e6 −0.246582
\(582\) 0 0
\(583\) −8.71559e6 −1.06200
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 7.37503e6 0.883422 0.441711 0.897157i \(-0.354372\pi\)
0.441711 + 0.897157i \(0.354372\pi\)
\(588\) 0 0
\(589\) 893294. 0.106098
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −43672.8 −0.00510005 −0.00255003 0.999997i \(-0.500812\pi\)
−0.00255003 + 0.999997i \(0.500812\pi\)
\(594\) 0 0
\(595\) −1.97646e7 −2.28874
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 4.11973e6 0.469140 0.234570 0.972099i \(-0.424632\pi\)
0.234570 + 0.972099i \(0.424632\pi\)
\(600\) 0 0
\(601\) −1.78283e6 −0.201337 −0.100669 0.994920i \(-0.532098\pi\)
−0.100669 + 0.994920i \(0.532098\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 2.10468e6 0.233775
\(606\) 0 0
\(607\) 3.36543e6 0.370739 0.185370 0.982669i \(-0.440652\pi\)
0.185370 + 0.982669i \(0.440652\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −1.52181e7 −1.64914
\(612\) 0 0
\(613\) 2.13132e6 0.229085 0.114543 0.993418i \(-0.463460\pi\)
0.114543 + 0.993418i \(0.463460\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 4.43801e6 0.469326 0.234663 0.972077i \(-0.424601\pi\)
0.234663 + 0.972077i \(0.424601\pi\)
\(618\) 0 0
\(619\) 1.54196e7 1.61751 0.808753 0.588148i \(-0.200143\pi\)
0.808753 + 0.588148i \(0.200143\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 1.50242e7 1.55086
\(624\) 0 0
\(625\) −7.20023e6 −0.737304
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −1.27035e7 −1.28026
\(630\) 0 0
\(631\) 1.30923e7 1.30901 0.654505 0.756058i \(-0.272877\pi\)
0.654505 + 0.756058i \(0.272877\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −2.03839e6 −0.200610
\(636\) 0 0
\(637\) −3.81702e6 −0.372714
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 5.35657e6 0.514922 0.257461 0.966289i \(-0.417114\pi\)
0.257461 + 0.966289i \(0.417114\pi\)
\(642\) 0 0
\(643\) −2.26379e6 −0.215928 −0.107964 0.994155i \(-0.534433\pi\)
−0.107964 + 0.994155i \(0.534433\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −4.79069e6 −0.449922 −0.224961 0.974368i \(-0.572226\pi\)
−0.224961 + 0.974368i \(0.572226\pi\)
\(648\) 0 0
\(649\) −7.10908e6 −0.662524
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 8.44356e6 0.774895 0.387447 0.921892i \(-0.373357\pi\)
0.387447 + 0.921892i \(0.373357\pi\)
\(654\) 0 0
\(655\) 2.87307e7 2.61664
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −1.73666e7 −1.55777 −0.778883 0.627170i \(-0.784213\pi\)
−0.778883 + 0.627170i \(0.784213\pi\)
\(660\) 0 0
\(661\) 3.06846e6 0.273160 0.136580 0.990629i \(-0.456389\pi\)
0.136580 + 0.990629i \(0.456389\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −2.41178e7 −2.11487
\(666\) 0 0
\(667\) 8.73140e6 0.759923
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 2.26001e7 1.93778
\(672\) 0 0
\(673\) 1.32622e7 1.12870 0.564348 0.825537i \(-0.309128\pi\)
0.564348 + 0.825537i \(0.309128\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 7.99829e6 0.670696 0.335348 0.942094i \(-0.391146\pi\)
0.335348 + 0.942094i \(0.391146\pi\)
\(678\) 0 0
\(679\) −1.29539e7 −1.07827
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −119801. −0.00982673 −0.00491336 0.999988i \(-0.501564\pi\)
−0.00491336 + 0.999988i \(0.501564\pi\)
\(684\) 0 0
\(685\) 2.37628e7 1.93496
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −2.09363e7 −1.68017
\(690\) 0 0
\(691\) −511463. −0.0407492 −0.0203746 0.999792i \(-0.506486\pi\)
−0.0203746 + 0.999792i \(0.506486\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −1.43783e7 −1.12913
\(696\) 0 0
\(697\) 2.23963e6 0.174620
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −1.23020e7 −0.945543 −0.472772 0.881185i \(-0.656746\pi\)
−0.472772 + 0.881185i \(0.656746\pi\)
\(702\) 0 0
\(703\) −1.55015e7 −1.18301
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −1.56274e7 −1.17581
\(708\) 0 0
\(709\) −1.06449e6 −0.0795290 −0.0397645 0.999209i \(-0.512661\pi\)
−0.0397645 + 0.999209i \(0.512661\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 1.03476e6 0.0762285
\(714\) 0 0
\(715\) 3.72501e7 2.72498
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 2.11931e7 1.52887 0.764437 0.644699i \(-0.223017\pi\)
0.764437 + 0.644699i \(0.223017\pi\)
\(720\) 0 0
\(721\) 2.51275e6 0.180016
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −1.41467e7 −0.999562
\(726\) 0 0
\(727\) 524302. 0.0367913 0.0183957 0.999831i \(-0.494144\pi\)
0.0183957 + 0.999831i \(0.494144\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 3.21813e7 2.22746
\(732\) 0 0
\(733\) 1.31522e7 0.904149 0.452074 0.891980i \(-0.350684\pi\)
0.452074 + 0.891980i \(0.350684\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1.37617e7 0.933265
\(738\) 0 0
\(739\) −1.22510e7 −0.825204 −0.412602 0.910912i \(-0.635380\pi\)
−0.412602 + 0.910912i \(0.635380\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 1.36833e7 0.909321 0.454661 0.890665i \(-0.349761\pi\)
0.454661 + 0.890665i \(0.349761\pi\)
\(744\) 0 0
\(745\) −2.30701e7 −1.52286
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 2.97953e7 1.94063
\(750\) 0 0
\(751\) −2.36812e7 −1.53216 −0.766080 0.642745i \(-0.777795\pi\)
−0.766080 + 0.642745i \(0.777795\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −8.45613e6 −0.539889
\(756\) 0 0
\(757\) 3.77298e6 0.239301 0.119651 0.992816i \(-0.461823\pi\)
0.119651 + 0.992816i \(0.461823\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 1.87112e7 1.17122 0.585612 0.810592i \(-0.300854\pi\)
0.585612 + 0.810592i \(0.300854\pi\)
\(762\) 0 0
\(763\) 1.52489e6 0.0948261
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −1.70772e7 −1.04816
\(768\) 0 0
\(769\) 8.60825e6 0.524927 0.262464 0.964942i \(-0.415465\pi\)
0.262464 + 0.964942i \(0.415465\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −6.47263e6 −0.389612 −0.194806 0.980842i \(-0.562408\pi\)
−0.194806 + 0.980842i \(0.562408\pi\)
\(774\) 0 0
\(775\) −1.67653e6 −0.100267
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 2.73292e6 0.161355
\(780\) 0 0
\(781\) −2.06629e7 −1.21217
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −1.46313e7 −0.847442
\(786\) 0 0
\(787\) 8.79244e6 0.506026 0.253013 0.967463i \(-0.418579\pi\)
0.253013 + 0.967463i \(0.418579\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 7.58179e6 0.430855
\(792\) 0 0
\(793\) 5.42894e7 3.06572
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −1.46426e7 −0.816530 −0.408265 0.912864i \(-0.633866\pi\)
−0.408265 + 0.912864i \(0.633866\pi\)
\(798\) 0 0
\(799\) −2.43516e7 −1.34946
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −2.35532e6 −0.128902
\(804\) 0 0
\(805\) −2.79373e7 −1.51948
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 3.23770e7 1.73926 0.869631 0.493702i \(-0.164357\pi\)
0.869631 + 0.493702i \(0.164357\pi\)
\(810\) 0 0
\(811\) −3.44288e7 −1.83810 −0.919051 0.394139i \(-0.871043\pi\)
−0.919051 + 0.394139i \(0.871043\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 4.43962e7 2.34127
\(816\) 0 0
\(817\) 3.92694e7 2.05826
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −3.73653e7 −1.93469 −0.967343 0.253469i \(-0.918428\pi\)
−0.967343 + 0.253469i \(0.918428\pi\)
\(822\) 0 0
\(823\) −5.45022e6 −0.280488 −0.140244 0.990117i \(-0.544789\pi\)
−0.140244 + 0.990117i \(0.544789\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −3.99406e6 −0.203072 −0.101536 0.994832i \(-0.532376\pi\)
−0.101536 + 0.994832i \(0.532376\pi\)
\(828\) 0 0
\(829\) −3.12054e7 −1.57704 −0.788520 0.615009i \(-0.789152\pi\)
−0.788520 + 0.615009i \(0.789152\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −6.10788e6 −0.304985
\(834\) 0 0
\(835\) −5.30266e7 −2.63195
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −9.91123e6 −0.486096 −0.243048 0.970014i \(-0.578147\pi\)
−0.243048 + 0.970014i \(0.578147\pi\)
\(840\) 0 0
\(841\) −6.65245e6 −0.324334
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 5.85832e7 2.82248
\(846\) 0 0
\(847\) 3.62013e6 0.173386
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −1.79565e7 −0.849959
\(852\) 0 0
\(853\) 1.67315e7 0.787340 0.393670 0.919252i \(-0.371205\pi\)
0.393670 + 0.919252i \(0.371205\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −1.03493e6 −0.0481347 −0.0240674 0.999710i \(-0.507662\pi\)
−0.0240674 + 0.999710i \(0.507662\pi\)
\(858\) 0 0
\(859\) −2.33995e7 −1.08199 −0.540995 0.841026i \(-0.681952\pi\)
−0.540995 + 0.841026i \(0.681952\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −3.55276e7 −1.62382 −0.811912 0.583780i \(-0.801573\pi\)
−0.811912 + 0.583780i \(0.801573\pi\)
\(864\) 0 0
\(865\) −4.22106e7 −1.91814
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −3.95280e7 −1.77564
\(870\) 0 0
\(871\) 3.30580e7 1.47649
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 8.04124e6 0.355061
\(876\) 0 0
\(877\) 1.64714e7 0.723155 0.361577 0.932342i \(-0.382238\pi\)
0.361577 + 0.932342i \(0.382238\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −2.34334e7 −1.01717 −0.508587 0.861011i \(-0.669832\pi\)
−0.508587 + 0.861011i \(0.669832\pi\)
\(882\) 0 0
\(883\) −2.95106e6 −0.127373 −0.0636863 0.997970i \(-0.520286\pi\)
−0.0636863 + 0.997970i \(0.520286\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −4.45216e6 −0.190004 −0.0950019 0.995477i \(-0.530286\pi\)
−0.0950019 + 0.995477i \(0.530286\pi\)
\(888\) 0 0
\(889\) −3.50609e6 −0.148788
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −2.97152e7 −1.24695
\(894\) 0 0
\(895\) −4.79493e7 −2.00090
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 1.64240e6 0.0677766
\(900\) 0 0
\(901\) −3.35017e7 −1.37485
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −3.94460e7 −1.60097
\(906\) 0 0
\(907\) −2.68053e7 −1.08194 −0.540969 0.841042i \(-0.681942\pi\)
−0.540969 + 0.841042i \(0.681942\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −2.05552e7 −0.820589 −0.410294 0.911953i \(-0.634574\pi\)
−0.410294 + 0.911953i \(0.634574\pi\)
\(912\) 0 0
\(913\) 6.05073e6 0.240232
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 4.94178e7 1.94071
\(918\) 0 0
\(919\) 1.44716e7 0.565233 0.282616 0.959233i \(-0.408798\pi\)
0.282616 + 0.959233i \(0.408798\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −4.96358e7 −1.91774
\(924\) 0 0
\(925\) 2.90933e7 1.11799
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 4.43904e6 0.168752 0.0843761 0.996434i \(-0.473110\pi\)
0.0843761 + 0.996434i \(0.473110\pi\)
\(930\) 0 0
\(931\) −7.45317e6 −0.281817
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 5.96066e7 2.22980
\(936\) 0 0
\(937\) 3.40690e7 1.26768 0.633842 0.773463i \(-0.281477\pi\)
0.633842 + 0.773463i \(0.281477\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 1.69962e7 0.625718 0.312859 0.949800i \(-0.398713\pi\)
0.312859 + 0.949800i \(0.398713\pi\)
\(942\) 0 0
\(943\) 3.16572e6 0.115929
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −1.68415e7 −0.610247 −0.305124 0.952313i \(-0.598698\pi\)
−0.305124 + 0.952313i \(0.598698\pi\)
\(948\) 0 0
\(949\) −5.65788e6 −0.203933
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 1.76148e7 0.628268 0.314134 0.949379i \(-0.398286\pi\)
0.314134 + 0.949379i \(0.398286\pi\)
\(954\) 0 0
\(955\) 1.99127e7 0.706517
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 4.08729e7 1.43512
\(960\) 0 0
\(961\) −2.84345e7 −0.993201
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −1.15898e7 −0.400642
\(966\) 0 0
\(967\) −9.77590e6 −0.336194 −0.168097 0.985770i \(-0.553762\pi\)
−0.168097 + 0.985770i \(0.553762\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −3.47619e6 −0.118319 −0.0591595 0.998249i \(-0.518842\pi\)
−0.0591595 + 0.998249i \(0.518842\pi\)
\(972\) 0 0
\(973\) −2.47311e7 −0.837455
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1.45057e7 0.486185 0.243093 0.970003i \(-0.421838\pi\)
0.243093 + 0.970003i \(0.421838\pi\)
\(978\) 0 0
\(979\) −4.53104e7 −1.51092
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −3.00490e7 −0.991849 −0.495925 0.868366i \(-0.665171\pi\)
−0.495925 + 0.868366i \(0.665171\pi\)
\(984\) 0 0
\(985\) 2.91297e7 0.956635
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 4.54885e7 1.47880
\(990\) 0 0
\(991\) −1.91325e7 −0.618855 −0.309427 0.950923i \(-0.600137\pi\)
−0.309427 + 0.950923i \(0.600137\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 4.11359e7 1.31724
\(996\) 0 0
\(997\) 2.30499e7 0.734398 0.367199 0.930142i \(-0.380317\pi\)
0.367199 + 0.930142i \(0.380317\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 324.6.a.c.1.4 yes 4
3.2 odd 2 inner 324.6.a.c.1.1 4
9.2 odd 6 324.6.e.j.109.4 8
9.4 even 3 324.6.e.j.217.1 8
9.5 odd 6 324.6.e.j.217.4 8
9.7 even 3 324.6.e.j.109.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
324.6.a.c.1.1 4 3.2 odd 2 inner
324.6.a.c.1.4 yes 4 1.1 even 1 trivial
324.6.e.j.109.1 8 9.7 even 3
324.6.e.j.109.4 8 9.2 odd 6
324.6.e.j.217.1 8 9.4 even 3
324.6.e.j.217.4 8 9.5 odd 6