Properties

Label 324.6
Level 324
Weight 6
Dimension 6664
Nonzero newspaces 8
Sturm bound 34992
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 324 = 2^{2} \cdot 3^{4} \)
Weight: \( k \) = \( 6 \)
Nonzero newspaces: \( 8 \)
Sturm bound: \(34992\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_1(324))\).

Total New Old
Modular forms 14850 6776 8074
Cusp forms 14310 6664 7646
Eisenstein series 540 112 428

Trace form

\( 6664 q - 12 q^{2} - 20 q^{4} + 63 q^{5} - 18 q^{6} - 87 q^{7} - 9 q^{8} - 36 q^{9} + 35 q^{10} + 1257 q^{11} - 18 q^{12} - 691 q^{13} - 1527 q^{14} + 2488 q^{16} + 3450 q^{17} - 18 q^{18} + 522 q^{19} - 1251 q^{20}+ \cdots - 908586 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_1(324))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
324.6.a \(\chi_{324}(1, \cdot)\) 324.6.a.a 3 1
324.6.a.b 3
324.6.a.c 4
324.6.a.d 5
324.6.a.e 5
324.6.b \(\chi_{324}(323, \cdot)\) n/a 116 1
324.6.e \(\chi_{324}(109, \cdot)\) 324.6.e.a 2 2
324.6.e.b 2
324.6.e.c 2
324.6.e.d 2
324.6.e.e 4
324.6.e.f 4
324.6.e.g 4
324.6.e.h 6
324.6.e.i 6
324.6.e.j 8
324.6.h \(\chi_{324}(107, \cdot)\) n/a 236 2
324.6.i \(\chi_{324}(37, \cdot)\) 324.6.i.a 90 6
324.6.l \(\chi_{324}(35, \cdot)\) n/a 528 6
324.6.m \(\chi_{324}(13, \cdot)\) n/a 810 18
324.6.p \(\chi_{324}(11, \cdot)\) n/a 4824 18

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_1(324))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_1(324)) \cong \) \(S_{6}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 15}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 10}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 12}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 5}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 9}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(27))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(36))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(54))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(81))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(108))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(162))\)\(^{\oplus 2}\)