Defining parameters
Level: | \( N \) | \(=\) | \( 324 = 2^{2} \cdot 3^{4} \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 324.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(324\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(324))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 288 | 20 | 268 |
Cusp forms | 252 | 20 | 232 |
Eisenstein series | 36 | 0 | 36 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | ||||||
\(+\) | \(+\) | \(+\) | \(72\) | \(0\) | \(72\) | \(60\) | \(0\) | \(60\) | \(12\) | \(0\) | \(12\) | |||
\(+\) | \(-\) | \(-\) | \(75\) | \(0\) | \(75\) | \(63\) | \(0\) | \(63\) | \(12\) | \(0\) | \(12\) | |||
\(-\) | \(+\) | \(-\) | \(72\) | \(11\) | \(61\) | \(66\) | \(11\) | \(55\) | \(6\) | \(0\) | \(6\) | |||
\(-\) | \(-\) | \(+\) | \(69\) | \(9\) | \(60\) | \(63\) | \(9\) | \(54\) | \(6\) | \(0\) | \(6\) | |||
Plus space | \(+\) | \(141\) | \(9\) | \(132\) | \(123\) | \(9\) | \(114\) | \(18\) | \(0\) | \(18\) | ||||
Minus space | \(-\) | \(147\) | \(11\) | \(136\) | \(129\) | \(11\) | \(118\) | \(18\) | \(0\) | \(18\) |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(324))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 3 | |||||||
324.6.a.a | $3$ | $51.964$ | 3.3.513129.1 | None | \(0\) | \(0\) | \(-33\) | \(-30\) | $-$ | $+$ | \(q+(-11-\beta _{1})q^{5}+(-10-\beta _{2})q^{7}+\cdots\) | |
324.6.a.b | $3$ | $51.964$ | 3.3.513129.1 | None | \(0\) | \(0\) | \(33\) | \(-30\) | $-$ | $+$ | \(q+(11+\beta _{1})q^{5}+(-10-\beta _{2})q^{7}+(-10+\cdots)q^{11}+\cdots\) | |
324.6.a.c | $4$ | $51.964$ | \(\Q(\sqrt{3}, \sqrt{91})\) | None | \(0\) | \(0\) | \(0\) | \(176\) | $-$ | $-$ | \(q+(2\beta _{1}+\beta _{2})q^{5}+(44+\beta _{3})q^{7}+(-11\beta _{1}+\cdots)q^{11}+\cdots\) | |
324.6.a.d | $5$ | $51.964$ | \(\mathbb{Q}[x]/(x^{5} - \cdots)\) | None | \(0\) | \(0\) | \(-21\) | \(-29\) | $-$ | $-$ | \(q+(-4-\beta _{2})q^{5}+(-6-\beta _{1}+\beta _{2})q^{7}+\cdots\) | |
324.6.a.e | $5$ | $51.964$ | \(\mathbb{Q}[x]/(x^{5} - \cdots)\) | None | \(0\) | \(0\) | \(21\) | \(-29\) | $-$ | $+$ | \(q+(4+\beta _{2})q^{5}+(-6-\beta _{1}+\beta _{2})q^{7}+\cdots\) |
Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(324))\) into lower level spaces
\( S_{6}^{\mathrm{old}}(\Gamma_0(324)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 12}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(4))\)\(^{\oplus 5}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 9}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(18))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(27))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(36))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(54))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(81))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(108))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(162))\)\(^{\oplus 2}\)