Properties

Label 324.6.a
Level $324$
Weight $6$
Character orbit 324.a
Rep. character $\chi_{324}(1,\cdot)$
Character field $\Q$
Dimension $20$
Newform subspaces $5$
Sturm bound $324$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 324 = 2^{2} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 324.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 5 \)
Sturm bound: \(324\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(324))\).

Total New Old
Modular forms 288 20 268
Cusp forms 252 20 232
Eisenstein series 36 0 36

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(72\)\(0\)\(72\)\(60\)\(0\)\(60\)\(12\)\(0\)\(12\)
\(+\)\(-\)\(-\)\(75\)\(0\)\(75\)\(63\)\(0\)\(63\)\(12\)\(0\)\(12\)
\(-\)\(+\)\(-\)\(72\)\(11\)\(61\)\(66\)\(11\)\(55\)\(6\)\(0\)\(6\)
\(-\)\(-\)\(+\)\(69\)\(9\)\(60\)\(63\)\(9\)\(54\)\(6\)\(0\)\(6\)
Plus space\(+\)\(141\)\(9\)\(132\)\(123\)\(9\)\(114\)\(18\)\(0\)\(18\)
Minus space\(-\)\(147\)\(11\)\(136\)\(129\)\(11\)\(118\)\(18\)\(0\)\(18\)

Trace form

\( 20 q + 58 q^{7} - 1556 q^{13} - 956 q^{19} + 15332 q^{25} - 3350 q^{31} + 790 q^{37} - 5102 q^{43} + 64386 q^{49} - 10458 q^{55} - 16124 q^{61} - 27458 q^{67} + 170350 q^{73} + 204106 q^{79} + 120186 q^{85}+ \cdots + 9634 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(324))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3
324.6.a.a 324.a 1.a $3$ $51.964$ 3.3.513129.1 None 324.6.a.a \(0\) \(0\) \(-33\) \(-30\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(-11-\beta _{1})q^{5}+(-10-\beta _{2})q^{7}+\cdots\)
324.6.a.b 324.a 1.a $3$ $51.964$ 3.3.513129.1 None 324.6.a.a \(0\) \(0\) \(33\) \(-30\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(11+\beta _{1})q^{5}+(-10-\beta _{2})q^{7}+(-10+\cdots)q^{11}+\cdots\)
324.6.a.c 324.a 1.a $4$ $51.964$ \(\Q(\sqrt{3}, \sqrt{91})\) None 324.6.a.c \(0\) \(0\) \(0\) \(176\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(2\beta _{1}+\beta _{2})q^{5}+(44+\beta _{3})q^{7}+(-11\beta _{1}+\cdots)q^{11}+\cdots\)
324.6.a.d 324.a 1.a $5$ $51.964$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 36.6.e.a \(0\) \(0\) \(-21\) \(-29\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-4-\beta _{2})q^{5}+(-6-\beta _{1}+\beta _{2})q^{7}+\cdots\)
324.6.a.e 324.a 1.a $5$ $51.964$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 36.6.e.a \(0\) \(0\) \(21\) \(-29\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(4+\beta _{2})q^{5}+(-6-\beta _{1}+\beta _{2})q^{7}+\cdots\)

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(324))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_0(324)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 12}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(4))\)\(^{\oplus 5}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 9}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(18))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(27))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(36))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(54))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(81))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(108))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(162))\)\(^{\oplus 2}\)