Properties

Label 324.2.l.a.179.7
Level $324$
Weight $2$
Character 324.179
Analytic conductor $2.587$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [324,2,Mod(35,324)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("324.35"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(324, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([9, 13])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 324 = 2^{2} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 324.l (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.58715302549\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(16\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 108)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 179.7
Character \(\chi\) \(=\) 324.179
Dual form 324.2.l.a.143.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.438668 - 1.34446i) q^{2} +(-1.61514 + 1.17954i) q^{4} +(-3.32285 - 0.585909i) q^{5} +(1.72640 + 2.05745i) q^{7} +(2.29436 + 1.65406i) q^{8} +(0.669899 + 4.72446i) q^{10} +(0.506730 + 2.87381i) q^{11} +(0.552703 - 0.201167i) q^{13} +(2.00883 - 3.22361i) q^{14} +(1.21736 - 3.81025i) q^{16} +(6.36286 + 3.67360i) q^{17} +(-2.82795 + 1.63272i) q^{19} +(6.05798 - 2.97312i) q^{20} +(3.64143 - 1.94193i) q^{22} +(0.365077 + 0.306336i) q^{23} +(5.99961 + 2.18368i) q^{25} +(-0.512914 - 0.654840i) q^{26} +(-5.21523 - 1.28670i) q^{28} +(-1.49502 + 4.10753i) q^{29} +(-3.73778 + 4.45451i) q^{31} +(-5.65675 + 0.0347450i) q^{32} +(2.14782 - 10.1661i) q^{34} +(-4.53111 - 7.84811i) q^{35} +(-1.59532 + 2.76318i) q^{37} +(3.43565 + 3.08584i) q^{38} +(-6.65468 - 6.84050i) q^{40} +(1.09875 + 3.01880i) q^{41} +(1.79304 - 0.316161i) q^{43} +(-4.20822 - 4.04390i) q^{44} +(0.251708 - 0.625211i) q^{46} +(-0.940800 + 0.789425i) q^{47} +(-0.0370819 + 0.210302i) q^{49} +(0.304032 - 9.02414i) q^{50} +(-0.655407 + 0.976849i) q^{52} -7.37157i q^{53} -9.84615i q^{55} +(0.557836 + 7.57609i) q^{56} +(6.17822 + 0.208150i) q^{58} +(-0.718733 + 4.07614i) q^{59} +(0.421725 - 0.353869i) q^{61} +(7.62855 + 3.07124i) q^{62} +(2.52815 + 7.59002i) q^{64} +(-1.95442 + 0.344616i) q^{65} +(3.46492 + 9.51978i) q^{67} +(-14.6101 + 1.57188i) q^{68} +(-8.56381 + 9.53460i) q^{70} +(-0.616505 + 1.06782i) q^{71} +(1.18077 + 2.04515i) q^{73} +(4.41480 + 0.932727i) q^{74} +(2.64168 - 5.97275i) q^{76} +(-5.03789 + 6.00392i) q^{77} +(3.33584 - 9.16514i) q^{79} +(-6.27757 + 11.9477i) q^{80} +(3.57666 - 2.80148i) q^{82} +(-16.8988 - 6.15067i) q^{83} +(-18.9905 - 15.9349i) q^{85} +(-1.21161 - 2.27198i) q^{86} +(-3.59084 + 7.43171i) q^{88} +(4.81205 - 2.77824i) q^{89} +(1.36808 + 0.789860i) q^{91} +(-0.950986 - 0.0641520i) q^{92} +(1.47405 + 0.918571i) q^{94} +(10.3535 - 3.76836i) q^{95} +(1.83865 + 10.4275i) q^{97} +(0.299009 - 0.0423976i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 6 q^{2} - 6 q^{4} + 12 q^{5} + 9 q^{8} - 3 q^{10} - 12 q^{13} + 21 q^{14} - 6 q^{16} + 18 q^{17} + 27 q^{20} - 6 q^{22} - 12 q^{25} - 12 q^{28} + 24 q^{29} - 24 q^{32} - 12 q^{34} - 6 q^{37} - 18 q^{38}+ \cdots + 180 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/324\mathbb{Z}\right)^\times\).

\(n\) \(163\) \(245\)
\(\chi(n)\) \(-1\) \(e\left(\frac{11}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.438668 1.34446i −0.310185 0.950676i
\(3\) 0 0
\(4\) −1.61514 + 1.17954i −0.807570 + 0.589771i
\(5\) −3.32285 0.585909i −1.48603 0.262026i −0.629043 0.777371i \(-0.716553\pi\)
−0.856983 + 0.515344i \(0.827664\pi\)
\(6\) 0 0
\(7\) 1.72640 + 2.05745i 0.652519 + 0.777641i 0.986292 0.165012i \(-0.0527663\pi\)
−0.333773 + 0.942653i \(0.608322\pi\)
\(8\) 2.29436 + 1.65406i 0.811178 + 0.584800i
\(9\) 0 0
\(10\) 0.669899 + 4.72446i 0.211841 + 1.49401i
\(11\) 0.506730 + 2.87381i 0.152785 + 0.866486i 0.960783 + 0.277301i \(0.0894400\pi\)
−0.807998 + 0.589185i \(0.799449\pi\)
\(12\) 0 0
\(13\) 0.552703 0.201167i 0.153292 0.0557938i −0.264234 0.964458i \(-0.585119\pi\)
0.417527 + 0.908665i \(0.362897\pi\)
\(14\) 2.00883 3.22361i 0.536884 0.861547i
\(15\) 0 0
\(16\) 1.21736 3.81025i 0.304340 0.952563i
\(17\) 6.36286 + 3.67360i 1.54322 + 0.890979i 0.998633 + 0.0522747i \(0.0166472\pi\)
0.544588 + 0.838704i \(0.316686\pi\)
\(18\) 0 0
\(19\) −2.82795 + 1.63272i −0.648776 + 0.374571i −0.787987 0.615692i \(-0.788877\pi\)
0.139211 + 0.990263i \(0.455543\pi\)
\(20\) 6.05798 2.97312i 1.35461 0.664810i
\(21\) 0 0
\(22\) 3.64143 1.94193i 0.776356 0.414020i
\(23\) 0.365077 + 0.306336i 0.0761238 + 0.0638754i 0.680056 0.733161i \(-0.261956\pi\)
−0.603932 + 0.797036i \(0.706400\pi\)
\(24\) 0 0
\(25\) 5.99961 + 2.18368i 1.19992 + 0.436736i
\(26\) −0.512914 0.654840i −0.100591 0.128425i
\(27\) 0 0
\(28\) −5.21523 1.28670i −0.985585 0.243164i
\(29\) −1.49502 + 4.10753i −0.277618 + 0.762749i 0.720013 + 0.693960i \(0.244136\pi\)
−0.997631 + 0.0687888i \(0.978087\pi\)
\(30\) 0 0
\(31\) −3.73778 + 4.45451i −0.671325 + 0.800054i −0.988964 0.148158i \(-0.952666\pi\)
0.317639 + 0.948212i \(0.397110\pi\)
\(32\) −5.65675 + 0.0347450i −0.999981 + 0.00614210i
\(33\) 0 0
\(34\) 2.14782 10.1661i 0.368348 1.74347i
\(35\) −4.53111 7.84811i −0.765897 1.32657i
\(36\) 0 0
\(37\) −1.59532 + 2.76318i −0.262269 + 0.454264i −0.966845 0.255365i \(-0.917804\pi\)
0.704575 + 0.709629i \(0.251138\pi\)
\(38\) 3.43565 + 3.08584i 0.557336 + 0.500589i
\(39\) 0 0
\(40\) −6.65468 6.84050i −1.05220 1.08158i
\(41\) 1.09875 + 3.01880i 0.171596 + 0.471457i 0.995443 0.0953554i \(-0.0303987\pi\)
−0.823847 + 0.566812i \(0.808177\pi\)
\(42\) 0 0
\(43\) 1.79304 0.316161i 0.273436 0.0482141i −0.0352488 0.999379i \(-0.511222\pi\)
0.308685 + 0.951164i \(0.400111\pi\)
\(44\) −4.20822 4.04390i −0.634413 0.609641i
\(45\) 0 0
\(46\) 0.251708 0.625211i 0.0371124 0.0921823i
\(47\) −0.940800 + 0.789425i −0.137230 + 0.115149i −0.708819 0.705391i \(-0.750772\pi\)
0.571589 + 0.820540i \(0.306327\pi\)
\(48\) 0 0
\(49\) −0.0370819 + 0.210302i −0.00529741 + 0.0300431i
\(50\) 0.304032 9.02414i 0.0429965 1.27621i
\(51\) 0 0
\(52\) −0.655407 + 0.976849i −0.0908886 + 0.135465i
\(53\) 7.37157i 1.01256i −0.862368 0.506282i \(-0.831020\pi\)
0.862368 0.506282i \(-0.168980\pi\)
\(54\) 0 0
\(55\) 9.84615i 1.32765i
\(56\) 0.557836 + 7.57609i 0.0745440 + 1.01240i
\(57\) 0 0
\(58\) 6.17822 + 0.208150i 0.811240 + 0.0273314i
\(59\) −0.718733 + 4.07614i −0.0935710 + 0.530668i 0.901605 + 0.432561i \(0.142390\pi\)
−0.995176 + 0.0981070i \(0.968721\pi\)
\(60\) 0 0
\(61\) 0.421725 0.353869i 0.0539963 0.0453083i −0.615390 0.788223i \(-0.711002\pi\)
0.669386 + 0.742914i \(0.266557\pi\)
\(62\) 7.62855 + 3.07124i 0.968827 + 0.390048i
\(63\) 0 0
\(64\) 2.52815 + 7.59002i 0.316018 + 0.948753i
\(65\) −1.95442 + 0.344616i −0.242415 + 0.0427444i
\(66\) 0 0
\(67\) 3.46492 + 9.51978i 0.423307 + 1.16303i 0.949803 + 0.312849i \(0.101283\pi\)
−0.526496 + 0.850178i \(0.676495\pi\)
\(68\) −14.6101 + 1.57188i −1.77173 + 0.190619i
\(69\) 0 0
\(70\) −8.56381 + 9.53460i −1.02357 + 1.13960i
\(71\) −0.616505 + 1.06782i −0.0731657 + 0.126727i −0.900287 0.435297i \(-0.856644\pi\)
0.827121 + 0.562023i \(0.189977\pi\)
\(72\) 0 0
\(73\) 1.18077 + 2.04515i 0.138198 + 0.239366i 0.926815 0.375519i \(-0.122536\pi\)
−0.788616 + 0.614885i \(0.789202\pi\)
\(74\) 4.41480 + 0.932727i 0.513210 + 0.108427i
\(75\) 0 0
\(76\) 2.64168 5.97275i 0.303021 0.685121i
\(77\) −5.03789 + 6.00392i −0.574121 + 0.684210i
\(78\) 0 0
\(79\) 3.33584 9.16514i 0.375311 1.03116i −0.597965 0.801522i \(-0.704024\pi\)
0.973276 0.229637i \(-0.0737538\pi\)
\(80\) −6.27757 + 11.9477i −0.701854 + 1.33579i
\(81\) 0 0
\(82\) 3.57666 2.80148i 0.394976 0.309371i
\(83\) −16.8988 6.15067i −1.85489 0.675124i −0.982487 0.186333i \(-0.940340\pi\)
−0.872401 0.488790i \(-0.837438\pi\)
\(84\) 0 0
\(85\) −18.9905 15.9349i −2.05981 1.72838i
\(86\) −1.21161 2.27198i −0.130652 0.244994i
\(87\) 0 0
\(88\) −3.59084 + 7.43171i −0.382785 + 0.792223i
\(89\) 4.81205 2.77824i 0.510076 0.294493i −0.222789 0.974867i \(-0.571516\pi\)
0.732865 + 0.680374i \(0.238183\pi\)
\(90\) 0 0
\(91\) 1.36808 + 0.789860i 0.143413 + 0.0827998i
\(92\) −0.950986 0.0641520i −0.0991472 0.00668831i
\(93\) 0 0
\(94\) 1.47405 + 0.918571i 0.152036 + 0.0947434i
\(95\) 10.3535 3.76836i 1.06224 0.386626i
\(96\) 0 0
\(97\) 1.83865 + 10.4275i 0.186687 + 1.05875i 0.923769 + 0.382951i \(0.125092\pi\)
−0.737082 + 0.675803i \(0.763797\pi\)
\(98\) 0.299009 0.0423976i 0.0302045 0.00428280i
\(99\) 0 0
\(100\) −12.2660 + 3.54984i −1.22660 + 0.354984i
\(101\) −5.49760 6.55178i −0.547032 0.651927i 0.419717 0.907655i \(-0.362129\pi\)
−0.966749 + 0.255728i \(0.917685\pi\)
\(102\) 0 0
\(103\) −16.7001 2.94469i −1.64551 0.290149i −0.727326 0.686292i \(-0.759237\pi\)
−0.918189 + 0.396144i \(0.870348\pi\)
\(104\) 1.60084 + 0.452656i 0.156975 + 0.0443865i
\(105\) 0 0
\(106\) −9.91078 + 3.23367i −0.962620 + 0.314082i
\(107\) 3.73466 0.361043 0.180522 0.983571i \(-0.442221\pi\)
0.180522 + 0.983571i \(0.442221\pi\)
\(108\) 0 0
\(109\) 10.6061 1.01588 0.507940 0.861393i \(-0.330407\pi\)
0.507940 + 0.861393i \(0.330407\pi\)
\(110\) −13.2377 + 4.31919i −1.26217 + 0.411819i
\(111\) 0 0
\(112\) 9.94104 4.07338i 0.939340 0.384898i
\(113\) 5.75136 + 1.01412i 0.541042 + 0.0954004i 0.437489 0.899224i \(-0.355868\pi\)
0.103553 + 0.994624i \(0.466979\pi\)
\(114\) 0 0
\(115\) −1.03361 1.23181i −0.0963848 0.114867i
\(116\) −2.43034 8.39768i −0.225651 0.779705i
\(117\) 0 0
\(118\) 5.79548 0.821763i 0.533517 0.0756494i
\(119\) 3.42662 + 19.4333i 0.314118 + 1.78145i
\(120\) 0 0
\(121\) 2.33461 0.849729i 0.212237 0.0772481i
\(122\) −0.660760 0.411761i −0.0598224 0.0372791i
\(123\) 0 0
\(124\) 0.782755 11.6035i 0.0702935 1.04203i
\(125\) −4.04606 2.33599i −0.361890 0.208937i
\(126\) 0 0
\(127\) −1.06513 + 0.614951i −0.0945147 + 0.0545681i −0.546512 0.837451i \(-0.684045\pi\)
0.451998 + 0.892019i \(0.350712\pi\)
\(128\) 9.09546 6.72849i 0.803933 0.594720i
\(129\) 0 0
\(130\) 1.32066 + 2.47646i 0.115830 + 0.217200i
\(131\) 13.5213 + 11.3457i 1.18136 + 0.991278i 0.999969 + 0.00786658i \(0.00250404\pi\)
0.181390 + 0.983411i \(0.441940\pi\)
\(132\) 0 0
\(133\) −8.24140 2.99962i −0.714620 0.260100i
\(134\) 11.2790 8.83446i 0.974358 0.763181i
\(135\) 0 0
\(136\) 8.52231 + 18.9531i 0.730782 + 1.62522i
\(137\) 3.54986 9.75317i 0.303285 0.833269i −0.690639 0.723200i \(-0.742671\pi\)
0.993924 0.110069i \(-0.0351073\pi\)
\(138\) 0 0
\(139\) 14.0279 16.7178i 1.18983 1.41798i 0.304820 0.952410i \(-0.401404\pi\)
0.885009 0.465573i \(-0.154152\pi\)
\(140\) 16.5756 + 7.33117i 1.40089 + 0.619597i
\(141\) 0 0
\(142\) 1.70608 + 0.360448i 0.143171 + 0.0302482i
\(143\) 0.858188 + 1.48642i 0.0717653 + 0.124301i
\(144\) 0 0
\(145\) 7.37437 12.7728i 0.612408 1.06072i
\(146\) 2.23165 2.48463i 0.184693 0.205630i
\(147\) 0 0
\(148\) −0.682616 6.34467i −0.0561107 0.521529i
\(149\) −1.27723 3.50915i −0.104635 0.287481i 0.876317 0.481736i \(-0.159993\pi\)
−0.980951 + 0.194255i \(0.937771\pi\)
\(150\) 0 0
\(151\) 14.3762 2.53492i 1.16992 0.206289i 0.445265 0.895399i \(-0.353109\pi\)
0.724657 + 0.689110i \(0.241998\pi\)
\(152\) −9.18894 0.931571i −0.745321 0.0755604i
\(153\) 0 0
\(154\) 10.2820 + 4.13951i 0.828546 + 0.333571i
\(155\) 15.0300 12.6117i 1.20724 1.01300i
\(156\) 0 0
\(157\) −2.89506 + 16.4187i −0.231051 + 1.31036i 0.619722 + 0.784822i \(0.287245\pi\)
−0.850773 + 0.525534i \(0.823866\pi\)
\(158\) −13.7855 0.464445i −1.09671 0.0369493i
\(159\) 0 0
\(160\) 18.8169 + 3.19889i 1.48761 + 0.252894i
\(161\) 1.27998i 0.100877i
\(162\) 0 0
\(163\) 2.78256i 0.217947i −0.994045 0.108973i \(-0.965244\pi\)
0.994045 0.108973i \(-0.0347563\pi\)
\(164\) −5.33544 3.57976i −0.416628 0.279532i
\(165\) 0 0
\(166\) −0.856352 + 25.4179i −0.0664658 + 1.97281i
\(167\) 2.46126 13.9585i 0.190458 1.08014i −0.728282 0.685278i \(-0.759681\pi\)
0.918740 0.394863i \(-0.129208\pi\)
\(168\) 0 0
\(169\) −9.69357 + 8.13387i −0.745659 + 0.625682i
\(170\) −13.0933 + 32.5220i −1.00421 + 2.49433i
\(171\) 0 0
\(172\) −2.52308 + 2.62561i −0.192383 + 0.200201i
\(173\) −1.21493 + 0.214226i −0.0923698 + 0.0162873i −0.219642 0.975581i \(-0.570489\pi\)
0.127272 + 0.991868i \(0.459378\pi\)
\(174\) 0 0
\(175\) 5.86494 + 16.1138i 0.443348 + 1.21809i
\(176\) 11.5668 + 1.56769i 0.871882 + 0.118169i
\(177\) 0 0
\(178\) −5.84612 5.25088i −0.438185 0.393570i
\(179\) 8.60015 14.8959i 0.642805 1.11337i −0.341998 0.939701i \(-0.611104\pi\)
0.984804 0.173671i \(-0.0555630\pi\)
\(180\) 0 0
\(181\) −10.8176 18.7366i −0.804065 1.39268i −0.916920 0.399071i \(-0.869333\pi\)
0.112855 0.993611i \(-0.464000\pi\)
\(182\) 0.461803 2.18581i 0.0342311 0.162023i
\(183\) 0 0
\(184\) 0.330918 + 1.30670i 0.0243956 + 0.0963315i
\(185\) 6.91999 8.24693i 0.508768 0.606326i
\(186\) 0 0
\(187\) −7.33297 + 20.1472i −0.536240 + 1.47331i
\(188\) 0.588364 2.38474i 0.0429109 0.173925i
\(189\) 0 0
\(190\) −9.60815 12.2668i −0.697048 0.889925i
\(191\) 4.48414 + 1.63210i 0.324461 + 0.118094i 0.499115 0.866536i \(-0.333658\pi\)
−0.174654 + 0.984630i \(0.555881\pi\)
\(192\) 0 0
\(193\) 6.94036 + 5.82365i 0.499578 + 0.419196i 0.857444 0.514577i \(-0.172051\pi\)
−0.357866 + 0.933773i \(0.616496\pi\)
\(194\) 13.2128 7.04621i 0.948625 0.505888i
\(195\) 0 0
\(196\) −0.188167 0.383407i −0.0134405 0.0273862i
\(197\) −1.80241 + 1.04062i −0.128416 + 0.0741411i −0.562832 0.826571i \(-0.690288\pi\)
0.434416 + 0.900712i \(0.356955\pi\)
\(198\) 0 0
\(199\) −9.74989 5.62910i −0.691151 0.399036i 0.112892 0.993607i \(-0.463989\pi\)
−0.804043 + 0.594571i \(0.797322\pi\)
\(200\) 10.1533 + 14.9339i 0.717947 + 1.05598i
\(201\) 0 0
\(202\) −6.39699 + 10.2654i −0.450090 + 0.722268i
\(203\) −11.0320 + 4.01533i −0.774296 + 0.281821i
\(204\) 0 0
\(205\) −1.88225 10.6748i −0.131462 0.745560i
\(206\) 3.36681 + 23.7444i 0.234577 + 1.65435i
\(207\) 0 0
\(208\) −0.0936603 2.35083i −0.00649417 0.163001i
\(209\) −6.12512 7.29964i −0.423684 0.504926i
\(210\) 0 0
\(211\) 5.42064 + 0.955805i 0.373172 + 0.0658003i 0.357089 0.934070i \(-0.383769\pi\)
0.0160832 + 0.999871i \(0.494880\pi\)
\(212\) 8.69508 + 11.9061i 0.597181 + 0.817716i
\(213\) 0 0
\(214\) −1.63828 5.02110i −0.111990 0.343235i
\(215\) −6.14325 −0.418966
\(216\) 0 0
\(217\) −15.6178 −1.06021
\(218\) −4.65255 14.2595i −0.315111 0.965773i
\(219\) 0 0
\(220\) 11.6140 + 15.9029i 0.783012 + 1.07217i
\(221\) 4.25578 + 0.750408i 0.286275 + 0.0504779i
\(222\) 0 0
\(223\) 3.51114 + 4.18441i 0.235123 + 0.280209i 0.870685 0.491841i \(-0.163676\pi\)
−0.635562 + 0.772050i \(0.719231\pi\)
\(224\) −9.83731 11.5785i −0.657283 0.773619i
\(225\) 0 0
\(226\) −1.15949 8.17733i −0.0771284 0.543948i
\(227\) 0.257802 + 1.46207i 0.0171109 + 0.0970410i 0.992167 0.124917i \(-0.0398664\pi\)
−0.975056 + 0.221958i \(0.928755\pi\)
\(228\) 0 0
\(229\) 24.4836 8.91131i 1.61792 0.588876i 0.634938 0.772563i \(-0.281026\pi\)
0.982985 + 0.183688i \(0.0588035\pi\)
\(230\) −1.20271 + 1.93001i −0.0793042 + 0.127261i
\(231\) 0 0
\(232\) −10.2242 + 6.95128i −0.671253 + 0.456374i
\(233\) −5.81401 3.35672i −0.380889 0.219906i 0.297316 0.954779i \(-0.403908\pi\)
−0.678205 + 0.734873i \(0.737242\pi\)
\(234\) 0 0
\(235\) 3.58867 2.07192i 0.234099 0.135157i
\(236\) −3.64712 7.43131i −0.237407 0.483737i
\(237\) 0 0
\(238\) 24.6242 13.1317i 1.59615 0.851204i
\(239\) −15.7014 13.1750i −1.01564 0.852223i −0.0265665 0.999647i \(-0.508457\pi\)
−0.989073 + 0.147424i \(0.952902\pi\)
\(240\) 0 0
\(241\) −11.8674 4.31940i −0.764449 0.278237i −0.0697765 0.997563i \(-0.522229\pi\)
−0.694673 + 0.719326i \(0.744451\pi\)
\(242\) −2.16654 2.76604i −0.139271 0.177808i
\(243\) 0 0
\(244\) −0.263741 + 1.06899i −0.0168843 + 0.0684351i
\(245\) 0.246436 0.677076i 0.0157442 0.0432568i
\(246\) 0 0
\(247\) −1.23456 + 1.47130i −0.0785535 + 0.0936164i
\(248\) −15.9438 + 4.03771i −1.01243 + 0.256395i
\(249\) 0 0
\(250\) −1.36577 + 6.46448i −0.0863789 + 0.408850i
\(251\) 6.38939 + 11.0668i 0.403295 + 0.698527i 0.994121 0.108272i \(-0.0345316\pi\)
−0.590827 + 0.806799i \(0.701198\pi\)
\(252\) 0 0
\(253\) −0.695355 + 1.20439i −0.0437166 + 0.0757194i
\(254\) 1.29401 + 1.16226i 0.0811936 + 0.0729266i
\(255\) 0 0
\(256\) −13.0361 9.27690i −0.814754 0.579806i
\(257\) 3.40030 + 9.34225i 0.212105 + 0.582754i 0.999429 0.0337856i \(-0.0107563\pi\)
−0.787324 + 0.616539i \(0.788534\pi\)
\(258\) 0 0
\(259\) −8.43926 + 1.48807i −0.524390 + 0.0924641i
\(260\) 2.75017 2.86192i 0.170558 0.177489i
\(261\) 0 0
\(262\) 9.32247 23.1558i 0.575944 1.43057i
\(263\) −14.9780 + 12.5681i −0.923586 + 0.774981i −0.974655 0.223715i \(-0.928182\pi\)
0.0510689 + 0.998695i \(0.483737\pi\)
\(264\) 0 0
\(265\) −4.31907 + 24.4947i −0.265318 + 1.50470i
\(266\) −0.417634 + 12.3961i −0.0256068 + 0.760051i
\(267\) 0 0
\(268\) −16.8253 11.2888i −1.02777 0.689571i
\(269\) 30.3293i 1.84921i 0.380930 + 0.924604i \(0.375604\pi\)
−0.380930 + 0.924604i \(0.624396\pi\)
\(270\) 0 0
\(271\) 19.1257i 1.16181i 0.813973 + 0.580903i \(0.197301\pi\)
−0.813973 + 0.580903i \(0.802699\pi\)
\(272\) 21.7432 19.7720i 1.31838 1.19885i
\(273\) 0 0
\(274\) −14.6699 0.494244i −0.886244 0.0298583i
\(275\) −3.23530 + 18.3483i −0.195096 + 1.10644i
\(276\) 0 0
\(277\) 7.54011 6.32690i 0.453041 0.380147i −0.387522 0.921861i \(-0.626669\pi\)
0.840563 + 0.541714i \(0.182224\pi\)
\(278\) −28.6299 11.5264i −1.71711 0.691305i
\(279\) 0 0
\(280\) 2.58529 25.5011i 0.154501 1.52398i
\(281\) 22.8259 4.02483i 1.36168 0.240101i 0.555375 0.831600i \(-0.312575\pi\)
0.806306 + 0.591499i \(0.201463\pi\)
\(282\) 0 0
\(283\) −5.96637 16.3925i −0.354664 0.974432i −0.980851 0.194759i \(-0.937608\pi\)
0.626187 0.779673i \(-0.284615\pi\)
\(284\) −0.263794 2.45187i −0.0156533 0.145492i
\(285\) 0 0
\(286\) 1.62198 1.80584i 0.0959096 0.106782i
\(287\) −4.31412 + 7.47228i −0.254655 + 0.441075i
\(288\) 0 0
\(289\) 18.4907 + 32.0268i 1.08769 + 1.88393i
\(290\) −20.4074 4.31153i −1.19836 0.253182i
\(291\) 0 0
\(292\) −4.31944 1.91044i −0.252776 0.111800i
\(293\) −12.2291 + 14.5741i −0.714431 + 0.851426i −0.994077 0.108678i \(-0.965338\pi\)
0.279646 + 0.960103i \(0.409783\pi\)
\(294\) 0 0
\(295\) 4.77649 13.1233i 0.278098 0.764068i
\(296\) −8.23071 + 3.70095i −0.478400 + 0.215114i
\(297\) 0 0
\(298\) −4.15763 + 3.25653i −0.240845 + 0.188646i
\(299\) 0.263404 + 0.0958711i 0.0152330 + 0.00554437i
\(300\) 0 0
\(301\) 3.74599 + 3.14326i 0.215915 + 0.181174i
\(302\) −9.71449 18.2163i −0.559006 1.04823i
\(303\) 0 0
\(304\) 2.77843 + 12.7628i 0.159354 + 0.731997i
\(305\) −1.60867 + 0.928763i −0.0921119 + 0.0531808i
\(306\) 0 0
\(307\) −14.3110 8.26248i −0.816773 0.471564i 0.0325291 0.999471i \(-0.489644\pi\)
−0.849303 + 0.527906i \(0.822977\pi\)
\(308\) 1.05502 15.6396i 0.0601154 0.891148i
\(309\) 0 0
\(310\) −23.5491 14.6749i −1.33750 0.833479i
\(311\) −1.95536 + 0.711694i −0.110879 + 0.0403565i −0.396864 0.917878i \(-0.629901\pi\)
0.285985 + 0.958234i \(0.407679\pi\)
\(312\) 0 0
\(313\) −0.0264293 0.149888i −0.00149387 0.00847218i 0.984052 0.177883i \(-0.0569248\pi\)
−0.985546 + 0.169410i \(0.945814\pi\)
\(314\) 23.3442 3.31007i 1.31739 0.186798i
\(315\) 0 0
\(316\) 5.42282 + 18.7377i 0.305057 + 1.05408i
\(317\) 4.31448 + 5.14180i 0.242325 + 0.288792i 0.873475 0.486869i \(-0.161861\pi\)
−0.631150 + 0.775661i \(0.717417\pi\)
\(318\) 0 0
\(319\) −12.5618 2.21499i −0.703327 0.124016i
\(320\) −3.95360 26.7018i −0.221013 1.49268i
\(321\) 0 0
\(322\) 1.72089 0.561488i 0.0959013 0.0312905i
\(323\) −23.9918 −1.33494
\(324\) 0 0
\(325\) 3.75529 0.208306
\(326\) −3.74103 + 1.22062i −0.207197 + 0.0676038i
\(327\) 0 0
\(328\) −2.47235 + 8.74360i −0.136513 + 0.482785i
\(329\) −3.24840 0.572780i −0.179090 0.0315784i
\(330\) 0 0
\(331\) −8.49106 10.1192i −0.466711 0.556204i 0.480426 0.877035i \(-0.340482\pi\)
−0.947136 + 0.320831i \(0.896038\pi\)
\(332\) 34.5490 9.99868i 1.89612 0.548749i
\(333\) 0 0
\(334\) −19.8463 + 2.81408i −1.08594 + 0.153980i
\(335\) −5.93569 33.6630i −0.324301 1.83920i
\(336\) 0 0
\(337\) 18.1807 6.61722i 0.990364 0.360463i 0.204503 0.978866i \(-0.434442\pi\)
0.785861 + 0.618403i \(0.212220\pi\)
\(338\) 15.1879 + 9.46454i 0.826113 + 0.514803i
\(339\) 0 0
\(340\) 49.4682 + 3.33704i 2.68279 + 0.180976i
\(341\) −14.6955 8.48443i −0.795804 0.459458i
\(342\) 0 0
\(343\) 15.7851 9.11354i 0.852316 0.492085i
\(344\) 4.63682 + 2.24041i 0.250001 + 0.120795i
\(345\) 0 0
\(346\) 0.820971 + 1.53946i 0.0441357 + 0.0827617i
\(347\) −9.79587 8.21971i −0.525870 0.441257i 0.340803 0.940135i \(-0.389301\pi\)
−0.866672 + 0.498878i \(0.833746\pi\)
\(348\) 0 0
\(349\) 11.3836 + 4.14328i 0.609348 + 0.221785i 0.628218 0.778037i \(-0.283785\pi\)
−0.0188700 + 0.999822i \(0.506007\pi\)
\(350\) 19.0916 14.9538i 1.02049 0.799313i
\(351\) 0 0
\(352\) −2.96630 16.2388i −0.158104 0.865532i
\(353\) −6.82994 + 18.7651i −0.363521 + 0.998766i 0.614254 + 0.789108i \(0.289457\pi\)
−0.977775 + 0.209657i \(0.932765\pi\)
\(354\) 0 0
\(355\) 2.67420 3.18699i 0.141932 0.169148i
\(356\) −4.49509 + 10.1633i −0.238239 + 0.538652i
\(357\) 0 0
\(358\) −23.7995 5.02820i −1.25784 0.265749i
\(359\) 10.5259 + 18.2314i 0.555535 + 0.962214i 0.997862 + 0.0653605i \(0.0208197\pi\)
−0.442327 + 0.896854i \(0.645847\pi\)
\(360\) 0 0
\(361\) −4.16848 + 7.22001i −0.219393 + 0.380001i
\(362\) −20.4453 + 22.7630i −1.07458 + 1.19639i
\(363\) 0 0
\(364\) −3.14131 + 0.337970i −0.164649 + 0.0177144i
\(365\) −2.72524 7.48755i −0.142646 0.391916i
\(366\) 0 0
\(367\) −27.4150 + 4.83400i −1.43105 + 0.252333i −0.834838 0.550495i \(-0.814439\pi\)
−0.596211 + 0.802828i \(0.703328\pi\)
\(368\) 1.61165 1.01811i 0.0840129 0.0530729i
\(369\) 0 0
\(370\) −14.1232 5.68599i −0.734232 0.295600i
\(371\) 15.1666 12.7263i 0.787411 0.660717i
\(372\) 0 0
\(373\) 1.03662 5.87895i 0.0536740 0.304400i −0.946139 0.323762i \(-0.895052\pi\)
0.999813 + 0.0193617i \(0.00616340\pi\)
\(374\) 30.3038 + 1.02096i 1.56697 + 0.0527927i
\(375\) 0 0
\(376\) −3.46429 + 0.255079i −0.178657 + 0.0131547i
\(377\) 2.57099i 0.132413i
\(378\) 0 0
\(379\) 14.2394i 0.731429i 0.930727 + 0.365715i \(0.119175\pi\)
−0.930727 + 0.365715i \(0.880825\pi\)
\(380\) −12.2774 + 18.2988i −0.629817 + 0.938709i
\(381\) 0 0
\(382\) 0.227235 6.74470i 0.0116263 0.345089i
\(383\) 2.77843 15.7573i 0.141971 0.805159i −0.827778 0.561056i \(-0.810395\pi\)
0.969749 0.244103i \(-0.0784935\pi\)
\(384\) 0 0
\(385\) 20.2579 16.9984i 1.03244 0.866319i
\(386\) 4.78515 11.8857i 0.243558 0.604965i
\(387\) 0 0
\(388\) −15.2694 14.6731i −0.775185 0.744916i
\(389\) −17.5295 + 3.09093i −0.888782 + 0.156716i −0.599355 0.800484i \(-0.704576\pi\)
−0.289427 + 0.957200i \(0.593465\pi\)
\(390\) 0 0
\(391\) 1.19758 + 3.29032i 0.0605641 + 0.166399i
\(392\) −0.432932 + 0.421172i −0.0218664 + 0.0212724i
\(393\) 0 0
\(394\) 2.18973 + 1.96678i 0.110317 + 0.0990847i
\(395\) −16.4544 + 28.4999i −0.827913 + 1.43399i
\(396\) 0 0
\(397\) −9.34449 16.1851i −0.468987 0.812309i 0.530385 0.847757i \(-0.322047\pi\)
−0.999372 + 0.0354484i \(0.988714\pi\)
\(398\) −3.29113 + 15.5776i −0.164970 + 0.780836i
\(399\) 0 0
\(400\) 15.6241 20.2017i 0.781203 1.01009i
\(401\) 19.8603 23.6686i 0.991778 1.18195i 0.00847759 0.999964i \(-0.497301\pi\)
0.983300 0.181991i \(-0.0582541\pi\)
\(402\) 0 0
\(403\) −1.16978 + 3.21394i −0.0582708 + 0.160098i
\(404\) 16.6075 + 4.09740i 0.826254 + 0.203853i
\(405\) 0 0
\(406\) 10.2378 + 13.0707i 0.508095 + 0.648688i
\(407\) −8.74925 3.18447i −0.433684 0.157848i
\(408\) 0 0
\(409\) −18.8560 15.8220i −0.932368 0.782349i 0.0438734 0.999037i \(-0.486030\pi\)
−0.976241 + 0.216688i \(0.930475\pi\)
\(410\) −13.5261 + 7.21330i −0.668008 + 0.356240i
\(411\) 0 0
\(412\) 30.4465 14.9424i 1.49999 0.736161i
\(413\) −9.62725 + 5.55829i −0.473726 + 0.273506i
\(414\) 0 0
\(415\) 52.5486 + 30.3390i 2.57951 + 1.48928i
\(416\) −3.11951 + 1.15716i −0.152947 + 0.0567342i
\(417\) 0 0
\(418\) −7.12717 + 11.4371i −0.348601 + 0.559407i
\(419\) 7.48245 2.72339i 0.365542 0.133046i −0.152718 0.988270i \(-0.548802\pi\)
0.518259 + 0.855224i \(0.326580\pi\)
\(420\) 0 0
\(421\) −0.713817 4.04826i −0.0347893 0.197300i 0.962460 0.271425i \(-0.0874948\pi\)
−0.997249 + 0.0741247i \(0.976384\pi\)
\(422\) −1.09282 7.70711i −0.0531977 0.375176i
\(423\) 0 0
\(424\) 12.1931 16.9130i 0.592147 0.821369i
\(425\) 30.1527 + 35.9346i 1.46262 + 1.74309i
\(426\) 0 0
\(427\) 1.45613 + 0.256755i 0.0704672 + 0.0124253i
\(428\) −6.03201 + 4.40519i −0.291568 + 0.212933i
\(429\) 0 0
\(430\) 2.69485 + 8.25935i 0.129957 + 0.398301i
\(431\) 34.6402 1.66856 0.834281 0.551340i \(-0.185883\pi\)
0.834281 + 0.551340i \(0.185883\pi\)
\(432\) 0 0
\(433\) −8.55521 −0.411137 −0.205569 0.978643i \(-0.565904\pi\)
−0.205569 + 0.978643i \(0.565904\pi\)
\(434\) 6.85104 + 20.9975i 0.328860 + 1.00791i
\(435\) 0 0
\(436\) −17.1303 + 12.5103i −0.820394 + 0.599137i
\(437\) −1.53258 0.270235i −0.0733131 0.0129271i
\(438\) 0 0
\(439\) −5.14956 6.13700i −0.245775 0.292903i 0.629027 0.777383i \(-0.283453\pi\)
−0.874802 + 0.484480i \(0.839009\pi\)
\(440\) 16.2862 22.5906i 0.776412 1.07696i
\(441\) 0 0
\(442\) −0.857980 6.05090i −0.0408099 0.287812i
\(443\) 1.37913 + 7.82143i 0.0655244 + 0.371607i 0.999883 + 0.0152741i \(0.00486210\pi\)
−0.934359 + 0.356333i \(0.884027\pi\)
\(444\) 0 0
\(445\) −17.6175 + 6.41226i −0.835151 + 0.303970i
\(446\) 4.08555 6.55615i 0.193456 0.310443i
\(447\) 0 0
\(448\) −11.2515 + 18.3050i −0.531582 + 0.864828i
\(449\) −0.748371 0.432072i −0.0353178 0.0203907i 0.482237 0.876041i \(-0.339824\pi\)
−0.517555 + 0.855650i \(0.673158\pi\)
\(450\) 0 0
\(451\) −8.11868 + 4.68732i −0.382294 + 0.220717i
\(452\) −10.4855 + 5.14603i −0.493194 + 0.242049i
\(453\) 0 0
\(454\) 1.85260 0.987968i 0.0869470 0.0463676i
\(455\) −4.08314 3.42616i −0.191420 0.160621i
\(456\) 0 0
\(457\) 27.5979 + 10.0448i 1.29098 + 0.469877i 0.894048 0.447972i \(-0.147853\pi\)
0.396930 + 0.917849i \(0.370076\pi\)
\(458\) −22.7211 29.0081i −1.06169 1.35546i
\(459\) 0 0
\(460\) 3.12240 + 0.770359i 0.145583 + 0.0359182i
\(461\) 1.96584 5.40111i 0.0915585 0.251555i −0.885458 0.464720i \(-0.846155\pi\)
0.977016 + 0.213165i \(0.0683772\pi\)
\(462\) 0 0
\(463\) 17.6836 21.0745i 0.821825 0.979413i −0.178164 0.984001i \(-0.557016\pi\)
0.999989 + 0.00458769i \(0.00146031\pi\)
\(464\) 13.8308 + 10.6967i 0.642077 + 0.496584i
\(465\) 0 0
\(466\) −1.96255 + 9.28919i −0.0909136 + 0.430313i
\(467\) −8.41790 14.5802i −0.389534 0.674692i 0.602853 0.797852i \(-0.294031\pi\)
−0.992387 + 0.123160i \(0.960697\pi\)
\(468\) 0 0
\(469\) −13.6046 + 23.5638i −0.628202 + 1.08808i
\(470\) −4.35985 3.91594i −0.201105 0.180629i
\(471\) 0 0
\(472\) −8.39122 + 8.16328i −0.386237 + 0.375745i
\(473\) 1.81717 + 4.99264i 0.0835537 + 0.229562i
\(474\) 0 0
\(475\) −20.5319 + 3.62033i −0.942069 + 0.166112i
\(476\) −28.4569 27.3457i −1.30432 1.25339i
\(477\) 0 0
\(478\) −10.8256 + 26.8894i −0.495152 + 1.22989i
\(479\) −1.69205 + 1.41980i −0.0773119 + 0.0648724i −0.680625 0.732632i \(-0.738292\pi\)
0.603313 + 0.797505i \(0.293847\pi\)
\(480\) 0 0
\(481\) −0.325877 + 1.84814i −0.0148587 + 0.0842680i
\(482\) −0.601385 + 17.8501i −0.0273923 + 0.813049i
\(483\) 0 0
\(484\) −2.76843 + 4.12620i −0.125838 + 0.187555i
\(485\) 35.7264i 1.62225i
\(486\) 0 0
\(487\) 40.4859i 1.83459i 0.398206 + 0.917296i \(0.369633\pi\)
−0.398206 + 0.917296i \(0.630367\pi\)
\(488\) 1.55291 0.114342i 0.0702969 0.00517604i
\(489\) 0 0
\(490\) −1.01840 0.0343110i −0.0460068 0.00155001i
\(491\) −2.74760 + 15.5824i −0.123998 + 0.703225i 0.857901 + 0.513816i \(0.171768\pi\)
−0.981898 + 0.189409i \(0.939343\pi\)
\(492\) 0 0
\(493\) −24.6020 + 20.6435i −1.10802 + 0.929738i
\(494\) 2.51966 + 1.01441i 0.113365 + 0.0456405i
\(495\) 0 0
\(496\) 12.4226 + 19.6646i 0.557791 + 0.882968i
\(497\) −3.26131 + 0.575058i −0.146290 + 0.0257949i
\(498\) 0 0
\(499\) 11.4425 + 31.4380i 0.512236 + 1.40736i 0.878901 + 0.477004i \(0.158277\pi\)
−0.366665 + 0.930353i \(0.619501\pi\)
\(500\) 9.29035 0.999538i 0.415477 0.0447007i
\(501\) 0 0
\(502\) 12.0760 13.4449i 0.538977 0.600075i
\(503\) 12.0161 20.8125i 0.535772 0.927984i −0.463354 0.886173i \(-0.653354\pi\)
0.999126 0.0418106i \(-0.0133126\pi\)
\(504\) 0 0
\(505\) 14.4290 + 24.9917i 0.642081 + 1.11212i
\(506\) 1.92428 + 0.406549i 0.0855449 + 0.0180733i
\(507\) 0 0
\(508\) 0.994968 2.24959i 0.0441446 0.0998096i
\(509\) 15.9558 19.0154i 0.707228 0.842841i −0.286096 0.958201i \(-0.592358\pi\)
0.993324 + 0.115360i \(0.0368022\pi\)
\(510\) 0 0
\(511\) −2.16930 + 5.96011i −0.0959643 + 0.263660i
\(512\) −6.75391 + 21.5959i −0.298484 + 0.954415i
\(513\) 0 0
\(514\) 11.0687 8.66972i 0.488218 0.382405i
\(515\) 53.7669 + 19.5695i 2.36925 + 0.862337i
\(516\) 0 0
\(517\) −2.74539 2.30365i −0.120742 0.101315i
\(518\) 5.70268 + 10.6935i 0.250561 + 0.469844i
\(519\) 0 0
\(520\) −5.05415 2.44206i −0.221639 0.107091i
\(521\) 13.6964 7.90761i 0.600049 0.346439i −0.169012 0.985614i \(-0.554058\pi\)
0.769061 + 0.639175i \(0.220724\pi\)
\(522\) 0 0
\(523\) −27.0410 15.6122i −1.18242 0.682672i −0.225849 0.974162i \(-0.572515\pi\)
−0.956574 + 0.291491i \(0.905849\pi\)
\(524\) −35.2215 2.37598i −1.53866 0.103795i
\(525\) 0 0
\(526\) 23.4676 + 14.6242i 1.02324 + 0.637644i
\(527\) −40.1470 + 14.6123i −1.74883 + 0.636523i
\(528\) 0 0
\(529\) −3.95447 22.4269i −0.171933 0.975083i
\(530\) 34.8267 4.93821i 1.51278 0.214502i
\(531\) 0 0
\(532\) 16.8492 4.87626i 0.730506 0.211413i
\(533\) 1.21457 + 1.44746i 0.0526087 + 0.0626966i
\(534\) 0 0
\(535\) −12.4097 2.18817i −0.536520 0.0946029i
\(536\) −7.79657 + 27.5730i −0.336760 + 1.19097i
\(537\) 0 0
\(538\) 40.7765 13.3045i 1.75800 0.573597i
\(539\) −0.623158 −0.0268413
\(540\) 0 0
\(541\) −14.4554 −0.621486 −0.310743 0.950494i \(-0.600578\pi\)
−0.310743 + 0.950494i \(0.600578\pi\)
\(542\) 25.7138 8.38985i 1.10450 0.360375i
\(543\) 0 0
\(544\) −36.1207 20.5595i −1.54866 0.881483i
\(545\) −35.2425 6.21421i −1.50962 0.266187i
\(546\) 0 0
\(547\) 23.0006 + 27.4110i 0.983434 + 1.17201i 0.985095 + 0.172012i \(0.0550267\pi\)
−0.00166132 + 0.999999i \(0.500529\pi\)
\(548\) 5.77074 + 19.9400i 0.246514 + 0.851792i
\(549\) 0 0
\(550\) 26.0877 3.69908i 1.11238 0.157729i
\(551\) −2.47860 14.0568i −0.105592 0.598841i
\(552\) 0 0
\(553\) 24.6158 8.95941i 1.04677 0.380993i
\(554\) −11.8139 7.36196i −0.501923 0.312780i
\(555\) 0 0
\(556\) −2.93768 + 43.5480i −0.124585 + 1.84685i
\(557\) 25.5879 + 14.7732i 1.08419 + 0.625960i 0.932025 0.362394i \(-0.118041\pi\)
0.152170 + 0.988354i \(0.451374\pi\)
\(558\) 0 0
\(559\) 0.927416 0.535444i 0.0392255 0.0226469i
\(560\) −35.4193 + 7.71069i −1.49674 + 0.325836i
\(561\) 0 0
\(562\) −15.4242 28.9230i −0.650632 1.22004i
\(563\) 8.84941 + 7.42554i 0.372958 + 0.312949i 0.809930 0.586526i \(-0.199505\pi\)
−0.436972 + 0.899475i \(0.643949\pi\)
\(564\) 0 0
\(565\) −18.5168 6.73955i −0.779006 0.283535i
\(566\) −19.4218 + 15.2124i −0.816358 + 0.639425i
\(567\) 0 0
\(568\) −3.18072 + 1.43022i −0.133460 + 0.0600106i
\(569\) −4.36916 + 12.0042i −0.183165 + 0.503241i −0.996960 0.0779103i \(-0.975175\pi\)
0.813796 + 0.581151i \(0.197397\pi\)
\(570\) 0 0
\(571\) 24.8893 29.6619i 1.04158 1.24131i 0.0717799 0.997420i \(-0.477132\pi\)
0.969803 0.243890i \(-0.0784235\pi\)
\(572\) −3.13939 1.38852i −0.131265 0.0580568i
\(573\) 0 0
\(574\) 11.9386 + 2.52231i 0.498309 + 0.105279i
\(575\) 1.52138 + 2.63511i 0.0634459 + 0.109892i
\(576\) 0 0
\(577\) 10.5964 18.3535i 0.441134 0.764067i −0.556640 0.830754i \(-0.687910\pi\)
0.997774 + 0.0666873i \(0.0212430\pi\)
\(578\) 34.9474 38.9091i 1.45362 1.61840i
\(579\) 0 0
\(580\) 3.15539 + 29.3282i 0.131020 + 1.21779i
\(581\) −16.5195 45.3870i −0.685344 1.88297i
\(582\) 0 0
\(583\) 21.1845 3.73540i 0.877372 0.154704i
\(584\) −0.673704 + 6.64536i −0.0278781 + 0.274987i
\(585\) 0 0
\(586\) 24.9587 + 10.0483i 1.03104 + 0.415093i
\(587\) 11.6298 9.75855i 0.480013 0.402778i −0.370418 0.928865i \(-0.620786\pi\)
0.850431 + 0.526087i \(0.176341\pi\)
\(588\) 0 0
\(589\) 3.29729 18.6999i 0.135862 0.770514i
\(590\) −19.7390 0.665025i −0.812643 0.0273787i
\(591\) 0 0
\(592\) 8.58633 + 9.44236i 0.352896 + 0.388079i
\(593\) 25.8789i 1.06272i −0.847147 0.531359i \(-0.821681\pi\)
0.847147 0.531359i \(-0.178319\pi\)
\(594\) 0 0
\(595\) 66.5819i 2.72959i
\(596\) 6.20209 + 4.16123i 0.254048 + 0.170451i
\(597\) 0 0
\(598\) 0.0133480 0.396191i 0.000545841 0.0162015i
\(599\) 0.0271904 0.154204i 0.00111097 0.00630062i −0.984247 0.176798i \(-0.943426\pi\)
0.985358 + 0.170497i \(0.0545373\pi\)
\(600\) 0 0
\(601\) 3.42031 2.86998i 0.139517 0.117069i −0.570358 0.821396i \(-0.693196\pi\)
0.709875 + 0.704327i \(0.248751\pi\)
\(602\) 2.58274 6.41517i 0.105264 0.261463i
\(603\) 0 0
\(604\) −20.2296 + 21.0516i −0.823131 + 0.856579i
\(605\) −8.25544 + 1.45566i −0.335631 + 0.0591808i
\(606\) 0 0
\(607\) −12.8586 35.3287i −0.521914 1.43395i −0.868387 0.495886i \(-0.834843\pi\)
0.346474 0.938060i \(-0.387379\pi\)
\(608\) 15.9403 9.33412i 0.646463 0.378549i
\(609\) 0 0
\(610\) 1.95435 + 1.75537i 0.0791295 + 0.0710727i
\(611\) −0.361176 + 0.625575i −0.0146116 + 0.0253081i
\(612\) 0 0
\(613\) −9.84356 17.0495i −0.397577 0.688624i 0.595849 0.803096i \(-0.296816\pi\)
−0.993426 + 0.114472i \(0.963482\pi\)
\(614\) −4.83077 + 22.8651i −0.194954 + 0.922759i
\(615\) 0 0
\(616\) −21.4896 + 5.44215i −0.865840 + 0.219270i
\(617\) −14.8351 + 17.6798i −0.597241 + 0.711764i −0.976980 0.213330i \(-0.931569\pi\)
0.379740 + 0.925093i \(0.376014\pi\)
\(618\) 0 0
\(619\) 0.717110 1.97024i 0.0288231 0.0791908i −0.924447 0.381312i \(-0.875472\pi\)
0.953270 + 0.302121i \(0.0976947\pi\)
\(620\) −9.39959 + 38.0982i −0.377497 + 1.53006i
\(621\) 0 0
\(622\) 1.81460 + 2.31671i 0.0727588 + 0.0928916i
\(623\) 14.0236 + 5.10417i 0.561844 + 0.204494i
\(624\) 0 0
\(625\) −12.3789 10.3871i −0.495155 0.415484i
\(626\) −0.189925 + 0.101284i −0.00759092 + 0.00404813i
\(627\) 0 0
\(628\) −14.6906 29.9334i −0.586220 1.19447i
\(629\) −20.3016 + 11.7211i −0.809479 + 0.467353i
\(630\) 0 0
\(631\) 4.15935 + 2.40140i 0.165581 + 0.0955982i 0.580500 0.814260i \(-0.302857\pi\)
−0.414920 + 0.909858i \(0.636190\pi\)
\(632\) 22.8133 15.5104i 0.907465 0.616971i
\(633\) 0 0
\(634\) 5.02031 8.05618i 0.199382 0.319952i
\(635\) 3.89957 1.41933i 0.154750 0.0563242i
\(636\) 0 0
\(637\) 0.0218106 + 0.123694i 0.000864167 + 0.00490094i
\(638\) 2.53251 + 17.8605i 0.100263 + 0.707104i
\(639\) 0 0
\(640\) −34.1652 + 17.0287i −1.35050 + 0.673118i
\(641\) −18.2093 21.7010i −0.719223 0.857136i 0.275332 0.961349i \(-0.411212\pi\)
−0.994555 + 0.104213i \(0.966768\pi\)
\(642\) 0 0
\(643\) 3.69392 + 0.651338i 0.145674 + 0.0256863i 0.246010 0.969267i \(-0.420881\pi\)
−0.100336 + 0.994954i \(0.531992\pi\)
\(644\) −1.50980 2.06736i −0.0594943 0.0814652i
\(645\) 0 0
\(646\) 10.5244 + 32.2560i 0.414078 + 1.26909i
\(647\) 44.7799 1.76048 0.880239 0.474530i \(-0.157382\pi\)
0.880239 + 0.474530i \(0.157382\pi\)
\(648\) 0 0
\(649\) −12.0782 −0.474112
\(650\) −1.64732 5.04883i −0.0646133 0.198031i
\(651\) 0 0
\(652\) 3.28214 + 4.49422i 0.128539 + 0.176007i
\(653\) 33.2582 + 5.86432i 1.30149 + 0.229489i 0.781083 0.624427i \(-0.214667\pi\)
0.520411 + 0.853916i \(0.325779\pi\)
\(654\) 0 0
\(655\) −38.2817 45.6223i −1.49579 1.78261i
\(656\) 12.8400 0.511561i 0.501316 0.0199731i
\(657\) 0 0
\(658\) 0.654888 + 4.61860i 0.0255302 + 0.180052i
\(659\) −5.48543 31.1094i −0.213682 1.21185i −0.883179 0.469036i \(-0.844601\pi\)
0.669497 0.742815i \(-0.266510\pi\)
\(660\) 0 0
\(661\) 4.54548 1.65442i 0.176799 0.0643495i −0.252104 0.967700i \(-0.581123\pi\)
0.428903 + 0.903351i \(0.358900\pi\)
\(662\) −9.88016 + 15.8549i −0.384003 + 0.616217i
\(663\) 0 0
\(664\) −28.5983 42.0636i −1.10983 1.63238i
\(665\) 25.6275 + 14.7960i 0.993791 + 0.573765i
\(666\) 0 0
\(667\) −1.80408 + 1.04159i −0.0698542 + 0.0403304i
\(668\) 12.4894 + 25.4481i 0.483228 + 0.984616i
\(669\) 0 0
\(670\) −42.6547 + 22.7472i −1.64789 + 0.878799i
\(671\) 1.23065 + 1.03264i 0.0475088 + 0.0398646i
\(672\) 0 0
\(673\) −20.9411 7.62193i −0.807220 0.293804i −0.0947448 0.995502i \(-0.530204\pi\)
−0.712475 + 0.701698i \(0.752426\pi\)
\(674\) −16.8719 21.5404i −0.649880 0.829705i
\(675\) 0 0
\(676\) 6.06223 24.5713i 0.233163 0.945050i
\(677\) 0.302359 0.830725i 0.0116206 0.0319274i −0.933747 0.357934i \(-0.883481\pi\)
0.945367 + 0.326007i \(0.105703\pi\)
\(678\) 0 0
\(679\) −18.2798 + 21.7850i −0.701514 + 0.836032i
\(680\) −17.2136 67.9718i −0.660111 2.60660i
\(681\) 0 0
\(682\) −4.96054 + 23.4793i −0.189949 + 0.899069i
\(683\) −13.1484 22.7737i −0.503110 0.871412i −0.999994 0.00359510i \(-0.998856\pi\)
0.496883 0.867817i \(-0.334478\pi\)
\(684\) 0 0
\(685\) −17.5101 + 30.3285i −0.669028 + 1.15879i
\(686\) −19.1772 17.2246i −0.732189 0.657640i
\(687\) 0 0
\(688\) 0.978120 7.21681i 0.0372905 0.275138i
\(689\) −1.48292 4.07429i −0.0564947 0.155218i
\(690\) 0 0
\(691\) 26.8477 4.73397i 1.02133 0.180089i 0.362189 0.932105i \(-0.382029\pi\)
0.659145 + 0.752016i \(0.270918\pi\)
\(692\) 1.70960 1.77907i 0.0649893 0.0676302i
\(693\) 0 0
\(694\) −6.75393 + 16.7759i −0.256376 + 0.636803i
\(695\) −56.4077 + 47.3317i −2.13967 + 1.79539i
\(696\) 0 0
\(697\) −4.09864 + 23.2446i −0.155247 + 0.880450i
\(698\) 0.576864 17.1223i 0.0218346 0.648087i
\(699\) 0 0
\(700\) −28.4796 19.1081i −1.07643 0.722218i
\(701\) 0.940626i 0.0355270i −0.999842 0.0177635i \(-0.994345\pi\)
0.999842 0.0177635i \(-0.00565459\pi\)
\(702\) 0 0
\(703\) 10.4188i 0.392954i
\(704\) −20.5312 + 11.1115i −0.773799 + 0.418781i
\(705\) 0 0
\(706\) 28.2250 + 0.950925i 1.06226 + 0.0357885i
\(707\) 3.98887 22.6220i 0.150017 0.850789i
\(708\) 0 0
\(709\) 27.4140 23.0031i 1.02956 0.863899i 0.0387572 0.999249i \(-0.487660\pi\)
0.990798 + 0.135349i \(0.0432157\pi\)
\(710\) −5.45786 2.19733i −0.204830 0.0824641i
\(711\) 0 0
\(712\) 15.6359 + 1.58517i 0.585981 + 0.0594066i
\(713\) −2.72915 + 0.481223i −0.102208 + 0.0180219i
\(714\) 0 0
\(715\) −1.98072 5.44199i −0.0740749 0.203519i
\(716\) 3.67989 + 34.2032i 0.137524 + 1.27823i
\(717\) 0 0
\(718\) 19.8940 22.1491i 0.742436 0.826598i
\(719\) −16.5947 + 28.7429i −0.618879 + 1.07193i 0.370812 + 0.928708i \(0.379079\pi\)
−0.989691 + 0.143221i \(0.954254\pi\)
\(720\) 0 0
\(721\) −22.7726 39.4434i −0.848097 1.46895i
\(722\) 11.5356 + 2.43716i 0.429310 + 0.0907016i
\(723\) 0 0
\(724\) 39.5726 + 17.5025i 1.47070 + 0.650474i
\(725\) −17.9391 + 21.3789i −0.666240 + 0.793994i
\(726\) 0 0
\(727\) 11.0347 30.3175i 0.409253 1.12441i −0.548331 0.836261i \(-0.684737\pi\)
0.957585 0.288153i \(-0.0930410\pi\)
\(728\) 1.83238 + 4.07511i 0.0679125 + 0.151034i
\(729\) 0 0
\(730\) −8.87122 + 6.94853i −0.328339 + 0.257177i
\(731\) 12.5703 + 4.57522i 0.464929 + 0.169220i
\(732\) 0 0
\(733\) 33.6290 + 28.2180i 1.24211 + 1.04226i 0.997356 + 0.0726730i \(0.0231530\pi\)
0.244758 + 0.969584i \(0.421291\pi\)
\(734\) 18.5252 + 34.7378i 0.683777 + 1.28219i
\(735\) 0 0
\(736\) −2.07579 1.72018i −0.0765147 0.0634067i
\(737\) −25.6023 + 14.7815i −0.943071 + 0.544482i
\(738\) 0 0
\(739\) 14.8213 + 8.55709i 0.545211 + 0.314778i 0.747188 0.664613i \(-0.231403\pi\)
−0.201977 + 0.979390i \(0.564737\pi\)
\(740\) −1.44917 + 21.4824i −0.0532724 + 0.789708i
\(741\) 0 0
\(742\) −23.7631 14.8083i −0.872371 0.543629i
\(743\) 41.1116 14.9634i 1.50824 0.548954i 0.550061 0.835124i \(-0.314604\pi\)
0.958179 + 0.286170i \(0.0923822\pi\)
\(744\) 0 0
\(745\) 2.18800 + 12.4087i 0.0801620 + 0.454621i
\(746\) −8.35873 + 1.18522i −0.306035 + 0.0433938i
\(747\) 0 0
\(748\) −11.9207 41.1901i −0.435863 1.50606i
\(749\) 6.44753 + 7.68387i 0.235588 + 0.280762i
\(750\) 0 0
\(751\) 5.87467 + 1.03586i 0.214370 + 0.0377992i 0.279801 0.960058i \(-0.409731\pi\)
−0.0654317 + 0.997857i \(0.520842\pi\)
\(752\) 1.86262 + 4.54570i 0.0679226 + 0.165765i
\(753\) 0 0
\(754\) 3.45659 1.12781i 0.125882 0.0410725i
\(755\) −49.2554 −1.79259
\(756\) 0 0
\(757\) 33.2521 1.20857 0.604284 0.796769i \(-0.293459\pi\)
0.604284 + 0.796769i \(0.293459\pi\)
\(758\) 19.1443 6.24637i 0.695353 0.226879i
\(759\) 0 0
\(760\) 29.9877 + 8.47936i 1.08777 + 0.307579i
\(761\) 4.94688 + 0.872268i 0.179324 + 0.0316197i 0.262589 0.964908i \(-0.415424\pi\)
−0.0832649 + 0.996527i \(0.526535\pi\)
\(762\) 0 0
\(763\) 18.3104 + 21.8215i 0.662880 + 0.789990i
\(764\) −9.16765 + 2.65317i −0.331674 + 0.0959885i
\(765\) 0 0
\(766\) −22.4038 + 3.17672i −0.809482 + 0.114780i
\(767\) 0.422740 + 2.39748i 0.0152642 + 0.0865678i
\(768\) 0 0
\(769\) −48.6273 + 17.6989i −1.75355 + 0.638239i −0.999820 0.0189509i \(-0.993967\pi\)
−0.753725 + 0.657189i \(0.771745\pi\)
\(770\) −31.7402 19.7793i −1.14384 0.712796i
\(771\) 0 0
\(772\) −18.0789 1.21957i −0.650674 0.0438934i
\(773\) −8.36174 4.82765i −0.300751 0.173639i 0.342029 0.939689i \(-0.388886\pi\)
−0.642780 + 0.766051i \(0.722219\pi\)
\(774\) 0 0
\(775\) −32.1524 + 18.5632i −1.15495 + 0.666811i
\(776\) −13.0293 + 26.9657i −0.467723 + 0.968012i
\(777\) 0 0
\(778\) 11.8453 + 22.2118i 0.424673 + 0.796333i
\(779\) −8.03605 6.74305i −0.287921 0.241595i
\(780\) 0 0
\(781\) −3.38111 1.23062i −0.120986 0.0440352i
\(782\) 3.89836 3.05345i 0.139405 0.109191i
\(783\) 0 0
\(784\) 0.756161 + 0.397305i 0.0270058 + 0.0141894i
\(785\) 19.2397 52.8607i 0.686695 1.88668i
\(786\) 0 0
\(787\) −25.8465 + 30.8027i −0.921329 + 1.09800i 0.0735865 + 0.997289i \(0.476555\pi\)
−0.994916 + 0.100709i \(0.967889\pi\)
\(788\) 1.68369 3.80676i 0.0599788 0.135610i
\(789\) 0 0
\(790\) 45.5350 + 9.62032i 1.62006 + 0.342276i
\(791\) 7.84266 + 13.5839i 0.278853 + 0.482987i
\(792\) 0 0
\(793\) 0.161901 0.280422i 0.00574929 0.00995806i
\(794\) −17.6611 + 19.6632i −0.626770 + 0.697820i
\(795\) 0 0
\(796\) 22.3872 2.40861i 0.793494 0.0853711i
\(797\) 1.57213 + 4.31940i 0.0556878 + 0.153001i 0.964417 0.264384i \(-0.0851687\pi\)
−0.908730 + 0.417385i \(0.862947\pi\)
\(798\) 0 0
\(799\) −8.88621 + 1.56688i −0.314371 + 0.0554322i
\(800\) −34.0142 12.1441i −1.20258 0.429358i
\(801\) 0 0
\(802\) −40.5336 16.3187i −1.43129 0.576235i
\(803\) −5.27903 + 4.42963i −0.186293 + 0.156318i
\(804\) 0 0
\(805\) 0.749954 4.25320i 0.0264324 0.149906i
\(806\) 4.83415 + 0.162867i 0.170276 + 0.00573674i
\(807\) 0 0
\(808\) −1.77639 24.1255i −0.0624931 0.848732i
\(809\) 17.3051i 0.608415i 0.952606 + 0.304208i \(0.0983917\pi\)
−0.952606 + 0.304208i \(0.901608\pi\)
\(810\) 0 0
\(811\) 4.64157i 0.162987i −0.996674 0.0814937i \(-0.974031\pi\)
0.996674 0.0814937i \(-0.0259691\pi\)
\(812\) 13.0820 19.4981i 0.459089 0.684248i
\(813\) 0 0
\(814\) −0.443370 + 13.1599i −0.0155401 + 0.461255i
\(815\) −1.63032 + 9.24603i −0.0571078 + 0.323874i
\(816\) 0 0
\(817\) −4.55442 + 3.82161i −0.159339 + 0.133701i
\(818\) −13.0006 + 32.2917i −0.454554 + 1.12905i
\(819\) 0 0
\(820\) 15.6315 + 15.0211i 0.545875 + 0.524559i
\(821\) 34.5874 6.09870i 1.20711 0.212846i 0.466340 0.884605i \(-0.345572\pi\)
0.740769 + 0.671759i \(0.234461\pi\)
\(822\) 0 0
\(823\) −0.0707205 0.194303i −0.00246516 0.00677298i 0.938454 0.345404i \(-0.112258\pi\)
−0.940919 + 0.338631i \(0.890036\pi\)
\(824\) −33.4454 34.3793i −1.16513 1.19766i
\(825\) 0 0
\(826\) 11.6961 + 10.5052i 0.406958 + 0.365523i
\(827\) −6.40289 + 11.0901i −0.222650 + 0.385642i −0.955612 0.294628i \(-0.904804\pi\)
0.732962 + 0.680270i \(0.238137\pi\)
\(828\) 0 0
\(829\) 14.0149 + 24.2745i 0.486757 + 0.843088i 0.999884 0.0152250i \(-0.00484646\pi\)
−0.513127 + 0.858313i \(0.671513\pi\)
\(830\) 17.7381 83.9582i 0.615699 2.91423i
\(831\) 0 0
\(832\) 2.92418 + 3.68645i 0.101378 + 0.127805i
\(833\) −1.00851 + 1.20190i −0.0349429 + 0.0416433i
\(834\) 0 0
\(835\) −16.3568 + 44.9400i −0.566051 + 1.55521i
\(836\) 18.5032 + 4.56510i 0.639945 + 0.157887i
\(837\) 0 0
\(838\) −6.94380 8.86519i −0.239869 0.306243i
\(839\) −31.3898 11.4250i −1.08370 0.394434i −0.262415 0.964955i \(-0.584519\pi\)
−0.821283 + 0.570521i \(0.806741\pi\)
\(840\) 0 0
\(841\) 7.57857 + 6.35918i 0.261330 + 0.219282i
\(842\) −5.12959 + 2.73554i −0.176777 + 0.0942729i
\(843\) 0 0
\(844\) −9.88251 + 4.85011i −0.340170 + 0.166948i
\(845\) 36.9760 21.3481i 1.27201 0.734397i
\(846\) 0 0
\(847\) 5.77875 + 3.33636i 0.198560 + 0.114639i
\(848\) −28.0876 8.97386i −0.964531 0.308164i
\(849\) 0 0
\(850\) 35.0856 56.3025i 1.20343 1.93116i
\(851\) −1.42888 + 0.520068i −0.0489812 + 0.0178277i
\(852\) 0 0
\(853\) 7.02953 + 39.8664i 0.240686 + 1.36500i 0.830301 + 0.557315i \(0.188169\pi\)
−0.589615 + 0.807685i \(0.700720\pi\)
\(854\) −0.293561 2.07034i −0.0100455 0.0708456i
\(855\) 0 0
\(856\) 8.56865 + 6.17737i 0.292870 + 0.211138i
\(857\) −9.81314 11.6948i −0.335210 0.399488i 0.571940 0.820296i \(-0.306191\pi\)
−0.907150 + 0.420808i \(0.861747\pi\)
\(858\) 0 0
\(859\) 24.9446 + 4.39840i 0.851098 + 0.150071i 0.582148 0.813083i \(-0.302212\pi\)
0.268950 + 0.963154i \(0.413323\pi\)
\(860\) 9.92221 7.24622i 0.338345 0.247094i
\(861\) 0 0
\(862\) −15.1956 46.5724i −0.517563 1.58626i
\(863\) −25.0571 −0.852954 −0.426477 0.904498i \(-0.640245\pi\)
−0.426477 + 0.904498i \(0.640245\pi\)
\(864\) 0 0
\(865\) 4.16257 0.141532
\(866\) 3.75290 + 11.5021i 0.127529 + 0.390858i
\(867\) 0 0
\(868\) 25.2250 18.4219i 0.856192 0.625279i
\(869\) 28.0292 + 4.94231i 0.950827 + 0.167656i
\(870\) 0 0
\(871\) 3.83014 + 4.56458i 0.129779 + 0.154665i
\(872\) 24.3342 + 17.5432i 0.824059 + 0.594086i
\(873\) 0 0
\(874\) 0.308973 + 2.17903i 0.0104512 + 0.0737068i
\(875\) −2.17894 12.3574i −0.0736617 0.417756i
\(876\) 0 0
\(877\) −28.3388 + 10.3145i −0.956932 + 0.348295i −0.772830 0.634613i \(-0.781160\pi\)
−0.184101 + 0.982907i \(0.558937\pi\)
\(878\) −5.99200 + 9.61547i −0.202220 + 0.324507i
\(879\) 0 0
\(880\) −37.5163 11.9863i −1.26468 0.404059i
\(881\) −33.7727 19.4987i −1.13783 0.656927i −0.191938 0.981407i \(-0.561477\pi\)
−0.945892 + 0.324480i \(0.894811\pi\)
\(882\) 0 0
\(883\) 7.27427 4.19980i 0.244799 0.141335i −0.372582 0.927999i \(-0.621527\pi\)
0.617380 + 0.786665i \(0.288194\pi\)
\(884\) −7.75882 + 3.80785i −0.260957 + 0.128072i
\(885\) 0 0
\(886\) 9.91061 5.28519i 0.332954 0.177560i
\(887\) 18.2466 + 15.3107i 0.612661 + 0.514083i 0.895487 0.445088i \(-0.146828\pi\)
−0.282826 + 0.959171i \(0.591272\pi\)
\(888\) 0 0
\(889\) −3.10406 1.12979i −0.104107 0.0378918i
\(890\) 16.3493 + 20.8732i 0.548029 + 0.699671i
\(891\) 0 0
\(892\) −10.6067 2.61688i −0.355138 0.0876195i
\(893\) 1.37163 3.76851i 0.0458997 0.126108i
\(894\) 0 0
\(895\) −37.3047 + 44.4580i −1.24696 + 1.48607i
\(896\) 29.5459 + 7.09734i 0.987060 + 0.237105i
\(897\) 0 0
\(898\) −0.252617 + 1.19569i −0.00842994 + 0.0399007i
\(899\) −12.7090 22.0126i −0.423868 0.734162i
\(900\) 0 0
\(901\) 27.0802 46.9043i 0.902173 1.56261i
\(902\) 9.86331 + 8.85905i 0.328412 + 0.294974i
\(903\) 0 0
\(904\) 11.5183 + 11.8399i 0.383091 + 0.393788i
\(905\) 24.9673 + 68.5972i 0.829942 + 2.28025i
\(906\) 0 0
\(907\) 13.3699 2.35747i 0.443940 0.0782785i 0.0527900 0.998606i \(-0.483189\pi\)
0.391150 + 0.920327i \(0.372077\pi\)
\(908\) −2.14096 2.05736i −0.0710503 0.0682759i
\(909\) 0 0
\(910\) −2.81519 + 6.99256i −0.0933226 + 0.231801i
\(911\) 2.94930 2.47476i 0.0977147 0.0819924i −0.592622 0.805481i \(-0.701907\pi\)
0.690336 + 0.723489i \(0.257463\pi\)
\(912\) 0 0
\(913\) 9.11271 51.6808i 0.301587 1.71038i
\(914\) 1.39853 41.5107i 0.0462593 1.37305i
\(915\) 0 0
\(916\) −29.0332 + 43.2725i −0.959285 + 1.42976i
\(917\) 47.4065i 1.56550i
\(918\) 0 0
\(919\) 7.14983i 0.235851i −0.993022 0.117926i \(-0.962376\pi\)
0.993022 0.117926i \(-0.0376244\pi\)
\(920\) −0.333981 4.53587i −0.0110110 0.149543i
\(921\) 0 0
\(922\) −8.12393 0.273703i −0.267547 0.00901391i
\(923\) −0.125934 + 0.714207i −0.00414516 + 0.0235084i
\(924\) 0 0
\(925\) −15.6052 + 13.0943i −0.513096 + 0.430539i
\(926\) −36.0910 14.5301i −1.18602 0.477490i
\(927\) 0 0
\(928\) 8.31423 23.2872i 0.272928 0.764440i
\(929\) −24.6142 + 4.34015i −0.807566 + 0.142396i −0.562164 0.827026i \(-0.690031\pi\)
−0.245402 + 0.969421i \(0.578920\pi\)
\(930\) 0 0
\(931\) −0.238498 0.655267i −0.00781644 0.0214755i
\(932\) 13.3498 1.43630i 0.437289 0.0470474i
\(933\) 0 0
\(934\) −15.9099 + 17.7134i −0.520586 + 0.579600i
\(935\) 36.1708 62.6497i 1.18291 2.04886i
\(936\) 0 0
\(937\) −1.71158 2.96455i −0.0559150 0.0968475i 0.836713 0.547642i \(-0.184474\pi\)
−0.892628 + 0.450794i \(0.851141\pi\)
\(938\) 37.6485 + 7.95411i 1.22927 + 0.259711i
\(939\) 0 0
\(940\) −3.35229 + 7.57943i −0.109340 + 0.247214i
\(941\) −23.4217 + 27.9129i −0.763525 + 0.909934i −0.998065 0.0621723i \(-0.980197\pi\)
0.234540 + 0.972106i \(0.424642\pi\)
\(942\) 0 0
\(943\) −0.523637 + 1.43868i −0.0170520 + 0.0468499i
\(944\) 14.6562 + 7.70068i 0.477017 + 0.250636i
\(945\) 0 0
\(946\) 5.91527 4.63323i 0.192322 0.150639i
\(947\) −6.56612 2.38987i −0.213370 0.0776605i 0.233124 0.972447i \(-0.425105\pi\)
−0.446494 + 0.894787i \(0.647328\pi\)
\(948\) 0 0
\(949\) 1.06403 + 0.892826i 0.0345398 + 0.0289824i
\(950\) 13.8741 + 26.0162i 0.450135 + 0.844077i
\(951\) 0 0
\(952\) −24.2821 + 50.2549i −0.786987 + 1.62877i
\(953\) −6.10328 + 3.52373i −0.197705 + 0.114145i −0.595584 0.803293i \(-0.703079\pi\)
0.397880 + 0.917438i \(0.369746\pi\)
\(954\) 0 0
\(955\) −13.9439 8.05052i −0.451214 0.260509i
\(956\) 40.9005 + 2.75908i 1.32282 + 0.0892351i
\(957\) 0 0
\(958\) 2.65112 + 1.65208i 0.0856536 + 0.0533761i
\(959\) 26.1951 9.53424i 0.845884 0.307877i
\(960\) 0 0
\(961\) −0.488585 2.77090i −0.0157608 0.0893840i
\(962\) 2.62770 0.372592i 0.0847206 0.0120128i
\(963\) 0 0
\(964\) 24.2625 7.02172i 0.781443 0.226154i
\(965\) −19.6497 23.4176i −0.632545 0.753838i
\(966\) 0 0
\(967\) 26.0009 + 4.58465i 0.836131 + 0.147433i 0.575290 0.817949i \(-0.304889\pi\)
0.260841 + 0.965382i \(0.416000\pi\)
\(968\) 6.76194 + 1.91201i 0.217337 + 0.0614544i
\(969\) 0 0
\(970\) −48.0327 + 15.6720i −1.54224 + 0.503199i
\(971\) 34.6797 1.11292 0.556462 0.830873i \(-0.312159\pi\)
0.556462 + 0.830873i \(0.312159\pi\)
\(972\) 0 0
\(973\) 58.6137 1.87907
\(974\) 54.4317 17.7599i 1.74410 0.569063i
\(975\) 0 0
\(976\) −0.834940 2.03766i −0.0267258 0.0652240i
\(977\) −44.4064 7.83005i −1.42069 0.250505i −0.590071 0.807351i \(-0.700900\pi\)
−0.830616 + 0.556846i \(0.812011\pi\)
\(978\) 0 0
\(979\) 10.4225 + 12.4211i 0.333106 + 0.396980i
\(980\) 0.400612 + 1.38425i 0.0127971 + 0.0442184i
\(981\) 0 0
\(982\) 22.1552 3.14147i 0.707002 0.100248i
\(983\) 6.89149 + 39.0836i 0.219804 + 1.24657i 0.872372 + 0.488843i \(0.162581\pi\)
−0.652568 + 0.757731i \(0.726308\pi\)
\(984\) 0 0
\(985\) 6.59884 2.40178i 0.210257 0.0765272i
\(986\) 38.5465 + 24.0207i 1.22757 + 0.764976i
\(987\) 0 0
\(988\) 0.258539 3.83257i 0.00822522 0.121930i
\(989\) 0.751448 + 0.433849i 0.0238947 + 0.0137956i
\(990\) 0 0
\(991\) 16.9550 9.78895i 0.538592 0.310956i −0.205916 0.978570i \(-0.566017\pi\)
0.744508 + 0.667613i \(0.232684\pi\)
\(992\) 20.9889 25.3279i 0.666398 0.804162i
\(993\) 0 0
\(994\) 2.20378 + 4.13244i 0.0698995 + 0.131073i
\(995\) 29.0993 + 24.4172i 0.922511 + 0.774078i
\(996\) 0 0
\(997\) 35.2892 + 12.8442i 1.11762 + 0.406780i 0.833783 0.552092i \(-0.186170\pi\)
0.283837 + 0.958873i \(0.408393\pi\)
\(998\) 37.2476 29.1748i 1.17905 0.923512i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 324.2.l.a.179.7 96
3.2 odd 2 108.2.l.a.23.10 yes 96
4.3 odd 2 inner 324.2.l.a.179.13 96
9.2 odd 6 972.2.l.c.215.12 96
9.4 even 3 972.2.l.a.863.15 96
9.5 odd 6 972.2.l.d.863.2 96
9.7 even 3 972.2.l.b.215.5 96
12.11 even 2 108.2.l.a.23.4 96
27.2 odd 18 972.2.l.a.107.9 96
27.7 even 9 108.2.l.a.47.4 yes 96
27.11 odd 18 972.2.l.b.755.3 96
27.16 even 9 972.2.l.c.755.14 96
27.20 odd 18 inner 324.2.l.a.143.13 96
27.25 even 9 972.2.l.d.107.8 96
36.7 odd 6 972.2.l.b.215.3 96
36.11 even 6 972.2.l.c.215.14 96
36.23 even 6 972.2.l.d.863.8 96
36.31 odd 6 972.2.l.a.863.9 96
108.7 odd 18 108.2.l.a.47.10 yes 96
108.11 even 18 972.2.l.b.755.5 96
108.43 odd 18 972.2.l.c.755.12 96
108.47 even 18 inner 324.2.l.a.143.7 96
108.79 odd 18 972.2.l.d.107.2 96
108.83 even 18 972.2.l.a.107.15 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
108.2.l.a.23.4 96 12.11 even 2
108.2.l.a.23.10 yes 96 3.2 odd 2
108.2.l.a.47.4 yes 96 27.7 even 9
108.2.l.a.47.10 yes 96 108.7 odd 18
324.2.l.a.143.7 96 108.47 even 18 inner
324.2.l.a.143.13 96 27.20 odd 18 inner
324.2.l.a.179.7 96 1.1 even 1 trivial
324.2.l.a.179.13 96 4.3 odd 2 inner
972.2.l.a.107.9 96 27.2 odd 18
972.2.l.a.107.15 96 108.83 even 18
972.2.l.a.863.9 96 36.31 odd 6
972.2.l.a.863.15 96 9.4 even 3
972.2.l.b.215.3 96 36.7 odd 6
972.2.l.b.215.5 96 9.7 even 3
972.2.l.b.755.3 96 27.11 odd 18
972.2.l.b.755.5 96 108.11 even 18
972.2.l.c.215.12 96 9.2 odd 6
972.2.l.c.215.14 96 36.11 even 6
972.2.l.c.755.12 96 108.43 odd 18
972.2.l.c.755.14 96 27.16 even 9
972.2.l.d.107.2 96 108.79 odd 18
972.2.l.d.107.8 96 27.25 even 9
972.2.l.d.863.2 96 9.5 odd 6
972.2.l.d.863.8 96 36.23 even 6