Properties

Label 972.2.l.b.215.3
Level $972$
Weight $2$
Character 972.215
Analytic conductor $7.761$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [972,2,Mod(107,972)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("972.107"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(972, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([9, 13])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 972 = 2^{2} \cdot 3^{5} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 972.l (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,-3,0,3,-6,0,0,9,0,-3,0,0,6,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.76145907647\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(16\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 108)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 215.3
Character \(\chi\) \(=\) 972.215
Dual form 972.2.l.b.755.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.24786 - 0.665466i) q^{2} +(1.11431 + 1.66082i) q^{4} +(2.16884 - 2.58472i) q^{5} +(-0.918599 + 2.52383i) q^{7} +(-0.285283 - 2.81400i) q^{8} +(-4.42645 + 1.78208i) q^{10} +(-2.23543 + 1.87575i) q^{11} +(-0.102135 + 0.579238i) q^{13} +(2.82581 - 2.53809i) q^{14} +(-1.51663 + 3.70133i) q^{16} +(6.36286 + 3.67360i) q^{17} +(2.82795 - 1.63272i) q^{19} +(6.70951 + 0.721869i) q^{20} +(4.03775 - 0.853067i) q^{22} +(0.447833 - 0.162998i) q^{23} +(-1.10868 - 6.28766i) q^{25} +(0.512914 - 0.654840i) q^{26} +(-5.21523 + 1.28670i) q^{28} +(4.30473 - 0.759041i) q^{29} +(1.98883 + 5.46427i) q^{31} +(4.35565 - 3.60947i) q^{32} +(-5.49530 - 8.81841i) q^{34} +(4.53111 + 7.84811i) q^{35} +(-1.59532 + 2.76318i) q^{37} +(-4.61540 + 0.155497i) q^{38} +(-7.89215 - 5.36574i) q^{40} +(-3.16373 - 0.557851i) q^{41} +(1.17032 + 1.39474i) q^{43} +(-5.60623 - 1.62248i) q^{44} +(-0.667302 - 0.0946193i) q^{46} +(-1.15406 - 0.420044i) q^{47} +(-0.163586 - 0.137265i) q^{49} +(-2.80074 + 8.58391i) q^{50} +(-1.07582 + 0.475822i) q^{52} -7.37157i q^{53} +9.84615i q^{55} +(7.36413 + 1.86494i) q^{56} +(-5.87682 - 1.91748i) q^{58} +(3.17067 + 2.66051i) q^{59} +(-0.517322 - 0.188290i) q^{61} +(1.15450 - 8.14214i) q^{62} +(-7.83723 + 1.60557i) q^{64} +(1.27565 + 1.52027i) q^{65} +(9.97683 + 1.75918i) q^{67} +(0.989012 + 14.6611i) q^{68} +(-0.431535 - 12.8086i) q^{70} +(0.616505 - 1.06782i) q^{71} +(1.18077 + 2.04515i) q^{73} +(3.82954 - 2.38643i) q^{74} +(5.86285 + 2.87736i) q^{76} +(-2.68060 - 7.36490i) q^{77} +(9.60516 - 1.69365i) q^{79} +(6.27757 + 11.9477i) q^{80} +(3.57666 + 2.80148i) q^{82} +(-3.12278 - 17.7102i) q^{83} +(23.2953 - 8.47878i) q^{85} +(-0.532249 - 2.51925i) q^{86} +(5.91608 + 5.75538i) q^{88} +(4.81205 - 2.77824i) q^{89} +(-1.36808 - 0.789860i) q^{91} +(0.769734 + 0.562139i) q^{92} +(1.16058 + 1.29215i) q^{94} +(1.91325 - 10.8506i) q^{95} +(8.11117 - 6.80608i) q^{97} +(0.112787 + 0.280148i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q - 3 q^{2} + 3 q^{4} - 6 q^{5} + 9 q^{8} - 3 q^{10} + 6 q^{13} + 12 q^{14} + 3 q^{16} + 18 q^{17} - 45 q^{20} + 3 q^{22} + 6 q^{25} - 12 q^{28} + 6 q^{29} + 57 q^{32} - 3 q^{34} - 6 q^{37} - 45 q^{38}+ \cdots + 180 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/972\mathbb{Z}\right)^\times\).

\(n\) \(245\) \(487\)
\(\chi(n)\) \(e\left(\frac{17}{18}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.24786 0.665466i −0.882370 0.470556i
\(3\) 0 0
\(4\) 1.11431 + 1.66082i 0.557154 + 0.830409i
\(5\) 2.16884 2.58472i 0.969935 1.15592i −0.0178097 0.999841i \(-0.505669\pi\)
0.987744 0.156082i \(-0.0498863\pi\)
\(6\) 0 0
\(7\) −0.918599 + 2.52383i −0.347198 + 0.953918i 0.636050 + 0.771647i \(0.280567\pi\)
−0.983248 + 0.182271i \(0.941655\pi\)
\(8\) −0.285283 2.81400i −0.100863 0.994900i
\(9\) 0 0
\(10\) −4.42645 + 1.78208i −1.39977 + 0.563544i
\(11\) −2.23543 + 1.87575i −0.674007 + 0.565559i −0.914248 0.405154i \(-0.867218\pi\)
0.240242 + 0.970713i \(0.422773\pi\)
\(12\) 0 0
\(13\) −0.102135 + 0.579238i −0.0283272 + 0.160652i −0.995690 0.0927437i \(-0.970436\pi\)
0.967363 + 0.253395i \(0.0815474\pi\)
\(14\) 2.82581 2.53809i 0.755229 0.678333i
\(15\) 0 0
\(16\) −1.51663 + 3.70133i −0.379158 + 0.925332i
\(17\) 6.36286 + 3.67360i 1.54322 + 0.890979i 0.998633 + 0.0522747i \(0.0166472\pi\)
0.544588 + 0.838704i \(0.316686\pi\)
\(18\) 0 0
\(19\) 2.82795 1.63272i 0.648776 0.374571i −0.139211 0.990263i \(-0.544457\pi\)
0.787987 + 0.615692i \(0.211123\pi\)
\(20\) 6.70951 + 0.721869i 1.50029 + 0.161415i
\(21\) 0 0
\(22\) 4.03775 0.853067i 0.860850 0.181874i
\(23\) 0.447833 0.162998i 0.0933796 0.0339874i −0.294908 0.955526i \(-0.595289\pi\)
0.388288 + 0.921538i \(0.373067\pi\)
\(24\) 0 0
\(25\) −1.10868 6.28766i −0.221737 1.25753i
\(26\) 0.512914 0.654840i 0.100591 0.128425i
\(27\) 0 0
\(28\) −5.21523 + 1.28670i −0.985585 + 0.243164i
\(29\) 4.30473 0.759041i 0.799369 0.140950i 0.240981 0.970530i \(-0.422531\pi\)
0.558388 + 0.829580i \(0.311420\pi\)
\(30\) 0 0
\(31\) 1.98883 + 5.46427i 0.357204 + 0.981411i 0.979995 + 0.199022i \(0.0637767\pi\)
−0.622790 + 0.782389i \(0.714001\pi\)
\(32\) 4.35565 3.60947i 0.769978 0.638070i
\(33\) 0 0
\(34\) −5.49530 8.81841i −0.942436 1.51234i
\(35\) 4.53111 + 7.84811i 0.765897 + 1.32657i
\(36\) 0 0
\(37\) −1.59532 + 2.76318i −0.262269 + 0.454264i −0.966845 0.255365i \(-0.917804\pi\)
0.704575 + 0.709629i \(0.251138\pi\)
\(38\) −4.61540 + 0.155497i −0.748717 + 0.0252249i
\(39\) 0 0
\(40\) −7.89215 5.36574i −1.24786 0.848399i
\(41\) −3.16373 0.557851i −0.494092 0.0871217i −0.0789502 0.996879i \(-0.525157\pi\)
−0.415141 + 0.909757i \(0.636268\pi\)
\(42\) 0 0
\(43\) 1.17032 + 1.39474i 0.178473 + 0.212695i 0.847863 0.530216i \(-0.177889\pi\)
−0.669390 + 0.742911i \(0.733445\pi\)
\(44\) −5.60623 1.62248i −0.845171 0.244598i
\(45\) 0 0
\(46\) −0.667302 0.0946193i −0.0983884 0.0139509i
\(47\) −1.15406 0.420044i −0.168337 0.0612697i 0.256477 0.966550i \(-0.417438\pi\)
−0.424814 + 0.905281i \(0.639660\pi\)
\(48\) 0 0
\(49\) −0.163586 0.137265i −0.0233694 0.0196093i
\(50\) −2.80074 + 8.58391i −0.396085 + 1.21395i
\(51\) 0 0
\(52\) −1.07582 + 0.475822i −0.149189 + 0.0659846i
\(53\) 7.37157i 1.01256i −0.862368 0.506282i \(-0.831020\pi\)
0.862368 0.506282i \(-0.168980\pi\)
\(54\) 0 0
\(55\) 9.84615i 1.32765i
\(56\) 7.36413 + 1.86494i 0.984073 + 0.249213i
\(57\) 0 0
\(58\) −5.87682 1.91748i −0.771664 0.251777i
\(59\) 3.17067 + 2.66051i 0.412786 + 0.346369i 0.825411 0.564532i \(-0.190943\pi\)
−0.412625 + 0.910901i \(0.635388\pi\)
\(60\) 0 0
\(61\) −0.517322 0.188290i −0.0662363 0.0241080i 0.308690 0.951163i \(-0.400110\pi\)
−0.374926 + 0.927055i \(0.622332\pi\)
\(62\) 1.15450 8.14214i 0.146622 1.03405i
\(63\) 0 0
\(64\) −7.83723 + 1.60557i −0.979653 + 0.200697i
\(65\) 1.27565 + 1.52027i 0.158225 + 0.188566i
\(66\) 0 0
\(67\) 9.97683 + 1.75918i 1.21886 + 0.214919i 0.745836 0.666129i \(-0.232050\pi\)
0.473027 + 0.881048i \(0.343161\pi\)
\(68\) 0.989012 + 14.6611i 0.119935 + 1.77792i
\(69\) 0 0
\(70\) −0.431535 12.8086i −0.0515782 1.53093i
\(71\) 0.616505 1.06782i 0.0731657 0.126727i −0.827121 0.562023i \(-0.810023\pi\)
0.900287 + 0.435297i \(0.143356\pi\)
\(72\) 0 0
\(73\) 1.18077 + 2.04515i 0.138198 + 0.239366i 0.926815 0.375519i \(-0.122536\pi\)
−0.788616 + 0.614885i \(0.789202\pi\)
\(74\) 3.82954 2.38643i 0.445175 0.277416i
\(75\) 0 0
\(76\) 5.86285 + 2.87736i 0.672515 + 0.330055i
\(77\) −2.68060 7.36490i −0.305483 0.839308i
\(78\) 0 0
\(79\) 9.60516 1.69365i 1.08066 0.190550i 0.395156 0.918614i \(-0.370691\pi\)
0.685509 + 0.728064i \(0.259580\pi\)
\(80\) 6.27757 + 11.9477i 0.701854 + 1.33579i
\(81\) 0 0
\(82\) 3.57666 + 2.80148i 0.394976 + 0.309371i
\(83\) −3.12278 17.7102i −0.342769 1.94394i −0.329874 0.944025i \(-0.607006\pi\)
−0.0128957 0.999917i \(-0.504105\pi\)
\(84\) 0 0
\(85\) 23.2953 8.47878i 2.52673 0.919653i
\(86\) −0.532249 2.51925i −0.0573938 0.271657i
\(87\) 0 0
\(88\) 5.91608 + 5.75538i 0.630657 + 0.613526i
\(89\) 4.81205 2.77824i 0.510076 0.294493i −0.222789 0.974867i \(-0.571516\pi\)
0.732865 + 0.680374i \(0.238183\pi\)
\(90\) 0 0
\(91\) −1.36808 0.789860i −0.143413 0.0827998i
\(92\) 0.769734 + 0.562139i 0.0802503 + 0.0586070i
\(93\) 0 0
\(94\) 1.16058 + 1.29215i 0.119705 + 0.133275i
\(95\) 1.91325 10.8506i 0.196295 1.11324i
\(96\) 0 0
\(97\) 8.11117 6.80608i 0.823564 0.691052i −0.130240 0.991483i \(-0.541575\pi\)
0.953804 + 0.300430i \(0.0971302\pi\)
\(98\) 0.112787 + 0.280148i 0.0113932 + 0.0282992i
\(99\) 0 0
\(100\) 9.20724 8.84771i 0.920724 0.884771i
\(101\) −2.92521 + 8.03695i −0.291069 + 0.799707i 0.704841 + 0.709365i \(0.251018\pi\)
−0.995911 + 0.0903418i \(0.971204\pi\)
\(102\) 0 0
\(103\) −10.9002 + 12.9904i −1.07403 + 1.27998i −0.116024 + 0.993246i \(0.537015\pi\)
−0.958009 + 0.286737i \(0.907430\pi\)
\(104\) 1.65912 + 0.122162i 0.162690 + 0.0119790i
\(105\) 0 0
\(106\) −4.90553 + 9.19869i −0.476468 + 0.893456i
\(107\) −3.73466 −0.361043 −0.180522 0.983571i \(-0.557779\pi\)
−0.180522 + 0.983571i \(0.557779\pi\)
\(108\) 0 0
\(109\) 10.6061 1.01588 0.507940 0.861393i \(-0.330407\pi\)
0.507940 + 0.861393i \(0.330407\pi\)
\(110\) 6.55228 12.2866i 0.624736 1.17148i
\(111\) 0 0
\(112\) −7.94835 7.22776i −0.751048 0.682959i
\(113\) −3.75393 + 4.47376i −0.353140 + 0.420856i −0.913146 0.407632i \(-0.866354\pi\)
0.560006 + 0.828489i \(0.310799\pi\)
\(114\) 0 0
\(115\) 0.549974 1.51104i 0.0512853 0.140905i
\(116\) 6.05743 + 6.30357i 0.562418 + 0.585272i
\(117\) 0 0
\(118\) −2.18607 5.42992i −0.201244 0.499864i
\(119\) −15.1165 + 12.6842i −1.38572 + 1.16276i
\(120\) 0 0
\(121\) −0.431419 + 2.44670i −0.0392199 + 0.222427i
\(122\) 0.520245 + 0.579220i 0.0471008 + 0.0524401i
\(123\) 0 0
\(124\) −6.85898 + 9.39196i −0.615955 + 0.843423i
\(125\) −4.04606 2.33599i −0.361890 0.208937i
\(126\) 0 0
\(127\) 1.06513 0.614951i 0.0945147 0.0545681i −0.451998 0.892019i \(-0.649288\pi\)
0.546512 + 0.837451i \(0.315955\pi\)
\(128\) 10.8482 + 3.21188i 0.958856 + 0.283893i
\(129\) 0 0
\(130\) −0.580152 2.74598i −0.0508827 0.240839i
\(131\) 16.5863 6.03692i 1.44915 0.527448i 0.506797 0.862065i \(-0.330829\pi\)
0.942354 + 0.334617i \(0.108607\pi\)
\(132\) 0 0
\(133\) 1.52295 + 8.63707i 0.132056 + 0.748929i
\(134\) −11.2790 8.83446i −0.974358 0.763181i
\(135\) 0 0
\(136\) 8.52231 18.9531i 0.730782 1.62522i
\(137\) −10.2214 + 1.80231i −0.873275 + 0.153982i −0.592285 0.805729i \(-0.701774\pi\)
−0.280990 + 0.959711i \(0.590663\pi\)
\(138\) 0 0
\(139\) −7.46408 20.5074i −0.633095 1.73941i −0.672401 0.740187i \(-0.734737\pi\)
0.0393065 0.999227i \(-0.487485\pi\)
\(140\) −7.98523 + 16.2706i −0.674875 + 1.37511i
\(141\) 0 0
\(142\) −1.47991 + 0.922224i −0.124191 + 0.0773913i
\(143\) −0.858188 1.48642i −0.0717653 0.124301i
\(144\) 0 0
\(145\) 7.37437 12.7728i 0.612408 1.06072i
\(146\) −0.112454 3.33782i −0.00930676 0.276240i
\(147\) 0 0
\(148\) −6.36682 + 0.429495i −0.523349 + 0.0353043i
\(149\) 3.67763 + 0.648465i 0.301283 + 0.0531243i 0.322246 0.946656i \(-0.395562\pi\)
−0.0209631 + 0.999780i \(0.506673\pi\)
\(150\) 0 0
\(151\) 9.38343 + 11.1827i 0.763612 + 0.910038i 0.998071 0.0620885i \(-0.0197761\pi\)
−0.234458 + 0.972126i \(0.575332\pi\)
\(152\) −5.40123 7.49207i −0.438098 0.607687i
\(153\) 0 0
\(154\) −1.55607 + 10.9742i −0.125392 + 0.884327i
\(155\) 18.4371 + 6.71054i 1.48090 + 0.539004i
\(156\) 0 0
\(157\) −12.7715 10.7165i −1.01928 0.855274i −0.0297390 0.999558i \(-0.509468\pi\)
−0.989536 + 0.144284i \(0.953912\pi\)
\(158\) −13.1130 4.27848i −1.04321 0.340377i
\(159\) 0 0
\(160\) 0.117234 19.0865i 0.00926813 1.50892i
\(161\) 1.27998i 0.100877i
\(162\) 0 0
\(163\) 2.78256i 0.217947i 0.994045 + 0.108973i \(0.0347563\pi\)
−0.994045 + 0.108973i \(0.965244\pi\)
\(164\) −2.59888 5.87600i −0.202939 0.458838i
\(165\) 0 0
\(166\) −7.88872 + 24.1779i −0.612284 + 1.87657i
\(167\) −10.8578 9.11076i −0.840200 0.705012i 0.117408 0.993084i \(-0.462541\pi\)
−0.957609 + 0.288072i \(0.906986\pi\)
\(168\) 0 0
\(169\) 11.8909 + 4.32794i 0.914686 + 0.332919i
\(170\) −34.7116 4.92188i −2.66226 0.377491i
\(171\) 0 0
\(172\) −1.01230 + 3.49786i −0.0771873 + 0.266709i
\(173\) 0.792993 + 0.945052i 0.0602901 + 0.0718509i 0.795347 0.606155i \(-0.207289\pi\)
−0.735057 + 0.678006i \(0.762844\pi\)
\(174\) 0 0
\(175\) 16.8874 + 2.97771i 1.27657 + 0.225094i
\(176\) −3.55243 11.1189i −0.267775 0.838116i
\(177\) 0 0
\(178\) −7.85358 + 0.264594i −0.588651 + 0.0198322i
\(179\) −8.60015 + 14.8959i −0.642805 + 1.11337i 0.341998 + 0.939701i \(0.388896\pi\)
−0.984804 + 0.173671i \(0.944437\pi\)
\(180\) 0 0
\(181\) −10.8176 18.7366i −0.804065 1.39268i −0.916920 0.399071i \(-0.869333\pi\)
0.112855 0.993611i \(-0.464000\pi\)
\(182\) 1.18154 + 1.89604i 0.0875819 + 0.140544i
\(183\) 0 0
\(184\) −0.586436 1.21370i −0.0432326 0.0894754i
\(185\) 3.68205 + 10.1164i 0.270710 + 0.743769i
\(186\) 0 0
\(187\) −21.1145 + 3.72305i −1.54404 + 0.272256i
\(188\) −0.588364 2.38474i −0.0429109 0.173925i
\(189\) 0 0
\(190\) −9.60815 + 12.2668i −0.697048 + 0.889925i
\(191\) 0.828636 + 4.69943i 0.0599580 + 0.340039i 0.999999 0.00102135i \(-0.000325107\pi\)
−0.940041 + 0.341060i \(0.889214\pi\)
\(192\) 0 0
\(193\) −8.51361 + 3.09870i −0.612823 + 0.223049i −0.629738 0.776808i \(-0.716838\pi\)
0.0169149 + 0.999857i \(0.494616\pi\)
\(194\) −14.6508 + 3.09532i −1.05187 + 0.222231i
\(195\) 0 0
\(196\) 0.0456867 0.424642i 0.00326334 0.0303315i
\(197\) −1.80241 + 1.04062i −0.128416 + 0.0741411i −0.562832 0.826571i \(-0.690288\pi\)
0.434416 + 0.900712i \(0.356955\pi\)
\(198\) 0 0
\(199\) 9.74989 + 5.62910i 0.691151 + 0.399036i 0.804043 0.594571i \(-0.202678\pi\)
−0.112892 + 0.993607i \(0.536011\pi\)
\(200\) −17.3772 + 4.91360i −1.22875 + 0.347444i
\(201\) 0 0
\(202\) 8.99858 8.08236i 0.633138 0.568673i
\(203\) −2.03863 + 11.5617i −0.143084 + 0.811470i
\(204\) 0 0
\(205\) −8.30351 + 6.96748i −0.579943 + 0.486630i
\(206\) 22.2467 8.95646i 1.55000 0.624026i
\(207\) 0 0
\(208\) −1.98905 1.25653i −0.137916 0.0871245i
\(209\) −3.25911 + 8.95433i −0.225437 + 0.619384i
\(210\) 0 0
\(211\) 3.53807 4.21651i 0.243571 0.290277i −0.630384 0.776283i \(-0.717103\pi\)
0.873955 + 0.486007i \(0.161547\pi\)
\(212\) 12.2428 8.21421i 0.840842 0.564154i
\(213\) 0 0
\(214\) 4.66034 + 2.48529i 0.318574 + 0.169891i
\(215\) 6.14325 0.418966
\(216\) 0 0
\(217\) −15.6178 −1.06021
\(218\) −13.2349 7.05800i −0.896382 0.478028i
\(219\) 0 0
\(220\) −16.3527 + 10.9717i −1.10250 + 0.739709i
\(221\) −2.77776 + 3.31041i −0.186852 + 0.222682i
\(222\) 0 0
\(223\) −1.86824 + 5.13294i −0.125106 + 0.343727i −0.986396 0.164388i \(-0.947435\pi\)
0.861289 + 0.508115i \(0.169657\pi\)
\(224\) 5.10859 + 14.3086i 0.341332 + 0.956033i
\(225\) 0 0
\(226\) 7.66152 3.08451i 0.509637 0.205179i
\(227\) −1.13729 + 0.954298i −0.0754845 + 0.0633390i −0.679749 0.733445i \(-0.737911\pi\)
0.604265 + 0.796784i \(0.293467\pi\)
\(228\) 0 0
\(229\) −4.52439 + 25.6591i −0.298980 + 1.69560i 0.351591 + 0.936154i \(0.385641\pi\)
−0.650570 + 0.759446i \(0.725470\pi\)
\(230\) −1.69184 + 1.51958i −0.111556 + 0.100198i
\(231\) 0 0
\(232\) −3.36401 11.8970i −0.220858 0.781076i
\(233\) −5.81401 3.35672i −0.380889 0.219906i 0.297316 0.954779i \(-0.403908\pi\)
−0.678205 + 0.734873i \(0.737242\pi\)
\(234\) 0 0
\(235\) −3.58867 + 2.07192i −0.234099 + 0.135157i
\(236\) −0.885514 + 8.23053i −0.0576420 + 0.535762i
\(237\) 0 0
\(238\) 27.3041 5.76863i 1.76987 0.373925i
\(239\) −19.2606 + 7.01030i −1.24587 + 0.453458i −0.879003 0.476816i \(-0.841791\pi\)
−0.366864 + 0.930275i \(0.619568\pi\)
\(240\) 0 0
\(241\) 2.19302 + 12.4372i 0.141265 + 0.801151i 0.970291 + 0.241941i \(0.0777842\pi\)
−0.829026 + 0.559210i \(0.811105\pi\)
\(242\) 2.16654 2.76604i 0.139271 0.177808i
\(243\) 0 0
\(244\) −0.263741 1.06899i −0.0168843 0.0684351i
\(245\) −0.709583 + 0.125119i −0.0453336 + 0.00799353i
\(246\) 0 0
\(247\) 0.656898 + 1.80481i 0.0417974 + 0.114837i
\(248\) 14.8091 7.15544i 0.940378 0.454371i
\(249\) 0 0
\(250\) 3.49439 + 5.60750i 0.221004 + 0.354650i
\(251\) −6.38939 11.0668i −0.403295 0.698527i 0.590827 0.806799i \(-0.298802\pi\)
−0.994121 + 0.108272i \(0.965468\pi\)
\(252\) 0 0
\(253\) −0.695355 + 1.20439i −0.0437166 + 0.0757194i
\(254\) −1.73836 + 0.0585668i −0.109074 + 0.00367481i
\(255\) 0 0
\(256\) −11.3997 11.2271i −0.712478 0.701694i
\(257\) −9.79078 1.72638i −0.610732 0.107689i −0.140277 0.990112i \(-0.544799\pi\)
−0.470455 + 0.882424i \(0.655910\pi\)
\(258\) 0 0
\(259\) −5.50833 6.56458i −0.342271 0.407903i
\(260\) −1.10341 + 3.81268i −0.0684307 + 0.236452i
\(261\) 0 0
\(262\) −24.7147 3.50440i −1.52688 0.216502i
\(263\) −18.3733 6.68733i −1.13295 0.412359i −0.293585 0.955933i \(-0.594848\pi\)
−0.839361 + 0.543574i \(0.817071\pi\)
\(264\) 0 0
\(265\) −19.0535 15.9878i −1.17045 0.982120i
\(266\) 3.84726 11.7913i 0.235890 0.722973i
\(267\) 0 0
\(268\) 8.19558 + 18.5300i 0.500625 + 1.13190i
\(269\) 30.3293i 1.84921i 0.380930 + 0.924604i \(0.375604\pi\)
−0.380930 + 0.924604i \(0.624396\pi\)
\(270\) 0 0
\(271\) 19.1257i 1.16181i −0.813973 0.580903i \(-0.802699\pi\)
0.813973 0.580903i \(-0.197301\pi\)
\(272\) −23.2473 + 17.9795i −1.40958 + 1.09017i
\(273\) 0 0
\(274\) 13.9543 + 4.55298i 0.843009 + 0.275056i
\(275\) 14.2724 + 11.9760i 0.860660 + 0.722179i
\(276\) 0 0
\(277\) −9.24931 3.36647i −0.555737 0.202272i 0.0488566 0.998806i \(-0.484442\pi\)
−0.604594 + 0.796534i \(0.706664\pi\)
\(278\) −4.33285 + 30.5574i −0.259867 + 1.83271i
\(279\) 0 0
\(280\) 20.7920 14.9895i 1.24256 0.895793i
\(281\) −14.8986 17.7554i −0.888775 1.05920i −0.997874 0.0651694i \(-0.979241\pi\)
0.109100 0.994031i \(-0.465203\pi\)
\(282\) 0 0
\(283\) −17.1795 3.02921i −1.02121 0.180068i −0.362123 0.932130i \(-0.617948\pi\)
−0.659092 + 0.752063i \(0.729059\pi\)
\(284\) 2.46043 0.165977i 0.146000 0.00984889i
\(285\) 0 0
\(286\) 0.0817322 + 2.42594i 0.00483293 + 0.143449i
\(287\) 4.31412 7.47228i 0.254655 0.441075i
\(288\) 0 0
\(289\) 18.4907 + 32.0268i 1.08769 + 1.88393i
\(290\) −17.7020 + 11.0312i −1.03950 + 0.647777i
\(291\) 0 0
\(292\) −2.08088 + 4.23996i −0.121774 + 0.248125i
\(293\) −6.50696 17.8777i −0.380141 1.04443i −0.971297 0.237871i \(-0.923550\pi\)
0.591156 0.806557i \(-0.298672\pi\)
\(294\) 0 0
\(295\) 13.7534 2.42509i 0.800751 0.141194i
\(296\) 8.23071 + 3.70095i 0.478400 + 0.215114i
\(297\) 0 0
\(298\) −4.15763 3.25653i −0.240845 0.188646i
\(299\) 0.0486750 + 0.276050i 0.00281495 + 0.0159644i
\(300\) 0 0
\(301\) −4.59514 + 1.67249i −0.264859 + 0.0964009i
\(302\) −4.26747 20.1988i −0.245565 1.16231i
\(303\) 0 0
\(304\) 1.75426 + 12.9434i 0.100614 + 0.742354i
\(305\) −1.60867 + 0.928763i −0.0921119 + 0.0531808i
\(306\) 0 0
\(307\) 14.3110 + 8.26248i 0.816773 + 0.471564i 0.849303 0.527906i \(-0.177023\pi\)
−0.0325291 + 0.999471i \(0.510356\pi\)
\(308\) 9.24474 12.6588i 0.526768 0.721300i
\(309\) 0 0
\(310\) −18.5412 20.6431i −1.05307 1.17245i
\(311\) −0.361337 + 2.04924i −0.0204895 + 0.116202i −0.993337 0.115245i \(-0.963235\pi\)
0.972848 + 0.231447i \(0.0743459\pi\)
\(312\) 0 0
\(313\) −0.116592 + 0.0978326i −0.00659019 + 0.00552982i −0.646077 0.763272i \(-0.723591\pi\)
0.639487 + 0.768802i \(0.279147\pi\)
\(314\) 8.80552 + 21.8717i 0.496924 + 1.23429i
\(315\) 0 0
\(316\) 13.5160 + 14.0652i 0.760332 + 0.791228i
\(317\) 2.29569 6.30735i 0.128939 0.354256i −0.858378 0.513017i \(-0.828528\pi\)
0.987317 + 0.158761i \(0.0507500\pi\)
\(318\) 0 0
\(319\) −8.19915 + 9.77137i −0.459064 + 0.547092i
\(320\) −12.8477 + 23.7393i −0.718210 + 1.32707i
\(321\) 0 0
\(322\) 0.851787 1.59724i 0.0474682 0.0890108i
\(323\) 23.9918 1.33494
\(324\) 0 0
\(325\) 3.75529 0.208306
\(326\) 1.85170 3.47224i 0.102556 0.192310i
\(327\) 0 0
\(328\) −0.667237 + 9.06189i −0.0368420 + 0.500359i
\(329\) 2.12024 2.52680i 0.116893 0.139307i
\(330\) 0 0
\(331\) 4.51800 12.4131i 0.248332 0.682285i −0.751416 0.659828i \(-0.770629\pi\)
0.999748 0.0224569i \(-0.00714885\pi\)
\(332\) 25.9336 24.9209i 1.42329 1.36771i
\(333\) 0 0
\(334\) 7.48609 + 18.5944i 0.409620 + 1.01744i
\(335\) 26.1851 21.9719i 1.43065 1.20046i
\(336\) 0 0
\(337\) −3.35965 + 19.0535i −0.183012 + 1.03791i 0.745472 + 0.666537i \(0.232224\pi\)
−0.928483 + 0.371374i \(0.878887\pi\)
\(338\) −11.9581 13.3137i −0.650435 0.724168i
\(339\) 0 0
\(340\) 40.0398 + 29.2412i 2.17146 + 1.58583i
\(341\) −14.6955 8.48443i −0.795804 0.459458i
\(342\) 0 0
\(343\) −15.7851 + 9.11354i −0.852316 + 0.492085i
\(344\) 3.59092 3.69119i 0.193609 0.199015i
\(345\) 0 0
\(346\) −0.360643 1.70700i −0.0193883 0.0917690i
\(347\) −12.0164 + 4.37362i −0.645075 + 0.234788i −0.643779 0.765211i \(-0.722635\pi\)
−0.00129537 + 0.999999i \(0.500412\pi\)
\(348\) 0 0
\(349\) −2.10360 11.9301i −0.112603 0.638603i −0.987909 0.155034i \(-0.950451\pi\)
0.875306 0.483569i \(-0.160660\pi\)
\(350\) −19.0916 14.9538i −1.02049 0.799313i
\(351\) 0 0
\(352\) −2.96630 + 16.2388i −0.158104 + 0.865532i
\(353\) 19.6660 3.46765i 1.04672 0.184564i 0.376261 0.926514i \(-0.377210\pi\)
0.670456 + 0.741949i \(0.266099\pi\)
\(354\) 0 0
\(355\) −1.42291 3.90942i −0.0755204 0.207491i
\(356\) 9.97625 + 4.89612i 0.528740 + 0.259494i
\(357\) 0 0
\(358\) 20.6445 12.8649i 1.09110 0.679930i
\(359\) −10.5259 18.2314i −0.555535 0.962214i −0.997862 0.0653605i \(-0.979180\pi\)
0.442327 0.896854i \(-0.354153\pi\)
\(360\) 0 0
\(361\) −4.16848 + 7.22001i −0.219393 + 0.380001i
\(362\) 1.03025 + 30.5794i 0.0541486 + 1.60722i
\(363\) 0 0
\(364\) −0.212647 3.15228i −0.0111457 0.165224i
\(365\) 7.84703 + 1.38364i 0.410732 + 0.0724232i
\(366\) 0 0
\(367\) −17.8938 21.3251i −0.934051 1.11316i −0.993375 0.114920i \(-0.963339\pi\)
0.0593238 0.998239i \(-0.481106\pi\)
\(368\) −0.0758892 + 1.90478i −0.00395600 + 0.0992937i
\(369\) 0 0
\(370\) 2.13741 15.0741i 0.111119 0.783664i
\(371\) 18.6046 + 6.77152i 0.965903 + 0.351560i
\(372\) 0 0
\(373\) 4.57301 + 3.83721i 0.236781 + 0.198683i 0.753455 0.657499i \(-0.228386\pi\)
−0.516674 + 0.856182i \(0.672830\pi\)
\(374\) 28.8254 + 9.40512i 1.49053 + 0.486327i
\(375\) 0 0
\(376\) −0.852771 + 3.36736i −0.0439783 + 0.173659i
\(377\) 2.57099i 0.132413i
\(378\) 0 0
\(379\) 14.2394i 0.731429i −0.930727 0.365715i \(-0.880825\pi\)
0.930727 0.365715i \(-0.119175\pi\)
\(380\) 20.1527 8.91332i 1.03381 0.457244i
\(381\) 0 0
\(382\) 2.09329 6.41566i 0.107102 0.328254i
\(383\) −12.2570 10.2848i −0.626302 0.525530i 0.273475 0.961879i \(-0.411827\pi\)
−0.899777 + 0.436349i \(0.856271\pi\)
\(384\) 0 0
\(385\) −24.8500 9.04467i −1.26647 0.460959i
\(386\) 12.6859 + 1.79878i 0.645694 + 0.0915554i
\(387\) 0 0
\(388\) 20.3420 + 5.88710i 1.03271 + 0.298872i
\(389\) 11.4416 + 13.6355i 0.580111 + 0.691350i 0.973673 0.227948i \(-0.0732018\pi\)
−0.393562 + 0.919298i \(0.628757\pi\)
\(390\) 0 0
\(391\) 3.44829 + 0.608026i 0.174387 + 0.0307492i
\(392\) −0.339595 + 0.499490i −0.0171522 + 0.0252281i
\(393\) 0 0
\(394\) 2.94165 0.0991068i 0.148198 0.00499293i
\(395\) 16.4544 28.4999i 0.827913 1.43399i
\(396\) 0 0
\(397\) −9.34449 16.1851i −0.468987 0.812309i 0.530385 0.847757i \(-0.322047\pi\)
−0.999372 + 0.0354484i \(0.988714\pi\)
\(398\) −8.42052 13.5126i −0.422083 0.677323i
\(399\) 0 0
\(400\) 24.9541 + 5.43246i 1.24771 + 0.271623i
\(401\) 10.5675 + 29.0339i 0.527714 + 1.44988i 0.861755 + 0.507324i \(0.169365\pi\)
−0.334042 + 0.942558i \(0.608413\pi\)
\(402\) 0 0
\(403\) −3.36824 + 0.593912i −0.167784 + 0.0295849i
\(404\) −16.6075 + 4.09740i −0.826254 + 0.203853i
\(405\) 0 0
\(406\) 10.2378 13.0707i 0.508095 0.648688i
\(407\) −1.61680 9.16930i −0.0801416 0.454506i
\(408\) 0 0
\(409\) 23.1303 8.41873i 1.14372 0.416279i 0.300463 0.953793i \(-0.402859\pi\)
0.843255 + 0.537514i \(0.180636\pi\)
\(410\) 14.9982 3.16872i 0.740710 0.156492i
\(411\) 0 0
\(412\) −33.7209 3.62800i −1.66131 0.178739i
\(413\) −9.62725 + 5.55829i −0.473726 + 0.273506i
\(414\) 0 0
\(415\) −52.5486 30.3390i −2.57951 1.48928i
\(416\) 1.64588 + 2.89161i 0.0806958 + 0.141773i
\(417\) 0 0
\(418\) 10.0257 9.00492i 0.490374 0.440445i
\(419\) 1.38270 7.84169i 0.0675494 0.383091i −0.932226 0.361878i \(-0.882136\pi\)
0.999775 0.0212138i \(-0.00675307\pi\)
\(420\) 0 0
\(421\) −3.14899 + 2.64231i −0.153472 + 0.128778i −0.716291 0.697802i \(-0.754161\pi\)
0.562818 + 0.826581i \(0.309717\pi\)
\(422\) −7.22096 + 2.90715i −0.351511 + 0.141518i
\(423\) 0 0
\(424\) −20.7436 + 2.10298i −1.00740 + 0.102130i
\(425\) 16.0439 44.0803i 0.778245 2.13821i
\(426\) 0 0
\(427\) 0.950423 1.13267i 0.0459942 0.0548138i
\(428\) −4.16157 6.20259i −0.201157 0.299814i
\(429\) 0 0
\(430\) −7.66591 4.08812i −0.369683 0.197147i
\(431\) −34.6402 −1.66856 −0.834281 0.551340i \(-0.814117\pi\)
−0.834281 + 0.551340i \(0.814117\pi\)
\(432\) 0 0
\(433\) −8.55521 −0.411137 −0.205569 0.978643i \(-0.565904\pi\)
−0.205569 + 0.978643i \(0.565904\pi\)
\(434\) 19.4889 + 10.3931i 0.935495 + 0.498886i
\(435\) 0 0
\(436\) 11.8185 + 17.6148i 0.566002 + 0.843596i
\(437\) 1.00032 1.19213i 0.0478517 0.0570275i
\(438\) 0 0
\(439\) 2.74002 7.52815i 0.130774 0.359299i −0.856973 0.515361i \(-0.827658\pi\)
0.987747 + 0.156062i \(0.0498800\pi\)
\(440\) 27.7071 2.80894i 1.32088 0.133911i
\(441\) 0 0
\(442\) 5.66922 2.28242i 0.269657 0.108564i
\(443\) −6.08399 + 5.10508i −0.289059 + 0.242549i −0.775773 0.631012i \(-0.782640\pi\)
0.486714 + 0.873561i \(0.338195\pi\)
\(444\) 0 0
\(445\) 3.25559 18.4634i 0.154330 0.875247i
\(446\) 5.74710 5.16194i 0.272133 0.244425i
\(447\) 0 0
\(448\) 3.14708 21.2547i 0.148685 1.00419i
\(449\) −0.748371 0.432072i −0.0353178 0.0203907i 0.482237 0.876041i \(-0.339824\pi\)
−0.517555 + 0.855650i \(0.673158\pi\)
\(450\) 0 0
\(451\) 8.11868 4.68732i 0.382294 0.220717i
\(452\) −11.6131 1.24945i −0.546237 0.0587690i
\(453\) 0 0
\(454\) 2.05423 0.434003i 0.0964098 0.0203688i
\(455\) −5.00871 + 1.82302i −0.234812 + 0.0854645i
\(456\) 0 0
\(457\) −5.09989 28.9229i −0.238563 1.35296i −0.834979 0.550282i \(-0.814520\pi\)
0.596416 0.802676i \(-0.296591\pi\)
\(458\) 22.7211 29.0081i 1.06169 1.35546i
\(459\) 0 0
\(460\) 3.12240 0.770359i 0.145583 0.0359182i
\(461\) −5.66042 + 0.998086i −0.263632 + 0.0464855i −0.303902 0.952703i \(-0.598289\pi\)
0.0402695 + 0.999189i \(0.487178\pi\)
\(462\) 0 0
\(463\) −9.40923 25.8516i −0.437284 1.20143i −0.941252 0.337706i \(-0.890349\pi\)
0.503968 0.863722i \(-0.331873\pi\)
\(464\) −3.71924 + 17.0844i −0.172661 + 0.793124i
\(465\) 0 0
\(466\) 5.02129 + 8.05775i 0.232607 + 0.373268i
\(467\) 8.41790 + 14.5802i 0.389534 + 0.674692i 0.992387 0.123160i \(-0.0393028\pi\)
−0.602853 + 0.797852i \(0.705969\pi\)
\(468\) 0 0
\(469\) −13.6046 + 23.5638i −0.628202 + 1.08808i
\(470\) 5.85695 0.197326i 0.270161 0.00910197i
\(471\) 0 0
\(472\) 6.58214 9.68127i 0.302968 0.445617i
\(473\) −5.23234 0.922603i −0.240583 0.0424213i
\(474\) 0 0
\(475\) −13.4013 15.9710i −0.614892 0.732800i
\(476\) −37.9106 10.9716i −1.73763 0.502880i
\(477\) 0 0
\(478\) 28.6997 + 4.06944i 1.31269 + 0.186132i
\(479\) −2.07561 0.755461i −0.0948371 0.0345179i 0.294166 0.955754i \(-0.404958\pi\)
−0.389003 + 0.921237i \(0.627180\pi\)
\(480\) 0 0
\(481\) −1.43760 1.20629i −0.0655489 0.0550021i
\(482\) 5.53997 16.9793i 0.252339 0.773385i
\(483\) 0 0
\(484\) −4.54425 + 2.00987i −0.206557 + 0.0913576i
\(485\) 35.7264i 1.62225i
\(486\) 0 0
\(487\) 40.4859i 1.83459i −0.398206 0.917296i \(-0.630367\pi\)
0.398206 0.917296i \(-0.369633\pi\)
\(488\) −0.382265 + 1.50946i −0.0173043 + 0.0683301i
\(489\) 0 0
\(490\) 0.968722 + 0.316073i 0.0437624 + 0.0142787i
\(491\) 12.1210 + 10.1707i 0.547012 + 0.458998i 0.873928 0.486056i \(-0.161565\pi\)
−0.326916 + 0.945054i \(0.606009\pi\)
\(492\) 0 0
\(493\) 30.1788 + 10.9842i 1.35919 + 0.494703i
\(494\) 0.381326 2.68930i 0.0171566 0.120997i
\(495\) 0 0
\(496\) −23.2414 0.925968i −1.04357 0.0415772i
\(497\) 2.12867 + 2.53685i 0.0954840 + 0.113793i
\(498\) 0 0
\(499\) 32.9473 + 5.80950i 1.47492 + 0.260069i 0.852548 0.522649i \(-0.175056\pi\)
0.622377 + 0.782718i \(0.286167\pi\)
\(500\) −0.628899 9.32278i −0.0281252 0.416927i
\(501\) 0 0
\(502\) 0.608514 + 18.0617i 0.0271593 + 0.806132i
\(503\) −12.0161 + 20.8125i −0.535772 + 0.927984i 0.463354 + 0.886173i \(0.346646\pi\)
−0.999126 + 0.0418106i \(0.986687\pi\)
\(504\) 0 0
\(505\) 14.4290 + 24.9917i 0.642081 + 1.11212i
\(506\) 1.66919 1.04018i 0.0742045 0.0462414i
\(507\) 0 0
\(508\) 2.20820 + 1.08374i 0.0979731 + 0.0480830i
\(509\) 8.48989 + 23.3258i 0.376308 + 1.03390i 0.972874 + 0.231334i \(0.0743090\pi\)
−0.596567 + 0.802564i \(0.703469\pi\)
\(510\) 0 0
\(511\) −6.24625 + 1.10138i −0.276318 + 0.0487223i
\(512\) 6.75391 + 21.5959i 0.298484 + 0.954415i
\(513\) 0 0
\(514\) 11.0687 + 8.66972i 0.488218 + 0.382405i
\(515\) 9.93571 + 56.3482i 0.437820 + 2.48300i
\(516\) 0 0
\(517\) 3.36772 1.22575i 0.148112 0.0539084i
\(518\) 2.50512 + 11.8573i 0.110069 + 0.520979i
\(519\) 0 0
\(520\) 3.91411 4.02340i 0.171645 0.176438i
\(521\) 13.6964 7.90761i 0.600049 0.346439i −0.169012 0.985614i \(-0.554058\pi\)
0.769061 + 0.639175i \(0.220724\pi\)
\(522\) 0 0
\(523\) 27.0410 + 15.6122i 1.18242 + 0.682672i 0.956574 0.291491i \(-0.0941512\pi\)
0.225849 + 0.974162i \(0.427485\pi\)
\(524\) 28.5085 + 20.8198i 1.24540 + 0.909518i
\(525\) 0 0
\(526\) 18.4771 + 20.5717i 0.805640 + 0.896967i
\(527\) −7.41887 + 42.0745i −0.323171 + 1.83280i
\(528\) 0 0
\(529\) −17.4450 + 14.6381i −0.758480 + 0.636440i
\(530\) 13.1367 + 32.6299i 0.570624 + 1.41735i
\(531\) 0 0
\(532\) −12.6476 + 12.1537i −0.548342 + 0.526930i
\(533\) 0.646257 1.77558i 0.0279925 0.0769088i
\(534\) 0 0
\(535\) −8.09988 + 9.65307i −0.350189 + 0.417338i
\(536\) 2.10413 28.5767i 0.0908847 1.23433i
\(537\) 0 0
\(538\) 20.1831 37.8467i 0.870156 1.63169i
\(539\) 0.623158 0.0268413
\(540\) 0 0
\(541\) −14.4554 −0.621486 −0.310743 0.950494i \(-0.600578\pi\)
−0.310743 + 0.950494i \(0.600578\pi\)
\(542\) −12.7275 + 23.8663i −0.546695 + 1.02514i
\(543\) 0 0
\(544\) 40.9742 6.96563i 1.75675 0.298649i
\(545\) 23.0029 27.4138i 0.985337 1.17428i
\(546\) 0 0
\(547\) −12.2384 + 33.6246i −0.523274 + 1.43768i 0.343581 + 0.939123i \(0.388360\pi\)
−0.866855 + 0.498561i \(0.833862\pi\)
\(548\) −14.3831 14.9676i −0.614417 0.639384i
\(549\) 0 0
\(550\) −9.84037 24.4422i −0.419595 1.04222i
\(551\) 10.9343 9.17494i 0.465815 0.390865i
\(552\) 0 0
\(553\) −4.54881 + 25.7976i −0.193435 + 1.09702i
\(554\) 9.30157 + 10.3560i 0.395186 + 0.439984i
\(555\) 0 0
\(556\) 25.7417 35.2480i 1.09169 1.49485i
\(557\) 25.5879 + 14.7732i 1.08419 + 0.625960i 0.932025 0.362394i \(-0.118041\pi\)
0.152170 + 0.988354i \(0.451374\pi\)
\(558\) 0 0
\(559\) −0.927416 + 0.535444i −0.0392255 + 0.0226469i
\(560\) −35.9204 + 4.86842i −1.51792 + 0.205728i
\(561\) 0 0
\(562\) 6.77569 + 32.0708i 0.285815 + 1.35282i
\(563\) 10.8554 3.95105i 0.457501 0.166517i −0.102981 0.994683i \(-0.532838\pi\)
0.560482 + 0.828167i \(0.310616\pi\)
\(564\) 0 0
\(565\) 3.42176 + 19.4058i 0.143954 + 0.816406i
\(566\) 19.4218 + 15.2124i 0.816358 + 0.639425i
\(567\) 0 0
\(568\) −3.18072 1.43022i −0.133460 0.0600106i
\(569\) 12.5805 2.21828i 0.527402 0.0929951i 0.0963937 0.995343i \(-0.469269\pi\)
0.431008 + 0.902348i \(0.358158\pi\)
\(570\) 0 0
\(571\) −13.2433 36.3857i −0.554215 1.52269i −0.827902 0.560873i \(-0.810465\pi\)
0.273687 0.961819i \(-0.411757\pi\)
\(572\) 1.51239 3.08163i 0.0632364 0.128849i
\(573\) 0 0
\(574\) −10.3560 + 6.45345i −0.432250 + 0.269362i
\(575\) −1.52138 2.63511i −0.0634459 0.109892i
\(576\) 0 0
\(577\) 10.5964 18.3535i 0.441134 0.764067i −0.556640 0.830754i \(-0.687910\pi\)
0.997774 + 0.0666873i \(0.0212430\pi\)
\(578\) −1.76102 52.2698i −0.0732487 2.17414i
\(579\) 0 0
\(580\) 29.4306 1.98534i 1.22204 0.0824367i
\(581\) 47.5660 + 8.38717i 1.97337 + 0.347958i
\(582\) 0 0
\(583\) 13.8272 + 16.4786i 0.572664 + 0.682475i
\(584\) 5.41820 3.90612i 0.224207 0.161637i
\(585\) 0 0
\(586\) −3.77725 + 26.6391i −0.156037 + 1.10045i
\(587\) 14.2660 + 5.19242i 0.588823 + 0.214314i 0.619212 0.785224i \(-0.287452\pi\)
−0.0303888 + 0.999538i \(0.509675\pi\)
\(588\) 0 0
\(589\) 14.5459 + 12.2055i 0.599354 + 0.502917i
\(590\) −18.7761 6.12622i −0.772999 0.252213i
\(591\) 0 0
\(592\) −7.80791 10.0955i −0.320903 0.414924i
\(593\) 25.8789i 1.06272i −0.847147 0.531359i \(-0.821681\pi\)
0.847147 0.531359i \(-0.178319\pi\)
\(594\) 0 0
\(595\) 66.5819i 2.72959i
\(596\) 3.02103 + 6.83046i 0.123746 + 0.279787i
\(597\) 0 0
\(598\) 0.122962 0.376863i 0.00502830 0.0154111i
\(599\) −0.119950 0.100650i −0.00490101 0.00411244i 0.640334 0.768097i \(-0.278796\pi\)
−0.645235 + 0.763984i \(0.723240\pi\)
\(600\) 0 0
\(601\) −4.19563 1.52708i −0.171143 0.0622910i 0.255028 0.966934i \(-0.417915\pi\)
−0.426171 + 0.904643i \(0.640138\pi\)
\(602\) 6.84707 + 0.970872i 0.279066 + 0.0395698i
\(603\) 0 0
\(604\) −8.11645 + 28.0452i −0.330253 + 1.14114i
\(605\) 5.38835 + 6.42159i 0.219068 + 0.261075i
\(606\) 0 0
\(607\) −37.0248 6.52847i −1.50279 0.264983i −0.639147 0.769085i \(-0.720712\pi\)
−0.863644 + 0.504102i \(0.831823\pi\)
\(608\) 6.42432 17.3189i 0.260540 0.702376i
\(609\) 0 0
\(610\) 2.62545 0.0884537i 0.106301 0.00358139i
\(611\) 0.361176 0.625575i 0.0146116 0.0253081i
\(612\) 0 0
\(613\) −9.84356 17.0495i −0.397577 0.688624i 0.595849 0.803096i \(-0.296816\pi\)
−0.993426 + 0.114472i \(0.963482\pi\)
\(614\) −12.3598 19.8339i −0.498799 0.800432i
\(615\) 0 0
\(616\) −19.9601 + 9.64431i −0.804216 + 0.388580i
\(617\) −7.89362 21.6875i −0.317785 0.873107i −0.991024 0.133682i \(-0.957320\pi\)
0.673239 0.739425i \(-0.264902\pi\)
\(618\) 0 0
\(619\) 2.06484 0.364086i 0.0829927 0.0146339i −0.131998 0.991250i \(-0.542139\pi\)
0.214990 + 0.976616i \(0.431028\pi\)
\(620\) 9.39959 + 38.0982i 0.377497 + 1.53006i
\(621\) 0 0
\(622\) 1.81460 2.31671i 0.0727588 0.0928916i
\(623\) 2.59146 + 14.6969i 0.103825 + 0.588818i
\(624\) 0 0
\(625\) 15.1849 5.52686i 0.607397 0.221074i
\(626\) 0.210595 0.0444931i 0.00841708 0.00177830i
\(627\) 0 0
\(628\) 3.56686 33.1527i 0.142333 1.32293i
\(629\) −20.3016 + 11.7211i −0.809479 + 0.467353i
\(630\) 0 0
\(631\) −4.15935 2.40140i −0.165581 0.0955982i 0.414920 0.909858i \(-0.363810\pi\)
−0.580500 + 0.814260i \(0.697143\pi\)
\(632\) −7.50612 26.5458i −0.298577 1.05593i
\(633\) 0 0
\(634\) −7.06202 + 6.34298i −0.280469 + 0.251912i
\(635\) 0.720611 4.08679i 0.0285966 0.162179i
\(636\) 0 0
\(637\) 0.0962169 0.0807356i 0.00381225 0.00319886i
\(638\) 16.7339 6.73704i 0.662502 0.266722i
\(639\) 0 0
\(640\) 31.8299 21.0736i 1.25819 0.833006i
\(641\) −9.68895 + 26.6202i −0.382690 + 1.05143i 0.587528 + 0.809204i \(0.300101\pi\)
−0.970219 + 0.242230i \(0.922121\pi\)
\(642\) 0 0
\(643\) 2.41104 2.87336i 0.0950820 0.113314i −0.716405 0.697684i \(-0.754214\pi\)
0.811487 + 0.584370i \(0.198658\pi\)
\(644\) −2.12582 + 1.42630i −0.0837691 + 0.0562040i
\(645\) 0 0
\(646\) −29.9384 15.9657i −1.17791 0.628163i
\(647\) −44.7799 −1.76048 −0.880239 0.474530i \(-0.842618\pi\)
−0.880239 + 0.474530i \(0.842618\pi\)
\(648\) 0 0
\(649\) −12.0782 −0.474112
\(650\) −4.68607 2.49902i −0.183803 0.0980195i
\(651\) 0 0
\(652\) −4.62132 + 3.10063i −0.180985 + 0.121430i
\(653\) −21.7078 + 25.8703i −0.849490 + 1.01238i 0.150228 + 0.988651i \(0.451999\pi\)
−0.999718 + 0.0237317i \(0.992445\pi\)
\(654\) 0 0
\(655\) 20.3693 55.9641i 0.795893 2.18670i
\(656\) 6.86300 10.8639i 0.267955 0.424166i
\(657\) 0 0
\(658\) −4.32727 + 1.74215i −0.168694 + 0.0679160i
\(659\) 24.1988 20.3052i 0.942653 0.790980i −0.0353922 0.999374i \(-0.511268\pi\)
0.978045 + 0.208394i \(0.0668236\pi\)
\(660\) 0 0
\(661\) −0.839971 + 4.76371i −0.0326711 + 0.185287i −0.996776 0.0802346i \(-0.974433\pi\)
0.964105 + 0.265522i \(0.0855442\pi\)
\(662\) −13.8983 + 12.4832i −0.540174 + 0.485174i
\(663\) 0 0
\(664\) −48.9456 + 13.8399i −1.89946 + 0.537093i
\(665\) 25.6275 + 14.7960i 0.993791 + 0.573765i
\(666\) 0 0
\(667\) 1.80408 1.04159i 0.0698542 0.0403304i
\(668\) 3.03239 28.1850i 0.117327 1.09051i
\(669\) 0 0
\(670\) −47.2970 + 9.99257i −1.82724 + 0.386047i
\(671\) 1.50962 0.549457i 0.0582782 0.0212115i
\(672\) 0 0
\(673\) 3.86976 + 21.9465i 0.149168 + 0.845975i 0.963925 + 0.266172i \(0.0857591\pi\)
−0.814757 + 0.579802i \(0.803130\pi\)
\(674\) 16.8719 21.5404i 0.649880 0.829705i
\(675\) 0 0
\(676\) 6.06223 + 24.5713i 0.233163 + 0.945050i
\(677\) −0.870609 + 0.153512i −0.0334602 + 0.00589994i −0.190353 0.981716i \(-0.560963\pi\)
0.156893 + 0.987616i \(0.449852\pi\)
\(678\) 0 0
\(679\) 9.72648 + 26.7233i 0.373268 + 1.02555i
\(680\) −30.5050 63.1341i −1.16982 2.42108i
\(681\) 0 0
\(682\) 12.6918 + 20.3667i 0.485993 + 0.779882i
\(683\) 13.1484 + 22.7737i 0.503110 + 0.871412i 0.999994 + 0.00359510i \(0.00114436\pi\)
−0.496883 + 0.867817i \(0.665522\pi\)
\(684\) 0 0
\(685\) −17.5101 + 30.3285i −0.669028 + 1.15879i
\(686\) 25.7624 0.867958i 0.983612 0.0331388i
\(687\) 0 0
\(688\) −6.93732 + 2.21645i −0.264483 + 0.0845012i
\(689\) 4.26990 + 0.752898i 0.162670 + 0.0286831i
\(690\) 0 0
\(691\) 17.5236 + 20.8838i 0.666629 + 0.794457i 0.988321 0.152387i \(-0.0486960\pi\)
−0.321692 + 0.946844i \(0.604252\pi\)
\(692\) −0.685920 + 2.37010i −0.0260748 + 0.0900975i
\(693\) 0 0
\(694\) 17.9053 + 2.53886i 0.679676 + 0.0963737i
\(695\) −69.1943 25.1847i −2.62469 0.955309i
\(696\) 0 0
\(697\) −18.0811 15.1718i −0.684869 0.574673i
\(698\) −5.31408 + 16.2870i −0.201141 + 0.616470i
\(699\) 0 0
\(700\) 13.8724 + 31.3650i 0.524326 + 1.18549i
\(701\) 0.940626i 0.0355270i −0.999842 0.0177635i \(-0.994345\pi\)
0.999842 0.0177635i \(-0.00565459\pi\)
\(702\) 0 0
\(703\) 10.4188i 0.392954i
\(704\) 14.5079 18.2898i 0.546787 0.689322i
\(705\) 0 0
\(706\) −26.8480 8.75994i −1.01044 0.329685i
\(707\) −17.5968 14.7655i −0.661796 0.555313i
\(708\) 0 0
\(709\) −33.6283 12.2397i −1.26294 0.459671i −0.378183 0.925731i \(-0.623451\pi\)
−0.884753 + 0.466060i \(0.845673\pi\)
\(710\) −0.825993 + 5.82531i −0.0309990 + 0.218620i
\(711\) 0 0
\(712\) −9.19076 12.7485i −0.344438 0.477772i
\(713\) 1.78133 + 2.12290i 0.0667112 + 0.0795034i
\(714\) 0 0
\(715\) −5.70327 1.00564i −0.213290 0.0376088i
\(716\) −34.3226 + 2.31535i −1.28270 + 0.0865286i
\(717\) 0 0
\(718\) 1.00247 + 29.7548i 0.0374117 + 1.11044i
\(719\) 16.5947 28.7429i 0.618879 1.07193i −0.370812 0.928708i \(-0.620921\pi\)
0.989691 0.143221i \(-0.0457461\pi\)
\(720\) 0 0
\(721\) −22.7726 39.4434i −0.848097 1.46895i
\(722\) 10.0063 6.23558i 0.372398 0.232064i
\(723\) 0 0
\(724\) 19.0640 38.8444i 0.708507 1.44364i
\(725\) −9.54517 26.2252i −0.354499 0.973978i
\(726\) 0 0
\(727\) 31.7731 5.60245i 1.17840 0.207783i 0.450058 0.892999i \(-0.351403\pi\)
0.728340 + 0.685216i \(0.240292\pi\)
\(728\) −1.83238 + 4.07511i −0.0679125 + 0.151034i
\(729\) 0 0
\(730\) −8.87122 6.94853i −0.328339 0.257177i
\(731\) 2.32290 + 13.1738i 0.0859155 + 0.487251i
\(732\) 0 0
\(733\) −41.2520 + 15.0145i −1.52368 + 0.554573i −0.962064 0.272825i \(-0.912042\pi\)
−0.561615 + 0.827399i \(0.689820\pi\)
\(734\) 8.13790 + 38.5184i 0.300375 + 1.42174i
\(735\) 0 0
\(736\) 1.36227 2.32640i 0.0502139 0.0857523i
\(737\) −25.6023 + 14.7815i −0.943071 + 0.544482i
\(738\) 0 0
\(739\) −14.8213 8.55709i −0.545211 0.314778i 0.201977 0.979390i \(-0.435263\pi\)
−0.747188 + 0.664613i \(0.768597\pi\)
\(740\) −12.6985 + 17.3880i −0.466805 + 0.639194i
\(741\) 0 0
\(742\) −18.7097 20.8307i −0.686855 0.764717i
\(743\) 7.59713 43.0854i 0.278711 1.58065i −0.448208 0.893929i \(-0.647938\pi\)
0.726920 0.686722i \(-0.240951\pi\)
\(744\) 0 0
\(745\) 9.65229 8.09923i 0.353632 0.296733i
\(746\) −3.15294 7.83148i −0.115437 0.286731i
\(747\) 0 0
\(748\) −29.7113 30.9186i −1.08635 1.13050i
\(749\) 3.43066 9.42566i 0.125354 0.344406i
\(750\) 0 0
\(751\) 3.83442 4.56968i 0.139920 0.166750i −0.691534 0.722344i \(-0.743065\pi\)
0.831454 + 0.555594i \(0.187509\pi\)
\(752\) 3.30501 3.63451i 0.120521 0.132537i
\(753\) 0 0
\(754\) 1.71091 3.20824i 0.0623076 0.116837i
\(755\) 49.2554 1.79259
\(756\) 0 0
\(757\) 33.2521 1.20857 0.604284 0.796769i \(-0.293459\pi\)
0.604284 + 0.796769i \(0.293459\pi\)
\(758\) −9.47585 + 17.7688i −0.344178 + 0.645392i
\(759\) 0 0
\(760\) −31.0793 2.28840i −1.12737 0.0830091i
\(761\) −3.22885 + 3.84799i −0.117046 + 0.139489i −0.821386 0.570373i \(-0.806799\pi\)
0.704340 + 0.709863i \(0.251243\pi\)
\(762\) 0 0
\(763\) −9.74275 + 26.7680i −0.352711 + 0.969066i
\(764\) −6.88154 + 6.61283i −0.248965 + 0.239244i
\(765\) 0 0
\(766\) 8.45078 + 20.9906i 0.305339 + 0.758422i
\(767\) −1.86491 + 1.56484i −0.0673378 + 0.0565031i
\(768\) 0 0
\(769\) 8.98596 50.9619i 0.324042 1.83773i −0.192280 0.981340i \(-0.561588\pi\)
0.516322 0.856394i \(-0.327301\pi\)
\(770\) 24.9904 + 27.8233i 0.900592 + 1.00268i
\(771\) 0 0
\(772\) −14.6332 10.6866i −0.526659 0.384621i
\(773\) −8.36174 4.82765i −0.300751 0.173639i 0.342029 0.939689i \(-0.388886\pi\)
−0.642780 + 0.766051i \(0.722219\pi\)
\(774\) 0 0
\(775\) 32.1524 18.5632i 1.15495 0.666811i
\(776\) −21.4663 20.8832i −0.770595 0.749663i
\(777\) 0 0
\(778\) −5.20349 24.6292i −0.186554 0.883001i
\(779\) −9.85768 + 3.58790i −0.353188 + 0.128550i
\(780\) 0 0
\(781\) 0.624804 + 3.54344i 0.0223572 + 0.126794i
\(782\) −3.89836 3.05345i −0.139405 0.109191i
\(783\) 0 0
\(784\) 0.756161 0.397305i 0.0270058 0.0141894i
\(785\) −55.3986 + 9.76827i −1.97726 + 0.348644i
\(786\) 0 0
\(787\) 13.7527 + 37.7851i 0.490229 + 1.34689i 0.900471 + 0.434917i \(0.143222\pi\)
−0.410242 + 0.911977i \(0.634556\pi\)
\(788\) −3.73672 1.83390i −0.133115 0.0653299i
\(789\) 0 0
\(790\) −39.4986 + 24.6140i −1.40530 + 0.875728i
\(791\) −7.84266 13.5839i −0.278853 0.482987i
\(792\) 0 0
\(793\) 0.161901 0.280422i 0.00574929 0.00995806i
\(794\) 0.889953 + 26.4152i 0.0315832 + 0.937441i
\(795\) 0 0
\(796\) 1.51548 + 22.4654i 0.0537146 + 0.796263i
\(797\) −4.52678 0.798193i −0.160347 0.0282735i 0.0928984 0.995676i \(-0.470387\pi\)
−0.253245 + 0.967402i \(0.581498\pi\)
\(798\) 0 0
\(799\) −5.80006 6.91224i −0.205191 0.244538i
\(800\) −27.5242 23.3851i −0.973126 0.826788i
\(801\) 0 0
\(802\) 6.13435 43.2625i 0.216611 1.52765i
\(803\) −6.47569 2.35696i −0.228522 0.0831753i
\(804\) 0 0
\(805\) 3.30840 + 2.77608i 0.116606 + 0.0978440i
\(806\) 4.59832 + 1.50033i 0.161969 + 0.0528470i
\(807\) 0 0
\(808\) 23.4505 + 5.93875i 0.824987 + 0.208925i
\(809\) 17.3051i 0.608415i 0.952606 + 0.304208i \(0.0983917\pi\)
−0.952606 + 0.304208i \(0.901608\pi\)
\(810\) 0 0
\(811\) 4.64157i 0.162987i 0.996674 + 0.0814937i \(0.0259691\pi\)
−0.996674 + 0.0814937i \(0.974031\pi\)
\(812\) −21.4735 + 9.49747i −0.753572 + 0.333296i
\(813\) 0 0
\(814\) −4.08433 + 12.5179i −0.143156 + 0.438753i
\(815\) 7.19214 + 6.03492i 0.251930 + 0.211394i
\(816\) 0 0
\(817\) 5.58682 + 2.03344i 0.195458 + 0.0711409i
\(818\) −34.4657 4.88702i −1.20507 0.170871i
\(819\) 0 0
\(820\) −20.8244 6.02670i −0.727219 0.210462i
\(821\) −22.5753 26.9043i −0.787885 0.938965i 0.211376 0.977405i \(-0.432206\pi\)
−0.999261 + 0.0384400i \(0.987761\pi\)
\(822\) 0 0
\(823\) −0.203632 0.0359058i −0.00709815 0.00125160i 0.170098 0.985427i \(-0.445592\pi\)
−0.177196 + 0.984176i \(0.556703\pi\)
\(824\) 39.6647 + 26.9674i 1.38179 + 0.939454i
\(825\) 0 0
\(826\) 15.7123 0.529362i 0.546701 0.0184189i
\(827\) 6.40289 11.0901i 0.222650 0.385642i −0.732962 0.680270i \(-0.761863\pi\)
0.955612 + 0.294628i \(0.0951959\pi\)
\(828\) 0 0
\(829\) 14.0149 + 24.2745i 0.486757 + 0.843088i 0.999884 0.0152250i \(-0.00484646\pi\)
−0.513127 + 0.858313i \(0.671513\pi\)
\(830\) 45.3838 + 72.8281i 1.57529 + 2.52790i
\(831\) 0 0
\(832\) −0.129551 4.70361i −0.00449138 0.163068i
\(833\) −0.536618 1.47435i −0.0185927 0.0510830i
\(834\) 0 0
\(835\) −47.0976 + 8.30457i −1.62988 + 0.287392i
\(836\) −18.5032 + 4.56510i −0.639945 + 0.157887i
\(837\) 0 0
\(838\) −6.94380 + 8.86519i −0.239869 + 0.306243i
\(839\) −5.80061 32.8969i −0.200259 1.13573i −0.904727 0.425991i \(-0.859926\pi\)
0.704468 0.709736i \(-0.251186\pi\)
\(840\) 0 0
\(841\) −9.29650 + 3.38365i −0.320569 + 0.116678i
\(842\) 5.68787 1.20169i 0.196017 0.0414130i
\(843\) 0 0
\(844\) 10.9454 + 1.17760i 0.376755 + 0.0405346i
\(845\) 36.9760 21.3481i 1.27201 0.734397i
\(846\) 0 0
\(847\) −5.77875 3.33636i −0.198560 0.114639i
\(848\) 27.2846 + 11.1800i 0.936957 + 0.383922i
\(849\) 0 0
\(850\) −49.3546 + 44.3294i −1.69285 + 1.52049i
\(851\) −0.264046 + 1.49748i −0.00905136 + 0.0513328i
\(852\) 0 0
\(853\) 31.0106 26.0210i 1.06178 0.890941i 0.0674988 0.997719i \(-0.478498\pi\)
0.994283 + 0.106779i \(0.0340537\pi\)
\(854\) −1.93975 + 0.780939i −0.0663768 + 0.0267232i
\(855\) 0 0
\(856\) 1.06543 + 10.5094i 0.0364158 + 0.359202i
\(857\) −5.22146 + 14.3458i −0.178362 + 0.490045i −0.996367 0.0851662i \(-0.972858\pi\)
0.818005 + 0.575211i \(0.195080\pi\)
\(858\) 0 0
\(859\) 16.2814 19.4034i 0.555515 0.662037i −0.413076 0.910696i \(-0.635546\pi\)
0.968591 + 0.248660i \(0.0799902\pi\)
\(860\) 6.84547 + 10.2028i 0.233429 + 0.347913i
\(861\) 0 0
\(862\) 43.2262 + 23.0519i 1.47229 + 0.785151i
\(863\) 25.0571 0.852954 0.426477 0.904498i \(-0.359755\pi\)
0.426477 + 0.904498i \(0.359755\pi\)
\(864\) 0 0
\(865\) 4.16257 0.141532
\(866\) 10.6757 + 5.69321i 0.362775 + 0.193463i
\(867\) 0 0
\(868\) −17.4031 25.9384i −0.590699 0.880405i
\(869\) −18.2948 + 21.8029i −0.620608 + 0.739612i
\(870\) 0 0
\(871\) −2.03797 + 5.59928i −0.0690541 + 0.189725i
\(872\) −3.02574 29.8456i −0.102464 1.01070i
\(873\) 0 0
\(874\) −2.04158 + 0.821937i −0.0690576 + 0.0278024i
\(875\) 9.61235 8.06572i 0.324957 0.272671i
\(876\) 0 0
\(877\) 5.23679 29.6993i 0.176834 1.00287i −0.759172 0.650890i \(-0.774396\pi\)
0.936006 0.351985i \(-0.114493\pi\)
\(878\) −8.42889 + 7.57068i −0.284461 + 0.255498i
\(879\) 0 0
\(880\) −36.4438 14.9330i −1.22852 0.503391i
\(881\) −33.7727 19.4987i −1.13783 0.656927i −0.191938 0.981407i \(-0.561477\pi\)
−0.945892 + 0.324480i \(0.894811\pi\)
\(882\) 0 0
\(883\) −7.27427 + 4.19980i −0.244799 + 0.141335i −0.617380 0.786665i \(-0.711806\pi\)
0.372582 + 0.927999i \(0.378473\pi\)
\(884\) −8.59327 0.924540i −0.289023 0.0310956i
\(885\) 0 0
\(886\) 10.9892 2.32173i 0.369190 0.0779999i
\(887\) 22.3828 8.14666i 0.751540 0.273538i 0.0622862 0.998058i \(-0.480161\pi\)
0.689254 + 0.724520i \(0.257939\pi\)
\(888\) 0 0
\(889\) 0.573608 + 3.25309i 0.0192382 + 0.109105i
\(890\) −16.3493 + 20.8732i −0.548029 + 0.699671i
\(891\) 0 0
\(892\) −10.6067 + 2.61688i −0.355138 + 0.0876195i
\(893\) −3.94944 + 0.696393i −0.132163 + 0.0233039i
\(894\) 0 0
\(895\) 19.8494 + 54.5358i 0.663493 + 1.82293i
\(896\) −18.0714 + 24.4286i −0.603723 + 0.816103i
\(897\) 0 0
\(898\) 0.646333 + 1.03718i 0.0215684 + 0.0346112i
\(899\) 12.7090 + 22.0126i 0.423868 + 0.734162i
\(900\) 0 0
\(901\) 27.0802 46.9043i 0.902173 1.56261i
\(902\) −13.2502 + 0.446412i −0.441184 + 0.0148639i
\(903\) 0 0
\(904\) 13.6601 + 9.28729i 0.454329 + 0.308891i
\(905\) −71.8906 12.6762i −2.38972 0.421373i
\(906\) 0 0
\(907\) 8.72657 + 10.3999i 0.289761 + 0.345324i 0.891213 0.453585i \(-0.149855\pi\)
−0.601452 + 0.798909i \(0.705411\pi\)
\(908\) −2.85221 0.825446i −0.0946538 0.0273934i
\(909\) 0 0
\(910\) 7.46333 + 1.05825i 0.247407 + 0.0350807i
\(911\) 3.61785 + 1.31679i 0.119865 + 0.0436272i 0.401256 0.915966i \(-0.368574\pi\)
−0.281391 + 0.959593i \(0.590796\pi\)
\(912\) 0 0
\(913\) 40.2005 + 33.7322i 1.33044 + 1.11637i
\(914\) −12.8833 + 39.4856i −0.426141 + 1.30607i
\(915\) 0 0
\(916\) −47.6566 + 21.0780i −1.57462 + 0.696435i
\(917\) 47.4065i 1.56550i
\(918\) 0 0
\(919\) 7.14983i 0.235851i 0.993022 + 0.117926i \(0.0376244\pi\)
−0.993022 + 0.117926i \(0.962376\pi\)
\(920\) −4.40897 1.11655i −0.145359 0.0368117i
\(921\) 0 0
\(922\) 7.72761 + 2.52135i 0.254495 + 0.0830363i
\(923\) 0.555554 + 0.466165i 0.0182863 + 0.0153440i
\(924\) 0 0
\(925\) 19.1426 + 6.96735i 0.629406 + 0.229085i
\(926\) −5.46200 + 38.5208i −0.179493 + 1.26587i
\(927\) 0 0
\(928\) 16.0102 18.8439i 0.525560 0.618582i
\(929\) 16.0658 + 19.1465i 0.527102 + 0.628175i 0.962245 0.272186i \(-0.0877466\pi\)
−0.435143 + 0.900361i \(0.643302\pi\)
\(930\) 0 0
\(931\) −0.686727 0.121088i −0.0225066 0.00396851i
\(932\) −0.903702 13.3964i −0.0296017 0.438815i
\(933\) 0 0
\(934\) −0.801706 23.7959i −0.0262326 0.778626i
\(935\) −36.1708 + 62.6497i −1.18291 + 2.04886i
\(936\) 0 0
\(937\) −1.71158 2.96455i −0.0559150 0.0968475i 0.836713 0.547642i \(-0.184474\pi\)
−0.892628 + 0.450794i \(0.851141\pi\)
\(938\) 32.6576 20.3510i 1.06631 0.664483i
\(939\) 0 0
\(940\) −7.43997 3.65137i −0.242665 0.119095i
\(941\) −12.4624 34.2402i −0.406263 1.11620i −0.959139 0.282936i \(-0.908692\pi\)
0.552876 0.833264i \(-0.313530\pi\)
\(942\) 0 0
\(943\) −1.50775 + 0.265857i −0.0490991 + 0.00865750i
\(944\) −14.6562 + 7.70068i −0.477017 + 0.250636i
\(945\) 0 0
\(946\) 5.91527 + 4.63323i 0.192322 + 0.150639i
\(947\) −1.21337 6.88137i −0.0394292 0.223614i 0.958726 0.284333i \(-0.0917720\pi\)
−0.998155 + 0.0607182i \(0.980661\pi\)
\(948\) 0 0
\(949\) −1.30522 + 0.475063i −0.0423694 + 0.0154212i
\(950\) 6.09473 + 28.8477i 0.197739 + 0.935942i
\(951\) 0 0
\(952\) 40.0059 + 38.9192i 1.29660 + 1.26138i
\(953\) −6.10328 + 3.52373i −0.197705 + 0.114145i −0.595584 0.803293i \(-0.703079\pi\)
0.397880 + 0.917438i \(0.369746\pi\)
\(954\) 0 0
\(955\) 13.9439 + 8.05052i 0.451214 + 0.260509i
\(956\) −33.1051 24.1768i −1.07070 0.781933i
\(957\) 0 0
\(958\) 2.08734 + 2.32396i 0.0674388 + 0.0750837i
\(959\) 4.84066 27.4527i 0.156313 0.886495i
\(960\) 0 0
\(961\) −2.15538 + 1.80858i −0.0695284 + 0.0583413i
\(962\) 0.991178 + 2.46195i 0.0319569 + 0.0793766i
\(963\) 0 0
\(964\) −18.2122 + 17.5011i −0.586577 + 0.563672i
\(965\) −10.4554 + 28.7259i −0.336570 + 0.924720i
\(966\) 0 0
\(967\) 16.9709 20.2251i 0.545746 0.650395i −0.420720 0.907191i \(-0.638222\pi\)
0.966466 + 0.256796i \(0.0826669\pi\)
\(968\) 7.00809 + 0.516013i 0.225249 + 0.0165853i
\(969\) 0 0
\(970\) −23.7747 + 44.5816i −0.763360 + 1.43143i
\(971\) −34.6797 −1.11292 −0.556462 0.830873i \(-0.687841\pi\)
−0.556462 + 0.830873i \(0.687841\pi\)
\(972\) 0 0
\(973\) 58.6137 1.87907
\(974\) −26.9420 + 50.5207i −0.863278 + 1.61879i
\(975\) 0 0
\(976\) 1.48151 1.62921i 0.0474220 0.0521498i
\(977\) 28.9842 34.5421i 0.927288 1.10510i −0.0669346 0.997757i \(-0.521322\pi\)
0.994222 0.107341i \(-0.0342337\pi\)
\(978\) 0 0
\(979\) −5.54571 + 15.2367i −0.177242 + 0.486968i
\(980\) −0.998493 1.03907i −0.0318957 0.0331918i
\(981\) 0 0
\(982\) −8.35702 20.7577i −0.266683 0.662406i
\(983\) −30.4016 + 25.5100i −0.969662 + 0.813643i −0.982498 0.186275i \(-0.940359\pi\)
0.0128359 + 0.999918i \(0.495914\pi\)
\(984\) 0 0
\(985\) −1.21942 + 6.91566i −0.0388539 + 0.220351i
\(986\) −30.3493 33.7897i −0.966520 1.07608i
\(987\) 0 0
\(988\) −2.26548 + 3.10211i −0.0720745 + 0.0986912i
\(989\) 0.751448 + 0.433849i 0.0238947 + 0.0137956i
\(990\) 0 0
\(991\) −16.9550 + 9.78895i −0.538592 + 0.310956i −0.744508 0.667613i \(-0.767316\pi\)
0.205916 + 0.978570i \(0.433983\pi\)
\(992\) 28.3858 + 16.6218i 0.901249 + 0.527743i
\(993\) 0 0
\(994\) −0.968094 4.58220i −0.0307061 0.145338i
\(995\) 35.6956 12.9921i 1.13163 0.411879i
\(996\) 0 0
\(997\) −6.52118 36.9834i −0.206528 1.17128i −0.895018 0.446031i \(-0.852837\pi\)
0.688490 0.725246i \(-0.258274\pi\)
\(998\) −37.2476 29.1748i −1.17905 0.923512i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 972.2.l.b.215.3 96
3.2 odd 2 972.2.l.c.215.14 96
4.3 odd 2 inner 972.2.l.b.215.5 96
9.2 odd 6 972.2.l.d.863.8 96
9.4 even 3 324.2.l.a.179.13 96
9.5 odd 6 108.2.l.a.23.4 96
9.7 even 3 972.2.l.a.863.9 96
12.11 even 2 972.2.l.c.215.12 96
27.2 odd 18 inner 972.2.l.b.755.5 96
27.7 even 9 972.2.l.d.107.2 96
27.11 odd 18 324.2.l.a.143.7 96
27.16 even 9 108.2.l.a.47.10 yes 96
27.20 odd 18 972.2.l.a.107.15 96
27.25 even 9 972.2.l.c.755.12 96
36.7 odd 6 972.2.l.a.863.15 96
36.11 even 6 972.2.l.d.863.2 96
36.23 even 6 108.2.l.a.23.10 yes 96
36.31 odd 6 324.2.l.a.179.7 96
108.7 odd 18 972.2.l.d.107.8 96
108.11 even 18 324.2.l.a.143.13 96
108.43 odd 18 108.2.l.a.47.4 yes 96
108.47 even 18 972.2.l.a.107.9 96
108.79 odd 18 972.2.l.c.755.14 96
108.83 even 18 inner 972.2.l.b.755.3 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
108.2.l.a.23.4 96 9.5 odd 6
108.2.l.a.23.10 yes 96 36.23 even 6
108.2.l.a.47.4 yes 96 108.43 odd 18
108.2.l.a.47.10 yes 96 27.16 even 9
324.2.l.a.143.7 96 27.11 odd 18
324.2.l.a.143.13 96 108.11 even 18
324.2.l.a.179.7 96 36.31 odd 6
324.2.l.a.179.13 96 9.4 even 3
972.2.l.a.107.9 96 108.47 even 18
972.2.l.a.107.15 96 27.20 odd 18
972.2.l.a.863.9 96 9.7 even 3
972.2.l.a.863.15 96 36.7 odd 6
972.2.l.b.215.3 96 1.1 even 1 trivial
972.2.l.b.215.5 96 4.3 odd 2 inner
972.2.l.b.755.3 96 108.83 even 18 inner
972.2.l.b.755.5 96 27.2 odd 18 inner
972.2.l.c.215.12 96 12.11 even 2
972.2.l.c.215.14 96 3.2 odd 2
972.2.l.c.755.12 96 27.25 even 9
972.2.l.c.755.14 96 108.79 odd 18
972.2.l.d.107.2 96 27.7 even 9
972.2.l.d.107.8 96 108.7 odd 18
972.2.l.d.863.2 96 36.11 even 6
972.2.l.d.863.8 96 9.2 odd 6