Properties

Label 320.8.a.u.1.2
Level $320$
Weight $8$
Character 320.1
Self dual yes
Analytic conductor $99.963$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [320,8,Mod(1,320)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("320.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(320, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 320 = 2^{6} \cdot 5 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 320.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,20,0,250,0,100,0,5554] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(99.9632081549\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{19}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 19 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 5)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(4.35890\) of defining polynomial
Character \(\chi\) \(=\) 320.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+79.7424 q^{3} +125.000 q^{5} +538.197 q^{7} +4171.85 q^{9} -1215.12 q^{11} -7070.42 q^{13} +9967.80 q^{15} -3348.13 q^{17} +22169.7 q^{19} +42917.1 q^{21} +58513.1 q^{23} +15625.0 q^{25} +158276. q^{27} +206301. q^{29} -177822. q^{31} -96896.5 q^{33} +67274.6 q^{35} +284128. q^{37} -563812. q^{39} +627353. q^{41} -164889. q^{43} +521481. q^{45} +449355. q^{47} -533887. q^{49} -266988. q^{51} +730190. q^{53} -151890. q^{55} +1.76786e6 q^{57} +1.42202e6 q^{59} +266326. q^{61} +2.24527e6 q^{63} -883803. q^{65} +2.95028e6 q^{67} +4.66598e6 q^{69} -921138. q^{71} +4.25657e6 q^{73} +1.24597e6 q^{75} -653973. q^{77} -6.28551e6 q^{79} +3.49751e6 q^{81} -9.17165e6 q^{83} -418516. q^{85} +1.64510e7 q^{87} +242643. q^{89} -3.80528e6 q^{91} -1.41799e7 q^{93} +2.77121e6 q^{95} -2.59198e6 q^{97} -5.06929e6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 20 q^{3} + 250 q^{5} + 100 q^{7} + 5554 q^{9} + 4544 q^{11} - 3540 q^{13} + 2500 q^{15} - 27340 q^{17} + 38760 q^{19} + 69096 q^{21} + 124140 q^{23} + 31250 q^{25} + 206360 q^{27} + 72260 q^{29} - 306824 q^{31}+ \cdots + 2890688 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 79.7424 1.70516 0.852579 0.522598i \(-0.175037\pi\)
0.852579 + 0.522598i \(0.175037\pi\)
\(4\) 0 0
\(5\) 125.000 0.447214
\(6\) 0 0
\(7\) 538.197 0.593059 0.296529 0.955024i \(-0.404171\pi\)
0.296529 + 0.955024i \(0.404171\pi\)
\(8\) 0 0
\(9\) 4171.85 1.90757
\(10\) 0 0
\(11\) −1215.12 −0.275261 −0.137630 0.990484i \(-0.543949\pi\)
−0.137630 + 0.990484i \(0.543949\pi\)
\(12\) 0 0
\(13\) −7070.42 −0.892573 −0.446286 0.894890i \(-0.647254\pi\)
−0.446286 + 0.894890i \(0.647254\pi\)
\(14\) 0 0
\(15\) 9967.80 0.762570
\(16\) 0 0
\(17\) −3348.13 −0.165284 −0.0826420 0.996579i \(-0.526336\pi\)
−0.0826420 + 0.996579i \(0.526336\pi\)
\(18\) 0 0
\(19\) 22169.7 0.741519 0.370759 0.928729i \(-0.379097\pi\)
0.370759 + 0.928729i \(0.379097\pi\)
\(20\) 0 0
\(21\) 42917.1 1.01126
\(22\) 0 0
\(23\) 58513.1 1.00278 0.501390 0.865221i \(-0.332822\pi\)
0.501390 + 0.865221i \(0.332822\pi\)
\(24\) 0 0
\(25\) 15625.0 0.200000
\(26\) 0 0
\(27\) 158276. 1.54754
\(28\) 0 0
\(29\) 206301. 1.57076 0.785379 0.619015i \(-0.212468\pi\)
0.785379 + 0.619015i \(0.212468\pi\)
\(30\) 0 0
\(31\) −177822. −1.07206 −0.536030 0.844199i \(-0.680077\pi\)
−0.536030 + 0.844199i \(0.680077\pi\)
\(32\) 0 0
\(33\) −96896.5 −0.469363
\(34\) 0 0
\(35\) 67274.6 0.265224
\(36\) 0 0
\(37\) 284128. 0.922163 0.461081 0.887358i \(-0.347462\pi\)
0.461081 + 0.887358i \(0.347462\pi\)
\(38\) 0 0
\(39\) −563812. −1.52198
\(40\) 0 0
\(41\) 627353. 1.42157 0.710785 0.703409i \(-0.248340\pi\)
0.710785 + 0.703409i \(0.248340\pi\)
\(42\) 0 0
\(43\) −164889. −0.316266 −0.158133 0.987418i \(-0.550547\pi\)
−0.158133 + 0.987418i \(0.550547\pi\)
\(44\) 0 0
\(45\) 521481. 0.853090
\(46\) 0 0
\(47\) 449355. 0.631316 0.315658 0.948873i \(-0.397775\pi\)
0.315658 + 0.948873i \(0.397775\pi\)
\(48\) 0 0
\(49\) −533887. −0.648281
\(50\) 0 0
\(51\) −266988. −0.281835
\(52\) 0 0
\(53\) 730190. 0.673706 0.336853 0.941557i \(-0.390638\pi\)
0.336853 + 0.941557i \(0.390638\pi\)
\(54\) 0 0
\(55\) −151890. −0.123100
\(56\) 0 0
\(57\) 1.76786e6 1.26441
\(58\) 0 0
\(59\) 1.42202e6 0.901412 0.450706 0.892673i \(-0.351172\pi\)
0.450706 + 0.892673i \(0.351172\pi\)
\(60\) 0 0
\(61\) 266326. 0.150231 0.0751153 0.997175i \(-0.476068\pi\)
0.0751153 + 0.997175i \(0.476068\pi\)
\(62\) 0 0
\(63\) 2.24527e6 1.13130
\(64\) 0 0
\(65\) −883803. −0.399171
\(66\) 0 0
\(67\) 2.95028e6 1.19840 0.599200 0.800599i \(-0.295485\pi\)
0.599200 + 0.800599i \(0.295485\pi\)
\(68\) 0 0
\(69\) 4.66598e6 1.70990
\(70\) 0 0
\(71\) −921138. −0.305436 −0.152718 0.988270i \(-0.548803\pi\)
−0.152718 + 0.988270i \(0.548803\pi\)
\(72\) 0 0
\(73\) 4.25657e6 1.28065 0.640323 0.768105i \(-0.278800\pi\)
0.640323 + 0.768105i \(0.278800\pi\)
\(74\) 0 0
\(75\) 1.24597e6 0.341032
\(76\) 0 0
\(77\) −653973. −0.163246
\(78\) 0 0
\(79\) −6.28551e6 −1.43432 −0.717159 0.696910i \(-0.754558\pi\)
−0.717159 + 0.696910i \(0.754558\pi\)
\(80\) 0 0
\(81\) 3.49751e6 0.731243
\(82\) 0 0
\(83\) −9.17165e6 −1.76065 −0.880327 0.474367i \(-0.842677\pi\)
−0.880327 + 0.474367i \(0.842677\pi\)
\(84\) 0 0
\(85\) −418516. −0.0739172
\(86\) 0 0
\(87\) 1.64510e7 2.67839
\(88\) 0 0
\(89\) 242643. 0.0364840 0.0182420 0.999834i \(-0.494193\pi\)
0.0182420 + 0.999834i \(0.494193\pi\)
\(90\) 0 0
\(91\) −3.80528e6 −0.529348
\(92\) 0 0
\(93\) −1.41799e7 −1.82803
\(94\) 0 0
\(95\) 2.77121e6 0.331617
\(96\) 0 0
\(97\) −2.59198e6 −0.288357 −0.144179 0.989552i \(-0.546054\pi\)
−0.144179 + 0.989552i \(0.546054\pi\)
\(98\) 0 0
\(99\) −5.06929e6 −0.525078
\(100\) 0 0
\(101\) −3.69169e6 −0.356534 −0.178267 0.983982i \(-0.557049\pi\)
−0.178267 + 0.983982i \(0.557049\pi\)
\(102\) 0 0
\(103\) −8.68203e6 −0.782873 −0.391436 0.920205i \(-0.628022\pi\)
−0.391436 + 0.920205i \(0.628022\pi\)
\(104\) 0 0
\(105\) 5.36464e6 0.452249
\(106\) 0 0
\(107\) 1.52118e7 1.20043 0.600216 0.799838i \(-0.295081\pi\)
0.600216 + 0.799838i \(0.295081\pi\)
\(108\) 0 0
\(109\) 1.60843e6 0.118963 0.0594813 0.998229i \(-0.481055\pi\)
0.0594813 + 0.998229i \(0.481055\pi\)
\(110\) 0 0
\(111\) 2.26570e7 1.57243
\(112\) 0 0
\(113\) −2.62766e7 −1.71315 −0.856574 0.516024i \(-0.827411\pi\)
−0.856574 + 0.516024i \(0.827411\pi\)
\(114\) 0 0
\(115\) 7.31414e6 0.448457
\(116\) 0 0
\(117\) −2.94967e7 −1.70264
\(118\) 0 0
\(119\) −1.80195e6 −0.0980231
\(120\) 0 0
\(121\) −1.80107e7 −0.924231
\(122\) 0 0
\(123\) 5.00266e7 2.42400
\(124\) 0 0
\(125\) 1.95312e6 0.0894427
\(126\) 0 0
\(127\) 1.91864e7 0.831152 0.415576 0.909559i \(-0.363580\pi\)
0.415576 + 0.909559i \(0.363580\pi\)
\(128\) 0 0
\(129\) −1.31487e7 −0.539284
\(130\) 0 0
\(131\) 3.07018e7 1.19320 0.596602 0.802537i \(-0.296517\pi\)
0.596602 + 0.802537i \(0.296517\pi\)
\(132\) 0 0
\(133\) 1.19317e7 0.439764
\(134\) 0 0
\(135\) 1.97846e7 0.692083
\(136\) 0 0
\(137\) −3.16847e7 −1.05276 −0.526378 0.850251i \(-0.676450\pi\)
−0.526378 + 0.850251i \(0.676450\pi\)
\(138\) 0 0
\(139\) 2.07581e7 0.655596 0.327798 0.944748i \(-0.393693\pi\)
0.327798 + 0.944748i \(0.393693\pi\)
\(140\) 0 0
\(141\) 3.58326e7 1.07649
\(142\) 0 0
\(143\) 8.59140e6 0.245690
\(144\) 0 0
\(145\) 2.57877e7 0.702464
\(146\) 0 0
\(147\) −4.25734e7 −1.10542
\(148\) 0 0
\(149\) −2.94607e7 −0.729611 −0.364806 0.931084i \(-0.618865\pi\)
−0.364806 + 0.931084i \(0.618865\pi\)
\(150\) 0 0
\(151\) −4.60002e7 −1.08728 −0.543638 0.839320i \(-0.682954\pi\)
−0.543638 + 0.839320i \(0.682954\pi\)
\(152\) 0 0
\(153\) −1.39679e7 −0.315290
\(154\) 0 0
\(155\) −2.22277e7 −0.479440
\(156\) 0 0
\(157\) −1.92998e7 −0.398019 −0.199010 0.979998i \(-0.563773\pi\)
−0.199010 + 0.979998i \(0.563773\pi\)
\(158\) 0 0
\(159\) 5.82271e7 1.14878
\(160\) 0 0
\(161\) 3.14916e7 0.594708
\(162\) 0 0
\(163\) 2.35624e7 0.426151 0.213076 0.977036i \(-0.431652\pi\)
0.213076 + 0.977036i \(0.431652\pi\)
\(164\) 0 0
\(165\) −1.21121e7 −0.209906
\(166\) 0 0
\(167\) −2.18824e7 −0.363570 −0.181785 0.983338i \(-0.558187\pi\)
−0.181785 + 0.983338i \(0.558187\pi\)
\(168\) 0 0
\(169\) −1.27577e7 −0.203314
\(170\) 0 0
\(171\) 9.24886e7 1.41450
\(172\) 0 0
\(173\) 9.62312e7 1.41304 0.706520 0.707693i \(-0.250264\pi\)
0.706520 + 0.707693i \(0.250264\pi\)
\(174\) 0 0
\(175\) 8.40932e6 0.118612
\(176\) 0 0
\(177\) 1.13395e8 1.53705
\(178\) 0 0
\(179\) 8.46776e7 1.10353 0.551763 0.834001i \(-0.313955\pi\)
0.551763 + 0.834001i \(0.313955\pi\)
\(180\) 0 0
\(181\) 9.65249e7 1.20994 0.604971 0.796248i \(-0.293185\pi\)
0.604971 + 0.796248i \(0.293185\pi\)
\(182\) 0 0
\(183\) 2.12374e7 0.256167
\(184\) 0 0
\(185\) 3.55160e7 0.412404
\(186\) 0 0
\(187\) 4.06837e6 0.0454962
\(188\) 0 0
\(189\) 8.51839e7 0.917785
\(190\) 0 0
\(191\) 1.46467e8 1.52098 0.760491 0.649348i \(-0.224958\pi\)
0.760491 + 0.649348i \(0.224958\pi\)
\(192\) 0 0
\(193\) −8.53275e7 −0.854355 −0.427177 0.904168i \(-0.640492\pi\)
−0.427177 + 0.904168i \(0.640492\pi\)
\(194\) 0 0
\(195\) −7.04765e7 −0.680649
\(196\) 0 0
\(197\) −1.44802e8 −1.34941 −0.674705 0.738087i \(-0.735729\pi\)
−0.674705 + 0.738087i \(0.735729\pi\)
\(198\) 0 0
\(199\) −1.26870e7 −0.114123 −0.0570617 0.998371i \(-0.518173\pi\)
−0.0570617 + 0.998371i \(0.518173\pi\)
\(200\) 0 0
\(201\) 2.35263e8 2.04346
\(202\) 0 0
\(203\) 1.11031e8 0.931552
\(204\) 0 0
\(205\) 7.84191e7 0.635746
\(206\) 0 0
\(207\) 2.44108e8 1.91287
\(208\) 0 0
\(209\) −2.69388e7 −0.204111
\(210\) 0 0
\(211\) −9.47331e7 −0.694246 −0.347123 0.937820i \(-0.612841\pi\)
−0.347123 + 0.937820i \(0.612841\pi\)
\(212\) 0 0
\(213\) −7.34537e7 −0.520817
\(214\) 0 0
\(215\) −2.06111e7 −0.141438
\(216\) 0 0
\(217\) −9.57031e7 −0.635795
\(218\) 0 0
\(219\) 3.39429e8 2.18371
\(220\) 0 0
\(221\) 2.36727e7 0.147528
\(222\) 0 0
\(223\) 2.28554e8 1.38014 0.690069 0.723744i \(-0.257580\pi\)
0.690069 + 0.723744i \(0.257580\pi\)
\(224\) 0 0
\(225\) 6.51851e7 0.381513
\(226\) 0 0
\(227\) −3.00587e8 −1.70561 −0.852806 0.522229i \(-0.825101\pi\)
−0.852806 + 0.522229i \(0.825101\pi\)
\(228\) 0 0
\(229\) 1.05343e8 0.579669 0.289835 0.957077i \(-0.406400\pi\)
0.289835 + 0.957077i \(0.406400\pi\)
\(230\) 0 0
\(231\) −5.21494e7 −0.278360
\(232\) 0 0
\(233\) 3.27196e8 1.69458 0.847291 0.531130i \(-0.178232\pi\)
0.847291 + 0.531130i \(0.178232\pi\)
\(234\) 0 0
\(235\) 5.61694e7 0.282333
\(236\) 0 0
\(237\) −5.01221e8 −2.44574
\(238\) 0 0
\(239\) 5.72888e7 0.271442 0.135721 0.990747i \(-0.456665\pi\)
0.135721 + 0.990747i \(0.456665\pi\)
\(240\) 0 0
\(241\) 2.84287e8 1.30827 0.654134 0.756379i \(-0.273033\pi\)
0.654134 + 0.756379i \(0.273033\pi\)
\(242\) 0 0
\(243\) −6.72506e7 −0.300659
\(244\) 0 0
\(245\) −6.67359e7 −0.289920
\(246\) 0 0
\(247\) −1.56749e8 −0.661859
\(248\) 0 0
\(249\) −7.31369e8 −3.00219
\(250\) 0 0
\(251\) −2.69178e7 −0.107444 −0.0537220 0.998556i \(-0.517108\pi\)
−0.0537220 + 0.998556i \(0.517108\pi\)
\(252\) 0 0
\(253\) −7.11004e7 −0.276026
\(254\) 0 0
\(255\) −3.33735e7 −0.126041
\(256\) 0 0
\(257\) −3.28749e8 −1.20809 −0.604044 0.796951i \(-0.706445\pi\)
−0.604044 + 0.796951i \(0.706445\pi\)
\(258\) 0 0
\(259\) 1.52917e8 0.546897
\(260\) 0 0
\(261\) 8.60658e8 2.99632
\(262\) 0 0
\(263\) −1.85590e8 −0.629084 −0.314542 0.949244i \(-0.601851\pi\)
−0.314542 + 0.949244i \(0.601851\pi\)
\(264\) 0 0
\(265\) 9.12737e7 0.301290
\(266\) 0 0
\(267\) 1.93489e7 0.0622109
\(268\) 0 0
\(269\) −2.70876e8 −0.848471 −0.424236 0.905552i \(-0.639457\pi\)
−0.424236 + 0.905552i \(0.639457\pi\)
\(270\) 0 0
\(271\) −2.30743e8 −0.704263 −0.352132 0.935950i \(-0.614543\pi\)
−0.352132 + 0.935950i \(0.614543\pi\)
\(272\) 0 0
\(273\) −3.03442e8 −0.902623
\(274\) 0 0
\(275\) −1.89862e7 −0.0550522
\(276\) 0 0
\(277\) −1.42059e8 −0.401595 −0.200798 0.979633i \(-0.564353\pi\)
−0.200798 + 0.979633i \(0.564353\pi\)
\(278\) 0 0
\(279\) −7.41846e8 −2.04503
\(280\) 0 0
\(281\) −1.15362e8 −0.310164 −0.155082 0.987902i \(-0.549564\pi\)
−0.155082 + 0.987902i \(0.549564\pi\)
\(282\) 0 0
\(283\) 2.18080e8 0.571958 0.285979 0.958236i \(-0.407681\pi\)
0.285979 + 0.958236i \(0.407681\pi\)
\(284\) 0 0
\(285\) 2.20983e8 0.565460
\(286\) 0 0
\(287\) 3.37639e8 0.843075
\(288\) 0 0
\(289\) −3.99129e8 −0.972681
\(290\) 0 0
\(291\) −2.06691e8 −0.491695
\(292\) 0 0
\(293\) −4.12384e8 −0.957778 −0.478889 0.877875i \(-0.658960\pi\)
−0.478889 + 0.877875i \(0.658960\pi\)
\(294\) 0 0
\(295\) 1.77752e8 0.403124
\(296\) 0 0
\(297\) −1.92325e8 −0.425979
\(298\) 0 0
\(299\) −4.13713e8 −0.895055
\(300\) 0 0
\(301\) −8.87428e7 −0.187564
\(302\) 0 0
\(303\) −2.94384e8 −0.607946
\(304\) 0 0
\(305\) 3.32907e7 0.0671852
\(306\) 0 0
\(307\) 1.57983e8 0.311621 0.155810 0.987787i \(-0.450201\pi\)
0.155810 + 0.987787i \(0.450201\pi\)
\(308\) 0 0
\(309\) −6.92326e8 −1.33492
\(310\) 0 0
\(311\) 1.69169e8 0.318904 0.159452 0.987206i \(-0.449027\pi\)
0.159452 + 0.987206i \(0.449027\pi\)
\(312\) 0 0
\(313\) −5.22117e8 −0.962415 −0.481208 0.876607i \(-0.659802\pi\)
−0.481208 + 0.876607i \(0.659802\pi\)
\(314\) 0 0
\(315\) 2.80659e8 0.505932
\(316\) 0 0
\(317\) −4.73280e8 −0.834470 −0.417235 0.908799i \(-0.637001\pi\)
−0.417235 + 0.908799i \(0.637001\pi\)
\(318\) 0 0
\(319\) −2.50681e8 −0.432368
\(320\) 0 0
\(321\) 1.21303e9 2.04693
\(322\) 0 0
\(323\) −7.42270e7 −0.122561
\(324\) 0 0
\(325\) −1.10475e8 −0.178515
\(326\) 0 0
\(327\) 1.28260e8 0.202850
\(328\) 0 0
\(329\) 2.41841e8 0.374408
\(330\) 0 0
\(331\) −8.75892e7 −0.132756 −0.0663778 0.997795i \(-0.521144\pi\)
−0.0663778 + 0.997795i \(0.521144\pi\)
\(332\) 0 0
\(333\) 1.18534e9 1.75909
\(334\) 0 0
\(335\) 3.68785e8 0.535941
\(336\) 0 0
\(337\) −3.04119e8 −0.432851 −0.216426 0.976299i \(-0.569440\pi\)
−0.216426 + 0.976299i \(0.569440\pi\)
\(338\) 0 0
\(339\) −2.09536e9 −2.92119
\(340\) 0 0
\(341\) 2.16075e8 0.295096
\(342\) 0 0
\(343\) −7.30565e8 −0.977528
\(344\) 0 0
\(345\) 5.83247e8 0.764691
\(346\) 0 0
\(347\) 3.15347e8 0.405169 0.202584 0.979265i \(-0.435066\pi\)
0.202584 + 0.979265i \(0.435066\pi\)
\(348\) 0 0
\(349\) 5.23418e8 0.659112 0.329556 0.944136i \(-0.393101\pi\)
0.329556 + 0.944136i \(0.393101\pi\)
\(350\) 0 0
\(351\) −1.11908e9 −1.38130
\(352\) 0 0
\(353\) −4.13964e8 −0.500900 −0.250450 0.968130i \(-0.580579\pi\)
−0.250450 + 0.968130i \(0.580579\pi\)
\(354\) 0 0
\(355\) −1.15142e8 −0.136595
\(356\) 0 0
\(357\) −1.43692e8 −0.167145
\(358\) 0 0
\(359\) 2.48768e8 0.283768 0.141884 0.989883i \(-0.454684\pi\)
0.141884 + 0.989883i \(0.454684\pi\)
\(360\) 0 0
\(361\) −4.02376e8 −0.450150
\(362\) 0 0
\(363\) −1.43621e9 −1.57596
\(364\) 0 0
\(365\) 5.32071e8 0.572723
\(366\) 0 0
\(367\) −1.45884e9 −1.54056 −0.770278 0.637708i \(-0.779883\pi\)
−0.770278 + 0.637708i \(0.779883\pi\)
\(368\) 0 0
\(369\) 2.61722e9 2.71174
\(370\) 0 0
\(371\) 3.92986e8 0.399547
\(372\) 0 0
\(373\) −6.29125e8 −0.627706 −0.313853 0.949472i \(-0.601620\pi\)
−0.313853 + 0.949472i \(0.601620\pi\)
\(374\) 0 0
\(375\) 1.55747e8 0.152514
\(376\) 0 0
\(377\) −1.45864e9 −1.40202
\(378\) 0 0
\(379\) 8.54658e7 0.0806409 0.0403204 0.999187i \(-0.487162\pi\)
0.0403204 + 0.999187i \(0.487162\pi\)
\(380\) 0 0
\(381\) 1.52997e9 1.41725
\(382\) 0 0
\(383\) 7.56340e8 0.687893 0.343947 0.938989i \(-0.388236\pi\)
0.343947 + 0.938989i \(0.388236\pi\)
\(384\) 0 0
\(385\) −8.17466e7 −0.0730058
\(386\) 0 0
\(387\) −6.87892e8 −0.603298
\(388\) 0 0
\(389\) −1.42837e9 −1.23032 −0.615160 0.788402i \(-0.710908\pi\)
−0.615160 + 0.788402i \(0.710908\pi\)
\(390\) 0 0
\(391\) −1.95909e8 −0.165744
\(392\) 0 0
\(393\) 2.44824e9 2.03460
\(394\) 0 0
\(395\) −7.85688e8 −0.641446
\(396\) 0 0
\(397\) 1.67152e8 0.134074 0.0670372 0.997750i \(-0.478645\pi\)
0.0670372 + 0.997750i \(0.478645\pi\)
\(398\) 0 0
\(399\) 9.51459e8 0.749868
\(400\) 0 0
\(401\) 2.32051e9 1.79712 0.898561 0.438848i \(-0.144613\pi\)
0.898561 + 0.438848i \(0.144613\pi\)
\(402\) 0 0
\(403\) 1.25728e9 0.956892
\(404\) 0 0
\(405\) 4.37189e8 0.327022
\(406\) 0 0
\(407\) −3.45249e8 −0.253835
\(408\) 0 0
\(409\) −8.24735e8 −0.596050 −0.298025 0.954558i \(-0.596328\pi\)
−0.298025 + 0.954558i \(0.596328\pi\)
\(410\) 0 0
\(411\) −2.52661e9 −1.79512
\(412\) 0 0
\(413\) 7.65326e8 0.534590
\(414\) 0 0
\(415\) −1.14646e9 −0.787389
\(416\) 0 0
\(417\) 1.65530e9 1.11790
\(418\) 0 0
\(419\) 8.23968e8 0.547219 0.273610 0.961841i \(-0.411782\pi\)
0.273610 + 0.961841i \(0.411782\pi\)
\(420\) 0 0
\(421\) 2.12046e8 0.138498 0.0692488 0.997599i \(-0.477940\pi\)
0.0692488 + 0.997599i \(0.477940\pi\)
\(422\) 0 0
\(423\) 1.87464e9 1.20428
\(424\) 0 0
\(425\) −5.23145e7 −0.0330568
\(426\) 0 0
\(427\) 1.43336e8 0.0890956
\(428\) 0 0
\(429\) 6.85099e8 0.418941
\(430\) 0 0
\(431\) −7.44023e8 −0.447627 −0.223813 0.974632i \(-0.571851\pi\)
−0.223813 + 0.974632i \(0.571851\pi\)
\(432\) 0 0
\(433\) −1.93573e9 −1.14588 −0.572938 0.819598i \(-0.694197\pi\)
−0.572938 + 0.819598i \(0.694197\pi\)
\(434\) 0 0
\(435\) 2.05637e9 1.19781
\(436\) 0 0
\(437\) 1.29722e9 0.743581
\(438\) 0 0
\(439\) 1.35485e9 0.764300 0.382150 0.924100i \(-0.375184\pi\)
0.382150 + 0.924100i \(0.375184\pi\)
\(440\) 0 0
\(441\) −2.22730e9 −1.23664
\(442\) 0 0
\(443\) 1.05985e9 0.579203 0.289601 0.957147i \(-0.406477\pi\)
0.289601 + 0.957147i \(0.406477\pi\)
\(444\) 0 0
\(445\) 3.03303e7 0.0163161
\(446\) 0 0
\(447\) −2.34927e9 −1.24410
\(448\) 0 0
\(449\) −1.70272e9 −0.887730 −0.443865 0.896094i \(-0.646393\pi\)
−0.443865 + 0.896094i \(0.646393\pi\)
\(450\) 0 0
\(451\) −7.62309e8 −0.391303
\(452\) 0 0
\(453\) −3.66816e9 −1.85398
\(454\) 0 0
\(455\) −4.75660e8 −0.236732
\(456\) 0 0
\(457\) −3.76431e9 −1.84493 −0.922463 0.386085i \(-0.873827\pi\)
−0.922463 + 0.386085i \(0.873827\pi\)
\(458\) 0 0
\(459\) −5.29930e8 −0.255784
\(460\) 0 0
\(461\) −3.59084e9 −1.70704 −0.853519 0.521062i \(-0.825536\pi\)
−0.853519 + 0.521062i \(0.825536\pi\)
\(462\) 0 0
\(463\) 2.45649e8 0.115022 0.0575111 0.998345i \(-0.481684\pi\)
0.0575111 + 0.998345i \(0.481684\pi\)
\(464\) 0 0
\(465\) −1.77249e9 −0.817521
\(466\) 0 0
\(467\) −4.04985e8 −0.184005 −0.0920025 0.995759i \(-0.529327\pi\)
−0.0920025 + 0.995759i \(0.529327\pi\)
\(468\) 0 0
\(469\) 1.58783e9 0.710722
\(470\) 0 0
\(471\) −1.53901e9 −0.678686
\(472\) 0 0
\(473\) 2.00360e8 0.0870556
\(474\) 0 0
\(475\) 3.46401e8 0.148304
\(476\) 0 0
\(477\) 3.04624e9 1.28514
\(478\) 0 0
\(479\) −4.18334e9 −1.73920 −0.869598 0.493760i \(-0.835622\pi\)
−0.869598 + 0.493760i \(0.835622\pi\)
\(480\) 0 0
\(481\) −2.00890e9 −0.823097
\(482\) 0 0
\(483\) 2.51121e9 1.01407
\(484\) 0 0
\(485\) −3.23998e8 −0.128957
\(486\) 0 0
\(487\) −3.25089e9 −1.27541 −0.637706 0.770280i \(-0.720117\pi\)
−0.637706 + 0.770280i \(0.720117\pi\)
\(488\) 0 0
\(489\) 1.87893e9 0.726656
\(490\) 0 0
\(491\) −3.37360e9 −1.28620 −0.643100 0.765782i \(-0.722352\pi\)
−0.643100 + 0.765782i \(0.722352\pi\)
\(492\) 0 0
\(493\) −6.90723e8 −0.259621
\(494\) 0 0
\(495\) −6.33662e8 −0.234822
\(496\) 0 0
\(497\) −4.95753e8 −0.181142
\(498\) 0 0
\(499\) 3.74951e9 1.35090 0.675449 0.737406i \(-0.263950\pi\)
0.675449 + 0.737406i \(0.263950\pi\)
\(500\) 0 0
\(501\) −1.74496e9 −0.619945
\(502\) 0 0
\(503\) 3.09301e9 1.08366 0.541830 0.840488i \(-0.317732\pi\)
0.541830 + 0.840488i \(0.317732\pi\)
\(504\) 0 0
\(505\) −4.61461e8 −0.159447
\(506\) 0 0
\(507\) −1.01733e9 −0.346683
\(508\) 0 0
\(509\) −1.36862e9 −0.460015 −0.230007 0.973189i \(-0.573875\pi\)
−0.230007 + 0.973189i \(0.573875\pi\)
\(510\) 0 0
\(511\) 2.29087e9 0.759499
\(512\) 0 0
\(513\) 3.50894e9 1.14753
\(514\) 0 0
\(515\) −1.08525e9 −0.350111
\(516\) 0 0
\(517\) −5.46020e8 −0.173777
\(518\) 0 0
\(519\) 7.67371e9 2.40946
\(520\) 0 0
\(521\) −4.47414e9 −1.38604 −0.693022 0.720916i \(-0.743721\pi\)
−0.693022 + 0.720916i \(0.743721\pi\)
\(522\) 0 0
\(523\) −3.01993e9 −0.923085 −0.461542 0.887118i \(-0.652704\pi\)
−0.461542 + 0.887118i \(0.652704\pi\)
\(524\) 0 0
\(525\) 6.70579e8 0.202252
\(526\) 0 0
\(527\) 5.95370e8 0.177194
\(528\) 0 0
\(529\) 1.89619e7 0.00556913
\(530\) 0 0
\(531\) 5.93244e9 1.71950
\(532\) 0 0
\(533\) −4.43565e9 −1.26885
\(534\) 0 0
\(535\) 1.90148e9 0.536850
\(536\) 0 0
\(537\) 6.75239e9 1.88169
\(538\) 0 0
\(539\) 6.48737e8 0.178446
\(540\) 0 0
\(541\) −3.23946e9 −0.879593 −0.439796 0.898097i \(-0.644949\pi\)
−0.439796 + 0.898097i \(0.644949\pi\)
\(542\) 0 0
\(543\) 7.69713e9 2.06314
\(544\) 0 0
\(545\) 2.01054e8 0.0532017
\(546\) 0 0
\(547\) 4.25742e9 1.11222 0.556111 0.831108i \(-0.312293\pi\)
0.556111 + 0.831108i \(0.312293\pi\)
\(548\) 0 0
\(549\) 1.11107e9 0.286575
\(550\) 0 0
\(551\) 4.57364e9 1.16475
\(552\) 0 0
\(553\) −3.38284e9 −0.850635
\(554\) 0 0
\(555\) 2.83213e9 0.703214
\(556\) 0 0
\(557\) 5.65828e9 1.38737 0.693684 0.720280i \(-0.255987\pi\)
0.693684 + 0.720280i \(0.255987\pi\)
\(558\) 0 0
\(559\) 1.16584e9 0.282290
\(560\) 0 0
\(561\) 3.24422e8 0.0775783
\(562\) 0 0
\(563\) 4.37511e9 1.03326 0.516630 0.856209i \(-0.327186\pi\)
0.516630 + 0.856209i \(0.327186\pi\)
\(564\) 0 0
\(565\) −3.28458e9 −0.766143
\(566\) 0 0
\(567\) 1.88235e9 0.433670
\(568\) 0 0
\(569\) 1.67226e9 0.380550 0.190275 0.981731i \(-0.439062\pi\)
0.190275 + 0.981731i \(0.439062\pi\)
\(570\) 0 0
\(571\) 6.39802e8 0.143820 0.0719100 0.997411i \(-0.477091\pi\)
0.0719100 + 0.997411i \(0.477091\pi\)
\(572\) 0 0
\(573\) 1.16797e10 2.59352
\(574\) 0 0
\(575\) 9.14268e8 0.200556
\(576\) 0 0
\(577\) 4.87101e9 1.05561 0.527805 0.849366i \(-0.323015\pi\)
0.527805 + 0.849366i \(0.323015\pi\)
\(578\) 0 0
\(579\) −6.80422e9 −1.45681
\(580\) 0 0
\(581\) −4.93615e9 −1.04417
\(582\) 0 0
\(583\) −8.87268e8 −0.185445
\(584\) 0 0
\(585\) −3.68709e9 −0.761444
\(586\) 0 0
\(587\) −2.32406e9 −0.474258 −0.237129 0.971478i \(-0.576206\pi\)
−0.237129 + 0.971478i \(0.576206\pi\)
\(588\) 0 0
\(589\) −3.94226e9 −0.794953
\(590\) 0 0
\(591\) −1.15469e10 −2.30096
\(592\) 0 0
\(593\) 4.27080e9 0.841043 0.420522 0.907283i \(-0.361847\pi\)
0.420522 + 0.907283i \(0.361847\pi\)
\(594\) 0 0
\(595\) −2.25244e8 −0.0438373
\(596\) 0 0
\(597\) −1.01169e9 −0.194598
\(598\) 0 0
\(599\) −3.50335e9 −0.666023 −0.333012 0.942923i \(-0.608065\pi\)
−0.333012 + 0.942923i \(0.608065\pi\)
\(600\) 0 0
\(601\) 2.98866e9 0.561585 0.280792 0.959769i \(-0.409403\pi\)
0.280792 + 0.959769i \(0.409403\pi\)
\(602\) 0 0
\(603\) 1.23081e10 2.28603
\(604\) 0 0
\(605\) −2.25133e9 −0.413329
\(606\) 0 0
\(607\) 7.31901e9 1.32829 0.664143 0.747605i \(-0.268797\pi\)
0.664143 + 0.747605i \(0.268797\pi\)
\(608\) 0 0
\(609\) 8.85386e9 1.58844
\(610\) 0 0
\(611\) −3.17713e9 −0.563496
\(612\) 0 0
\(613\) 8.32799e9 1.46026 0.730128 0.683311i \(-0.239461\pi\)
0.730128 + 0.683311i \(0.239461\pi\)
\(614\) 0 0
\(615\) 6.25333e9 1.08405
\(616\) 0 0
\(617\) −2.88456e9 −0.494403 −0.247201 0.968964i \(-0.579511\pi\)
−0.247201 + 0.968964i \(0.579511\pi\)
\(618\) 0 0
\(619\) −2.27213e9 −0.385049 −0.192525 0.981292i \(-0.561668\pi\)
−0.192525 + 0.981292i \(0.561668\pi\)
\(620\) 0 0
\(621\) 9.26125e9 1.55185
\(622\) 0 0
\(623\) 1.30589e8 0.0216371
\(624\) 0 0
\(625\) 2.44141e8 0.0400000
\(626\) 0 0
\(627\) −2.14817e9 −0.348042
\(628\) 0 0
\(629\) −9.51296e8 −0.152419
\(630\) 0 0
\(631\) 2.90856e7 0.00460867 0.00230434 0.999997i \(-0.499267\pi\)
0.00230434 + 0.999997i \(0.499267\pi\)
\(632\) 0 0
\(633\) −7.55424e9 −1.18380
\(634\) 0 0
\(635\) 2.39830e9 0.371702
\(636\) 0 0
\(637\) 3.77481e9 0.578638
\(638\) 0 0
\(639\) −3.84285e9 −0.582640
\(640\) 0 0
\(641\) −3.12634e9 −0.468849 −0.234424 0.972134i \(-0.575320\pi\)
−0.234424 + 0.972134i \(0.575320\pi\)
\(642\) 0 0
\(643\) 2.48120e9 0.368064 0.184032 0.982920i \(-0.441085\pi\)
0.184032 + 0.982920i \(0.441085\pi\)
\(644\) 0 0
\(645\) −1.64358e9 −0.241175
\(646\) 0 0
\(647\) −3.10080e9 −0.450100 −0.225050 0.974347i \(-0.572254\pi\)
−0.225050 + 0.974347i \(0.572254\pi\)
\(648\) 0 0
\(649\) −1.72792e9 −0.248123
\(650\) 0 0
\(651\) −7.63159e9 −1.08413
\(652\) 0 0
\(653\) −9.64911e8 −0.135610 −0.0678049 0.997699i \(-0.521600\pi\)
−0.0678049 + 0.997699i \(0.521600\pi\)
\(654\) 0 0
\(655\) 3.83773e9 0.533617
\(656\) 0 0
\(657\) 1.77577e10 2.44292
\(658\) 0 0
\(659\) −7.70039e9 −1.04813 −0.524063 0.851679i \(-0.675584\pi\)
−0.524063 + 0.851679i \(0.675584\pi\)
\(660\) 0 0
\(661\) −1.30650e10 −1.75956 −0.879779 0.475382i \(-0.842310\pi\)
−0.879779 + 0.475382i \(0.842310\pi\)
\(662\) 0 0
\(663\) 1.88772e9 0.251559
\(664\) 0 0
\(665\) 1.49146e9 0.196669
\(666\) 0 0
\(667\) 1.20713e10 1.57513
\(668\) 0 0
\(669\) 1.82255e10 2.35335
\(670\) 0 0
\(671\) −3.23617e8 −0.0413526
\(672\) 0 0
\(673\) 1.31771e10 1.66636 0.833179 0.553003i \(-0.186518\pi\)
0.833179 + 0.553003i \(0.186518\pi\)
\(674\) 0 0
\(675\) 2.47307e9 0.309509
\(676\) 0 0
\(677\) 3.18151e9 0.394069 0.197035 0.980397i \(-0.436869\pi\)
0.197035 + 0.980397i \(0.436869\pi\)
\(678\) 0 0
\(679\) −1.39500e9 −0.171013
\(680\) 0 0
\(681\) −2.39695e10 −2.90834
\(682\) 0 0
\(683\) −3.33139e8 −0.0400086 −0.0200043 0.999800i \(-0.506368\pi\)
−0.0200043 + 0.999800i \(0.506368\pi\)
\(684\) 0 0
\(685\) −3.96059e9 −0.470807
\(686\) 0 0
\(687\) 8.40028e9 0.988428
\(688\) 0 0
\(689\) −5.16275e9 −0.601331
\(690\) 0 0
\(691\) −4.45248e9 −0.513368 −0.256684 0.966495i \(-0.582630\pi\)
−0.256684 + 0.966495i \(0.582630\pi\)
\(692\) 0 0
\(693\) −2.72828e9 −0.311402
\(694\) 0 0
\(695\) 2.59476e9 0.293191
\(696\) 0 0
\(697\) −2.10046e9 −0.234963
\(698\) 0 0
\(699\) 2.60914e10 2.88953
\(700\) 0 0
\(701\) 1.91380e9 0.209838 0.104919 0.994481i \(-0.466542\pi\)
0.104919 + 0.994481i \(0.466542\pi\)
\(702\) 0 0
\(703\) 6.29902e9 0.683801
\(704\) 0 0
\(705\) 4.47908e9 0.481423
\(706\) 0 0
\(707\) −1.98686e9 −0.211445
\(708\) 0 0
\(709\) −1.38704e9 −0.146160 −0.0730799 0.997326i \(-0.523283\pi\)
−0.0730799 + 0.997326i \(0.523283\pi\)
\(710\) 0 0
\(711\) −2.62222e10 −2.73606
\(712\) 0 0
\(713\) −1.04049e10 −1.07504
\(714\) 0 0
\(715\) 1.07393e9 0.109876
\(716\) 0 0
\(717\) 4.56835e9 0.462852
\(718\) 0 0
\(719\) −9.42958e9 −0.946109 −0.473055 0.881033i \(-0.656849\pi\)
−0.473055 + 0.881033i \(0.656849\pi\)
\(720\) 0 0
\(721\) −4.67264e9 −0.464290
\(722\) 0 0
\(723\) 2.26697e10 2.23081
\(724\) 0 0
\(725\) 3.22346e9 0.314152
\(726\) 0 0
\(727\) 2.99387e9 0.288976 0.144488 0.989507i \(-0.453846\pi\)
0.144488 + 0.989507i \(0.453846\pi\)
\(728\) 0 0
\(729\) −1.30118e10 −1.24391
\(730\) 0 0
\(731\) 5.52070e8 0.0522737
\(732\) 0 0
\(733\) −1.11711e10 −1.04768 −0.523842 0.851815i \(-0.675502\pi\)
−0.523842 + 0.851815i \(0.675502\pi\)
\(734\) 0 0
\(735\) −5.32168e9 −0.494360
\(736\) 0 0
\(737\) −3.58495e9 −0.329873
\(738\) 0 0
\(739\) −6.96449e9 −0.634796 −0.317398 0.948292i \(-0.602809\pi\)
−0.317398 + 0.948292i \(0.602809\pi\)
\(740\) 0 0
\(741\) −1.24995e10 −1.12858
\(742\) 0 0
\(743\) −1.27161e9 −0.113734 −0.0568672 0.998382i \(-0.518111\pi\)
−0.0568672 + 0.998382i \(0.518111\pi\)
\(744\) 0 0
\(745\) −3.68259e9 −0.326292
\(746\) 0 0
\(747\) −3.82627e10 −3.35856
\(748\) 0 0
\(749\) 8.18695e9 0.711927
\(750\) 0 0
\(751\) 1.70771e10 1.47121 0.735603 0.677413i \(-0.236899\pi\)
0.735603 + 0.677413i \(0.236899\pi\)
\(752\) 0 0
\(753\) −2.14649e9 −0.183209
\(754\) 0 0
\(755\) −5.75002e9 −0.486245
\(756\) 0 0
\(757\) −1.37933e10 −1.15567 −0.577833 0.816155i \(-0.696101\pi\)
−0.577833 + 0.816155i \(0.696101\pi\)
\(758\) 0 0
\(759\) −5.66972e9 −0.470669
\(760\) 0 0
\(761\) 1.71364e10 1.40953 0.704765 0.709441i \(-0.251053\pi\)
0.704765 + 0.709441i \(0.251053\pi\)
\(762\) 0 0
\(763\) 8.65654e8 0.0705518
\(764\) 0 0
\(765\) −1.74598e9 −0.141002
\(766\) 0 0
\(767\) −1.00543e10 −0.804575
\(768\) 0 0
\(769\) −4.41529e9 −0.350120 −0.175060 0.984558i \(-0.556012\pi\)
−0.175060 + 0.984558i \(0.556012\pi\)
\(770\) 0 0
\(771\) −2.62152e10 −2.05998
\(772\) 0 0
\(773\) 5.87300e8 0.0457332 0.0228666 0.999739i \(-0.492721\pi\)
0.0228666 + 0.999739i \(0.492721\pi\)
\(774\) 0 0
\(775\) −2.77847e9 −0.214412
\(776\) 0 0
\(777\) 1.21939e10 0.932546
\(778\) 0 0
\(779\) 1.39082e10 1.05412
\(780\) 0 0
\(781\) 1.11929e9 0.0840746
\(782\) 0 0
\(783\) 3.26527e10 2.43082
\(784\) 0 0
\(785\) −2.41248e9 −0.178000
\(786\) 0 0
\(787\) −2.30069e10 −1.68247 −0.841235 0.540670i \(-0.818171\pi\)
−0.841235 + 0.540670i \(0.818171\pi\)
\(788\) 0 0
\(789\) −1.47994e10 −1.07269
\(790\) 0 0
\(791\) −1.41420e10 −1.01600
\(792\) 0 0
\(793\) −1.88303e9 −0.134092
\(794\) 0 0
\(795\) 7.27838e9 0.513748
\(796\) 0 0
\(797\) −2.49526e10 −1.74587 −0.872935 0.487836i \(-0.837787\pi\)
−0.872935 + 0.487836i \(0.837787\pi\)
\(798\) 0 0
\(799\) −1.50450e9 −0.104346
\(800\) 0 0
\(801\) 1.01227e9 0.0695956
\(802\) 0 0
\(803\) −5.17223e9 −0.352512
\(804\) 0 0
\(805\) 3.93645e9 0.265962
\(806\) 0 0
\(807\) −2.16003e10 −1.44678
\(808\) 0 0
\(809\) −1.29758e10 −0.861616 −0.430808 0.902443i \(-0.641771\pi\)
−0.430808 + 0.902443i \(0.641771\pi\)
\(810\) 0 0
\(811\) −2.04887e10 −1.34878 −0.674391 0.738374i \(-0.735594\pi\)
−0.674391 + 0.738374i \(0.735594\pi\)
\(812\) 0 0
\(813\) −1.84000e10 −1.20088
\(814\) 0 0
\(815\) 2.94531e9 0.190581
\(816\) 0 0
\(817\) −3.65554e9 −0.234517
\(818\) 0 0
\(819\) −1.58750e10 −1.00977
\(820\) 0 0
\(821\) 7.97556e9 0.502991 0.251495 0.967858i \(-0.419078\pi\)
0.251495 + 0.967858i \(0.419078\pi\)
\(822\) 0 0
\(823\) −5.64462e9 −0.352968 −0.176484 0.984304i \(-0.556472\pi\)
−0.176484 + 0.984304i \(0.556472\pi\)
\(824\) 0 0
\(825\) −1.51401e9 −0.0938727
\(826\) 0 0
\(827\) 1.22946e10 0.755866 0.377933 0.925833i \(-0.376635\pi\)
0.377933 + 0.925833i \(0.376635\pi\)
\(828\) 0 0
\(829\) 1.72844e10 1.05369 0.526845 0.849962i \(-0.323375\pi\)
0.526845 + 0.849962i \(0.323375\pi\)
\(830\) 0 0
\(831\) −1.13281e10 −0.684784
\(832\) 0 0
\(833\) 1.78752e9 0.107150
\(834\) 0 0
\(835\) −2.73530e9 −0.162593
\(836\) 0 0
\(837\) −2.81450e10 −1.65906
\(838\) 0 0
\(839\) 4.87580e9 0.285023 0.142511 0.989793i \(-0.454482\pi\)
0.142511 + 0.989793i \(0.454482\pi\)
\(840\) 0 0
\(841\) 2.53104e10 1.46728
\(842\) 0 0
\(843\) −9.19927e9 −0.528879
\(844\) 0 0
\(845\) −1.59471e9 −0.0909249
\(846\) 0 0
\(847\) −9.69328e9 −0.548124
\(848\) 0 0
\(849\) 1.73903e10 0.975279
\(850\) 0 0
\(851\) 1.66252e10 0.924727
\(852\) 0 0
\(853\) 1.67542e10 0.924277 0.462138 0.886808i \(-0.347082\pi\)
0.462138 + 0.886808i \(0.347082\pi\)
\(854\) 0 0
\(855\) 1.15611e10 0.632582
\(856\) 0 0
\(857\) −1.45198e10 −0.788001 −0.394001 0.919110i \(-0.628909\pi\)
−0.394001 + 0.919110i \(0.628909\pi\)
\(858\) 0 0
\(859\) 2.44108e10 1.31403 0.657016 0.753877i \(-0.271819\pi\)
0.657016 + 0.753877i \(0.271819\pi\)
\(860\) 0 0
\(861\) 2.69242e10 1.43758
\(862\) 0 0
\(863\) 2.03914e10 1.07996 0.539981 0.841677i \(-0.318431\pi\)
0.539981 + 0.841677i \(0.318431\pi\)
\(864\) 0 0
\(865\) 1.20289e10 0.631931
\(866\) 0 0
\(867\) −3.18275e10 −1.65858
\(868\) 0 0
\(869\) 7.63764e9 0.394812
\(870\) 0 0
\(871\) −2.08597e10 −1.06966
\(872\) 0 0
\(873\) −1.08134e10 −0.550061
\(874\) 0 0
\(875\) 1.05117e9 0.0530448
\(876\) 0 0
\(877\) 3.75418e10 1.87939 0.939693 0.342018i \(-0.111110\pi\)
0.939693 + 0.342018i \(0.111110\pi\)
\(878\) 0 0
\(879\) −3.28845e10 −1.63316
\(880\) 0 0
\(881\) 1.05852e10 0.521533 0.260767 0.965402i \(-0.416025\pi\)
0.260767 + 0.965402i \(0.416025\pi\)
\(882\) 0 0
\(883\) 3.45129e10 1.68702 0.843509 0.537116i \(-0.180486\pi\)
0.843509 + 0.537116i \(0.180486\pi\)
\(884\) 0 0
\(885\) 1.41744e10 0.687390
\(886\) 0 0
\(887\) −1.68685e10 −0.811602 −0.405801 0.913961i \(-0.633007\pi\)
−0.405801 + 0.913961i \(0.633007\pi\)
\(888\) 0 0
\(889\) 1.03261e10 0.492922
\(890\) 0 0
\(891\) −4.24990e9 −0.201283
\(892\) 0 0
\(893\) 9.96206e9 0.468133
\(894\) 0 0
\(895\) 1.05847e10 0.493512
\(896\) 0 0
\(897\) −3.29904e10 −1.52621
\(898\) 0 0
\(899\) −3.66849e10 −1.68395
\(900\) 0 0
\(901\) −2.44477e9 −0.111353
\(902\) 0 0
\(903\) −7.07656e9 −0.319827
\(904\) 0 0
\(905\) 1.20656e10 0.541102
\(906\) 0 0
\(907\) −1.14713e10 −0.510492 −0.255246 0.966876i \(-0.582156\pi\)
−0.255246 + 0.966876i \(0.582156\pi\)
\(908\) 0 0
\(909\) −1.54012e10 −0.680112
\(910\) 0 0
\(911\) −1.62306e10 −0.711248 −0.355624 0.934629i \(-0.615732\pi\)
−0.355624 + 0.934629i \(0.615732\pi\)
\(912\) 0 0
\(913\) 1.11446e10 0.484639
\(914\) 0 0
\(915\) 2.65468e9 0.114561
\(916\) 0 0
\(917\) 1.65236e10 0.707641
\(918\) 0 0
\(919\) 4.36259e10 1.85413 0.927065 0.374900i \(-0.122323\pi\)
0.927065 + 0.374900i \(0.122323\pi\)
\(920\) 0 0
\(921\) 1.25979e10 0.531363
\(922\) 0 0
\(923\) 6.51283e9 0.272624
\(924\) 0 0
\(925\) 4.43950e9 0.184433
\(926\) 0 0
\(927\) −3.62201e10 −1.49338
\(928\) 0 0
\(929\) 1.67801e10 0.686656 0.343328 0.939216i \(-0.388446\pi\)
0.343328 + 0.939216i \(0.388446\pi\)
\(930\) 0 0
\(931\) −1.18361e10 −0.480713
\(932\) 0 0
\(933\) 1.34900e10 0.543782
\(934\) 0 0
\(935\) 5.08547e8 0.0203465
\(936\) 0 0
\(937\) 1.94934e10 0.774105 0.387053 0.922058i \(-0.373493\pi\)
0.387053 + 0.922058i \(0.373493\pi\)
\(938\) 0 0
\(939\) −4.16348e10 −1.64107
\(940\) 0 0
\(941\) 4.91523e10 1.92300 0.961502 0.274797i \(-0.0886108\pi\)
0.961502 + 0.274797i \(0.0886108\pi\)
\(942\) 0 0
\(943\) 3.67084e10 1.42552
\(944\) 0 0
\(945\) 1.06480e10 0.410446
\(946\) 0 0
\(947\) 3.01570e10 1.15389 0.576944 0.816784i \(-0.304245\pi\)
0.576944 + 0.816784i \(0.304245\pi\)
\(948\) 0 0
\(949\) −3.00957e10 −1.14307
\(950\) 0 0
\(951\) −3.77405e10 −1.42290
\(952\) 0 0
\(953\) −1.86916e10 −0.699554 −0.349777 0.936833i \(-0.613743\pi\)
−0.349777 + 0.936833i \(0.613743\pi\)
\(954\) 0 0
\(955\) 1.83084e10 0.680204
\(956\) 0 0
\(957\) −1.99899e10 −0.737256
\(958\) 0 0
\(959\) −1.70526e10 −0.624346
\(960\) 0 0
\(961\) 4.10799e9 0.149313
\(962\) 0 0
\(963\) 6.34614e10 2.28990
\(964\) 0 0
\(965\) −1.06659e10 −0.382079
\(966\) 0 0
\(967\) 7.61328e9 0.270757 0.135378 0.990794i \(-0.456775\pi\)
0.135378 + 0.990794i \(0.456775\pi\)
\(968\) 0 0
\(969\) −5.91903e9 −0.208986
\(970\) 0 0
\(971\) −4.83242e10 −1.69394 −0.846969 0.531643i \(-0.821575\pi\)
−0.846969 + 0.531643i \(0.821575\pi\)
\(972\) 0 0
\(973\) 1.11720e10 0.388807
\(974\) 0 0
\(975\) −8.80957e9 −0.304396
\(976\) 0 0
\(977\) 1.42491e9 0.0488829 0.0244414 0.999701i \(-0.492219\pi\)
0.0244414 + 0.999701i \(0.492219\pi\)
\(978\) 0 0
\(979\) −2.94840e8 −0.0100426
\(980\) 0 0
\(981\) 6.71014e9 0.226929
\(982\) 0 0
\(983\) −4.85675e10 −1.63083 −0.815415 0.578877i \(-0.803491\pi\)
−0.815415 + 0.578877i \(0.803491\pi\)
\(984\) 0 0
\(985\) −1.81003e10 −0.603475
\(986\) 0 0
\(987\) 1.92850e10 0.638425
\(988\) 0 0
\(989\) −9.64818e9 −0.317145
\(990\) 0 0
\(991\) 1.69341e10 0.552719 0.276360 0.961054i \(-0.410872\pi\)
0.276360 + 0.961054i \(0.410872\pi\)
\(992\) 0 0
\(993\) −6.98457e9 −0.226369
\(994\) 0 0
\(995\) −1.58588e9 −0.0510375
\(996\) 0 0
\(997\) −2.36849e10 −0.756900 −0.378450 0.925622i \(-0.623543\pi\)
−0.378450 + 0.925622i \(0.623543\pi\)
\(998\) 0 0
\(999\) 4.49707e10 1.42709
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 320.8.a.u.1.2 2
4.3 odd 2 320.8.a.l.1.1 2
8.3 odd 2 5.8.a.b.1.1 2
8.5 even 2 80.8.a.g.1.1 2
24.11 even 2 45.8.a.h.1.2 2
40.3 even 4 25.8.b.c.24.2 4
40.13 odd 4 400.8.c.m.49.1 4
40.19 odd 2 25.8.a.b.1.2 2
40.27 even 4 25.8.b.c.24.3 4
40.29 even 2 400.8.a.bb.1.2 2
40.37 odd 4 400.8.c.m.49.4 4
56.27 even 2 245.8.a.c.1.1 2
88.43 even 2 605.8.a.d.1.2 2
120.59 even 2 225.8.a.w.1.1 2
120.83 odd 4 225.8.b.m.199.3 4
120.107 odd 4 225.8.b.m.199.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
5.8.a.b.1.1 2 8.3 odd 2
25.8.a.b.1.2 2 40.19 odd 2
25.8.b.c.24.2 4 40.3 even 4
25.8.b.c.24.3 4 40.27 even 4
45.8.a.h.1.2 2 24.11 even 2
80.8.a.g.1.1 2 8.5 even 2
225.8.a.w.1.1 2 120.59 even 2
225.8.b.m.199.2 4 120.107 odd 4
225.8.b.m.199.3 4 120.83 odd 4
245.8.a.c.1.1 2 56.27 even 2
320.8.a.l.1.1 2 4.3 odd 2
320.8.a.u.1.2 2 1.1 even 1 trivial
400.8.a.bb.1.2 2 40.29 even 2
400.8.c.m.49.1 4 40.13 odd 4
400.8.c.m.49.4 4 40.37 odd 4
605.8.a.d.1.2 2 88.43 even 2