Properties

Label 45.8.a.h.1.2
Level $45$
Weight $8$
Character 45.1
Self dual yes
Analytic conductor $14.057$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [45,8,Mod(1,45)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(45, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 8, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("45.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Level: \( N \) \(=\) \( 45 = 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 45.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(14.0573261468\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{19}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 19 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 5)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(4.35890\) of defining polynomial
Character \(\chi\) \(=\) 45.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.28220 q^{2} -126.356 q^{4} +125.000 q^{5} -538.197 q^{7} +326.136 q^{8} -160.275 q^{10} +1215.12 q^{11} +7070.42 q^{13} +690.077 q^{14} +15755.4 q^{16} +3348.13 q^{17} +22169.7 q^{19} -15794.5 q^{20} -1558.03 q^{22} +58513.1 q^{23} +15625.0 q^{25} -9065.71 q^{26} +68004.4 q^{28} +206301. q^{29} +177822. q^{31} -61947.0 q^{32} -4292.98 q^{34} -67274.6 q^{35} -284128. q^{37} -28426.0 q^{38} +40767.0 q^{40} -627353. q^{41} -164889. q^{43} -153538. q^{44} -75025.7 q^{46} +449355. q^{47} -533887. q^{49} -20034.4 q^{50} -893390. q^{52} +730190. q^{53} +151890. q^{55} -175525. q^{56} -264520. q^{58} -1.42202e6 q^{59} -266326. q^{61} -228004. q^{62} -1.93726e6 q^{64} +883803. q^{65} +2.95028e6 q^{67} -423056. q^{68} +86259.6 q^{70} -921138. q^{71} +4.25657e6 q^{73} +364309. q^{74} -2.80127e6 q^{76} -653973. q^{77} +6.28551e6 q^{79} +1.96942e6 q^{80} +804393. q^{82} +9.17165e6 q^{83} +418516. q^{85} +211421. q^{86} +396294. q^{88} -242643. q^{89} -3.80528e6 q^{91} -7.39348e6 q^{92} -576164. q^{94} +2.77121e6 q^{95} -2.59198e6 q^{97} +684551. q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 20 q^{2} + 96 q^{4} + 250 q^{5} - 100 q^{7} - 1440 q^{8} - 2500 q^{10} - 4544 q^{11} + 3540 q^{13} - 7512 q^{14} + 20352 q^{16} + 27340 q^{17} + 38760 q^{19} + 12000 q^{20} + 106240 q^{22} + 124140 q^{23}+ \cdots + 12505340 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.28220 −0.113332 −0.0566659 0.998393i \(-0.518047\pi\)
−0.0566659 + 0.998393i \(0.518047\pi\)
\(3\) 0 0
\(4\) −126.356 −0.987156
\(5\) 125.000 0.447214
\(6\) 0 0
\(7\) −538.197 −0.593059 −0.296529 0.955024i \(-0.595829\pi\)
−0.296529 + 0.955024i \(0.595829\pi\)
\(8\) 326.136 0.225208
\(9\) 0 0
\(10\) −160.275 −0.0506835
\(11\) 1215.12 0.275261 0.137630 0.990484i \(-0.456051\pi\)
0.137630 + 0.990484i \(0.456051\pi\)
\(12\) 0 0
\(13\) 7070.42 0.892573 0.446286 0.894890i \(-0.352746\pi\)
0.446286 + 0.894890i \(0.352746\pi\)
\(14\) 690.077 0.0672124
\(15\) 0 0
\(16\) 15755.4 0.961633
\(17\) 3348.13 0.165284 0.0826420 0.996579i \(-0.473664\pi\)
0.0826420 + 0.996579i \(0.473664\pi\)
\(18\) 0 0
\(19\) 22169.7 0.741519 0.370759 0.928729i \(-0.379097\pi\)
0.370759 + 0.928729i \(0.379097\pi\)
\(20\) −15794.5 −0.441470
\(21\) 0 0
\(22\) −1558.03 −0.0311958
\(23\) 58513.1 1.00278 0.501390 0.865221i \(-0.332822\pi\)
0.501390 + 0.865221i \(0.332822\pi\)
\(24\) 0 0
\(25\) 15625.0 0.200000
\(26\) −9065.71 −0.101157
\(27\) 0 0
\(28\) 68004.4 0.585442
\(29\) 206301. 1.57076 0.785379 0.619015i \(-0.212468\pi\)
0.785379 + 0.619015i \(0.212468\pi\)
\(30\) 0 0
\(31\) 177822. 1.07206 0.536030 0.844199i \(-0.319923\pi\)
0.536030 + 0.844199i \(0.319923\pi\)
\(32\) −61947.0 −0.334191
\(33\) 0 0
\(34\) −4292.98 −0.0187319
\(35\) −67274.6 −0.265224
\(36\) 0 0
\(37\) −284128. −0.922163 −0.461081 0.887358i \(-0.652538\pi\)
−0.461081 + 0.887358i \(0.652538\pi\)
\(38\) −28426.0 −0.0840376
\(39\) 0 0
\(40\) 40767.0 0.100716
\(41\) −627353. −1.42157 −0.710785 0.703409i \(-0.751660\pi\)
−0.710785 + 0.703409i \(0.751660\pi\)
\(42\) 0 0
\(43\) −164889. −0.316266 −0.158133 0.987418i \(-0.550547\pi\)
−0.158133 + 0.987418i \(0.550547\pi\)
\(44\) −153538. −0.271725
\(45\) 0 0
\(46\) −75025.7 −0.113647
\(47\) 449355. 0.631316 0.315658 0.948873i \(-0.397775\pi\)
0.315658 + 0.948873i \(0.397775\pi\)
\(48\) 0 0
\(49\) −533887. −0.648281
\(50\) −20034.4 −0.0226663
\(51\) 0 0
\(52\) −893390. −0.881108
\(53\) 730190. 0.673706 0.336853 0.941557i \(-0.390638\pi\)
0.336853 + 0.941557i \(0.390638\pi\)
\(54\) 0 0
\(55\) 151890. 0.123100
\(56\) −175525. −0.133562
\(57\) 0 0
\(58\) −264520. −0.178017
\(59\) −1.42202e6 −0.901412 −0.450706 0.892673i \(-0.648828\pi\)
−0.450706 + 0.892673i \(0.648828\pi\)
\(60\) 0 0
\(61\) −266326. −0.150231 −0.0751153 0.997175i \(-0.523932\pi\)
−0.0751153 + 0.997175i \(0.523932\pi\)
\(62\) −228004. −0.121498
\(63\) 0 0
\(64\) −1.93726e6 −0.923758
\(65\) 883803. 0.399171
\(66\) 0 0
\(67\) 2.95028e6 1.19840 0.599200 0.800599i \(-0.295485\pi\)
0.599200 + 0.800599i \(0.295485\pi\)
\(68\) −423056. −0.163161
\(69\) 0 0
\(70\) 86259.6 0.0300583
\(71\) −921138. −0.305436 −0.152718 0.988270i \(-0.548803\pi\)
−0.152718 + 0.988270i \(0.548803\pi\)
\(72\) 0 0
\(73\) 4.25657e6 1.28065 0.640323 0.768105i \(-0.278800\pi\)
0.640323 + 0.768105i \(0.278800\pi\)
\(74\) 364309. 0.104510
\(75\) 0 0
\(76\) −2.80127e6 −0.731995
\(77\) −653973. −0.163246
\(78\) 0 0
\(79\) 6.28551e6 1.43432 0.717159 0.696910i \(-0.245442\pi\)
0.717159 + 0.696910i \(0.245442\pi\)
\(80\) 1.96942e6 0.430055
\(81\) 0 0
\(82\) 804393. 0.161109
\(83\) 9.17165e6 1.76065 0.880327 0.474367i \(-0.157323\pi\)
0.880327 + 0.474367i \(0.157323\pi\)
\(84\) 0 0
\(85\) 418516. 0.0739172
\(86\) 211421. 0.0358430
\(87\) 0 0
\(88\) 396294. 0.0619909
\(89\) −242643. −0.0364840 −0.0182420 0.999834i \(-0.505807\pi\)
−0.0182420 + 0.999834i \(0.505807\pi\)
\(90\) 0 0
\(91\) −3.80528e6 −0.529348
\(92\) −7.39348e6 −0.989901
\(93\) 0 0
\(94\) −576164. −0.0715482
\(95\) 2.77121e6 0.331617
\(96\) 0 0
\(97\) −2.59198e6 −0.288357 −0.144179 0.989552i \(-0.546054\pi\)
−0.144179 + 0.989552i \(0.546054\pi\)
\(98\) 684551. 0.0734708
\(99\) 0 0
\(100\) −1.97431e6 −0.197431
\(101\) −3.69169e6 −0.356534 −0.178267 0.983982i \(-0.557049\pi\)
−0.178267 + 0.983982i \(0.557049\pi\)
\(102\) 0 0
\(103\) 8.68203e6 0.782873 0.391436 0.920205i \(-0.371978\pi\)
0.391436 + 0.920205i \(0.371978\pi\)
\(104\) 2.30592e6 0.201014
\(105\) 0 0
\(106\) −936251. −0.0763522
\(107\) −1.52118e7 −1.20043 −0.600216 0.799838i \(-0.704919\pi\)
−0.600216 + 0.799838i \(0.704919\pi\)
\(108\) 0 0
\(109\) −1.60843e6 −0.118963 −0.0594813 0.998229i \(-0.518945\pi\)
−0.0594813 + 0.998229i \(0.518945\pi\)
\(110\) −194754. −0.0139512
\(111\) 0 0
\(112\) −8.47950e6 −0.570305
\(113\) 2.62766e7 1.71315 0.856574 0.516024i \(-0.172589\pi\)
0.856574 + 0.516024i \(0.172589\pi\)
\(114\) 0 0
\(115\) 7.31414e6 0.448457
\(116\) −2.60674e7 −1.55058
\(117\) 0 0
\(118\) 1.82332e6 0.102159
\(119\) −1.80195e6 −0.0980231
\(120\) 0 0
\(121\) −1.80107e7 −0.924231
\(122\) 341483. 0.0170259
\(123\) 0 0
\(124\) −2.24688e7 −1.05829
\(125\) 1.95312e6 0.0894427
\(126\) 0 0
\(127\) −1.91864e7 −0.831152 −0.415576 0.909559i \(-0.636420\pi\)
−0.415576 + 0.909559i \(0.636420\pi\)
\(128\) 1.04132e7 0.438882
\(129\) 0 0
\(130\) −1.13321e6 −0.0452387
\(131\) −3.07018e7 −1.19320 −0.596602 0.802537i \(-0.703483\pi\)
−0.596602 + 0.802537i \(0.703483\pi\)
\(132\) 0 0
\(133\) −1.19317e7 −0.439764
\(134\) −3.78286e6 −0.135817
\(135\) 0 0
\(136\) 1.09194e6 0.0372232
\(137\) 3.16847e7 1.05276 0.526378 0.850251i \(-0.323550\pi\)
0.526378 + 0.850251i \(0.323550\pi\)
\(138\) 0 0
\(139\) 2.07581e7 0.655596 0.327798 0.944748i \(-0.393693\pi\)
0.327798 + 0.944748i \(0.393693\pi\)
\(140\) 8.50054e6 0.261817
\(141\) 0 0
\(142\) 1.18108e6 0.0346156
\(143\) 8.59140e6 0.245690
\(144\) 0 0
\(145\) 2.57877e7 0.702464
\(146\) −5.45778e6 −0.145138
\(147\) 0 0
\(148\) 3.59012e7 0.910318
\(149\) −2.94607e7 −0.729611 −0.364806 0.931084i \(-0.618865\pi\)
−0.364806 + 0.931084i \(0.618865\pi\)
\(150\) 0 0
\(151\) 4.60002e7 1.08728 0.543638 0.839320i \(-0.317046\pi\)
0.543638 + 0.839320i \(0.317046\pi\)
\(152\) 7.23033e6 0.166996
\(153\) 0 0
\(154\) 838526. 0.0185009
\(155\) 2.22277e7 0.479440
\(156\) 0 0
\(157\) 1.92998e7 0.398019 0.199010 0.979998i \(-0.436227\pi\)
0.199010 + 0.979998i \(0.436227\pi\)
\(158\) −8.05929e6 −0.162554
\(159\) 0 0
\(160\) −7.74337e6 −0.149455
\(161\) −3.14916e7 −0.594708
\(162\) 0 0
\(163\) 2.35624e7 0.426151 0.213076 0.977036i \(-0.431652\pi\)
0.213076 + 0.977036i \(0.431652\pi\)
\(164\) 7.92698e7 1.40331
\(165\) 0 0
\(166\) −1.17599e7 −0.199538
\(167\) −2.18824e7 −0.363570 −0.181785 0.983338i \(-0.558187\pi\)
−0.181785 + 0.983338i \(0.558187\pi\)
\(168\) 0 0
\(169\) −1.27577e7 −0.203314
\(170\) −536622. −0.00837717
\(171\) 0 0
\(172\) 2.08347e7 0.312204
\(173\) 9.62312e7 1.41304 0.706520 0.707693i \(-0.250264\pi\)
0.706520 + 0.707693i \(0.250264\pi\)
\(174\) 0 0
\(175\) −8.40932e6 −0.118612
\(176\) 1.91447e7 0.264700
\(177\) 0 0
\(178\) 311117. 0.00413479
\(179\) −8.46776e7 −1.10353 −0.551763 0.834001i \(-0.686045\pi\)
−0.551763 + 0.834001i \(0.686045\pi\)
\(180\) 0 0
\(181\) −9.65249e7 −1.20994 −0.604971 0.796248i \(-0.706815\pi\)
−0.604971 + 0.796248i \(0.706815\pi\)
\(182\) 4.87913e6 0.0599919
\(183\) 0 0
\(184\) 1.90832e7 0.225834
\(185\) −3.55160e7 −0.412404
\(186\) 0 0
\(187\) 4.06837e6 0.0454962
\(188\) −5.67787e7 −0.623208
\(189\) 0 0
\(190\) −3.55325e6 −0.0375828
\(191\) 1.46467e8 1.52098 0.760491 0.649348i \(-0.224958\pi\)
0.760491 + 0.649348i \(0.224958\pi\)
\(192\) 0 0
\(193\) −8.53275e7 −0.854355 −0.427177 0.904168i \(-0.640492\pi\)
−0.427177 + 0.904168i \(0.640492\pi\)
\(194\) 3.32345e6 0.0326800
\(195\) 0 0
\(196\) 6.74598e7 0.639954
\(197\) −1.44802e8 −1.34941 −0.674705 0.738087i \(-0.735729\pi\)
−0.674705 + 0.738087i \(0.735729\pi\)
\(198\) 0 0
\(199\) 1.26870e7 0.114123 0.0570617 0.998371i \(-0.481827\pi\)
0.0570617 + 0.998371i \(0.481827\pi\)
\(200\) 5.09587e6 0.0450416
\(201\) 0 0
\(202\) 4.73349e6 0.0404066
\(203\) −1.11031e8 −0.931552
\(204\) 0 0
\(205\) −7.84191e7 −0.635746
\(206\) −1.11321e7 −0.0887243
\(207\) 0 0
\(208\) 1.11397e8 0.858327
\(209\) 2.69388e7 0.204111
\(210\) 0 0
\(211\) −9.47331e7 −0.694246 −0.347123 0.937820i \(-0.612841\pi\)
−0.347123 + 0.937820i \(0.612841\pi\)
\(212\) −9.22638e7 −0.665053
\(213\) 0 0
\(214\) 1.95046e7 0.136047
\(215\) −2.06111e7 −0.141438
\(216\) 0 0
\(217\) −9.57031e7 −0.635795
\(218\) 2.06234e6 0.0134822
\(219\) 0 0
\(220\) −1.91922e7 −0.121519
\(221\) 2.36727e7 0.147528
\(222\) 0 0
\(223\) −2.28554e8 −1.38014 −0.690069 0.723744i \(-0.742420\pi\)
−0.690069 + 0.723744i \(0.742420\pi\)
\(224\) 3.33397e7 0.198195
\(225\) 0 0
\(226\) −3.36919e7 −0.194154
\(227\) 3.00587e8 1.70561 0.852806 0.522229i \(-0.174899\pi\)
0.852806 + 0.522229i \(0.174899\pi\)
\(228\) 0 0
\(229\) −1.05343e8 −0.579669 −0.289835 0.957077i \(-0.593600\pi\)
−0.289835 + 0.957077i \(0.593600\pi\)
\(230\) −9.37821e6 −0.0508244
\(231\) 0 0
\(232\) 6.72823e7 0.353747
\(233\) −3.27196e8 −1.69458 −0.847291 0.531130i \(-0.821768\pi\)
−0.847291 + 0.531130i \(0.821768\pi\)
\(234\) 0 0
\(235\) 5.61694e7 0.282333
\(236\) 1.79681e8 0.889834
\(237\) 0 0
\(238\) 2.31047e6 0.0111091
\(239\) 5.72888e7 0.271442 0.135721 0.990747i \(-0.456665\pi\)
0.135721 + 0.990747i \(0.456665\pi\)
\(240\) 0 0
\(241\) 2.84287e8 1.30827 0.654134 0.756379i \(-0.273033\pi\)
0.654134 + 0.756379i \(0.273033\pi\)
\(242\) 2.30933e7 0.104745
\(243\) 0 0
\(244\) 3.36518e7 0.148301
\(245\) −6.67359e7 −0.289920
\(246\) 0 0
\(247\) 1.56749e8 0.661859
\(248\) 5.79941e7 0.241436
\(249\) 0 0
\(250\) −2.50430e6 −0.0101367
\(251\) 2.69178e7 0.107444 0.0537220 0.998556i \(-0.482892\pi\)
0.0537220 + 0.998556i \(0.482892\pi\)
\(252\) 0 0
\(253\) 7.11004e7 0.276026
\(254\) 2.46008e7 0.0941959
\(255\) 0 0
\(256\) 2.34618e8 0.874019
\(257\) 3.28749e8 1.20809 0.604044 0.796951i \(-0.293555\pi\)
0.604044 + 0.796951i \(0.293555\pi\)
\(258\) 0 0
\(259\) 1.52917e8 0.546897
\(260\) −1.11674e8 −0.394044
\(261\) 0 0
\(262\) 3.93660e7 0.135228
\(263\) −1.85590e8 −0.629084 −0.314542 0.949244i \(-0.601851\pi\)
−0.314542 + 0.949244i \(0.601851\pi\)
\(264\) 0 0
\(265\) 9.12737e7 0.301290
\(266\) 1.52988e7 0.0498393
\(267\) 0 0
\(268\) −3.72786e8 −1.18301
\(269\) −2.70876e8 −0.848471 −0.424236 0.905552i \(-0.639457\pi\)
−0.424236 + 0.905552i \(0.639457\pi\)
\(270\) 0 0
\(271\) 2.30743e8 0.704263 0.352132 0.935950i \(-0.385457\pi\)
0.352132 + 0.935950i \(0.385457\pi\)
\(272\) 5.27511e7 0.158942
\(273\) 0 0
\(274\) −4.06262e7 −0.119311
\(275\) 1.89862e7 0.0550522
\(276\) 0 0
\(277\) 1.42059e8 0.401595 0.200798 0.979633i \(-0.435647\pi\)
0.200798 + 0.979633i \(0.435647\pi\)
\(278\) −2.66161e7 −0.0742998
\(279\) 0 0
\(280\) −2.19406e7 −0.0597305
\(281\) 1.15362e8 0.310164 0.155082 0.987902i \(-0.450436\pi\)
0.155082 + 0.987902i \(0.450436\pi\)
\(282\) 0 0
\(283\) 2.18080e8 0.571958 0.285979 0.958236i \(-0.407681\pi\)
0.285979 + 0.958236i \(0.407681\pi\)
\(284\) 1.16391e8 0.301513
\(285\) 0 0
\(286\) −1.10159e7 −0.0278445
\(287\) 3.37639e8 0.843075
\(288\) 0 0
\(289\) −3.99129e8 −0.972681
\(290\) −3.30650e7 −0.0796115
\(291\) 0 0
\(292\) −5.37842e8 −1.26420
\(293\) −4.12384e8 −0.957778 −0.478889 0.877875i \(-0.658960\pi\)
−0.478889 + 0.877875i \(0.658960\pi\)
\(294\) 0 0
\(295\) −1.77752e8 −0.403124
\(296\) −9.26642e7 −0.207678
\(297\) 0 0
\(298\) 3.77746e7 0.0826881
\(299\) 4.13713e8 0.895055
\(300\) 0 0
\(301\) 8.87428e7 0.187564
\(302\) −5.89815e7 −0.123223
\(303\) 0 0
\(304\) 3.49292e8 0.713069
\(305\) −3.32907e7 −0.0671852
\(306\) 0 0
\(307\) 1.57983e8 0.311621 0.155810 0.987787i \(-0.450201\pi\)
0.155810 + 0.987787i \(0.450201\pi\)
\(308\) 8.26334e7 0.161149
\(309\) 0 0
\(310\) −2.85004e7 −0.0543357
\(311\) 1.69169e8 0.318904 0.159452 0.987206i \(-0.449027\pi\)
0.159452 + 0.987206i \(0.449027\pi\)
\(312\) 0 0
\(313\) −5.22117e8 −0.962415 −0.481208 0.876607i \(-0.659802\pi\)
−0.481208 + 0.876607i \(0.659802\pi\)
\(314\) −2.47463e7 −0.0451082
\(315\) 0 0
\(316\) −7.94211e8 −1.41590
\(317\) −4.73280e8 −0.834470 −0.417235 0.908799i \(-0.637001\pi\)
−0.417235 + 0.908799i \(0.637001\pi\)
\(318\) 0 0
\(319\) 2.50681e8 0.432368
\(320\) −2.42158e8 −0.413117
\(321\) 0 0
\(322\) 4.03786e7 0.0673993
\(323\) 7.42270e7 0.122561
\(324\) 0 0
\(325\) 1.10475e8 0.178515
\(326\) −3.02118e7 −0.0482965
\(327\) 0 0
\(328\) −2.04602e8 −0.320149
\(329\) −2.41841e8 −0.374408
\(330\) 0 0
\(331\) −8.75892e7 −0.132756 −0.0663778 0.997795i \(-0.521144\pi\)
−0.0663778 + 0.997795i \(0.521144\pi\)
\(332\) −1.15889e9 −1.73804
\(333\) 0 0
\(334\) 2.80577e7 0.0412040
\(335\) 3.68785e8 0.535941
\(336\) 0 0
\(337\) −3.04119e8 −0.432851 −0.216426 0.976299i \(-0.569440\pi\)
−0.216426 + 0.976299i \(0.569440\pi\)
\(338\) 1.63579e7 0.0230419
\(339\) 0 0
\(340\) −5.28820e7 −0.0729678
\(341\) 2.16075e8 0.295096
\(342\) 0 0
\(343\) 7.30565e8 0.977528
\(344\) −5.37762e7 −0.0712256
\(345\) 0 0
\(346\) −1.23388e8 −0.160142
\(347\) −3.15347e8 −0.405169 −0.202584 0.979265i \(-0.564934\pi\)
−0.202584 + 0.979265i \(0.564934\pi\)
\(348\) 0 0
\(349\) −5.23418e8 −0.659112 −0.329556 0.944136i \(-0.606899\pi\)
−0.329556 + 0.944136i \(0.606899\pi\)
\(350\) 1.07825e7 0.0134425
\(351\) 0 0
\(352\) −7.52730e7 −0.0919898
\(353\) 4.13964e8 0.500900 0.250450 0.968130i \(-0.419421\pi\)
0.250450 + 0.968130i \(0.419421\pi\)
\(354\) 0 0
\(355\) −1.15142e8 −0.136595
\(356\) 3.06593e7 0.0360154
\(357\) 0 0
\(358\) 1.08574e8 0.125065
\(359\) 2.48768e8 0.283768 0.141884 0.989883i \(-0.454684\pi\)
0.141884 + 0.989883i \(0.454684\pi\)
\(360\) 0 0
\(361\) −4.02376e8 −0.450150
\(362\) 1.23764e8 0.137125
\(363\) 0 0
\(364\) 4.80819e8 0.522549
\(365\) 5.32071e8 0.572723
\(366\) 0 0
\(367\) 1.45884e9 1.54056 0.770278 0.637708i \(-0.220117\pi\)
0.770278 + 0.637708i \(0.220117\pi\)
\(368\) 9.21897e8 0.964307
\(369\) 0 0
\(370\) 4.55386e7 0.0467384
\(371\) −3.92986e8 −0.399547
\(372\) 0 0
\(373\) 6.29125e8 0.627706 0.313853 0.949472i \(-0.398380\pi\)
0.313853 + 0.949472i \(0.398380\pi\)
\(374\) −5.21648e6 −0.00515616
\(375\) 0 0
\(376\) 1.46551e8 0.142177
\(377\) 1.45864e9 1.40202
\(378\) 0 0
\(379\) 8.54658e7 0.0806409 0.0403204 0.999187i \(-0.487162\pi\)
0.0403204 + 0.999187i \(0.487162\pi\)
\(380\) −3.50159e8 −0.327358
\(381\) 0 0
\(382\) −1.87801e8 −0.172376
\(383\) 7.56340e8 0.687893 0.343947 0.938989i \(-0.388236\pi\)
0.343947 + 0.938989i \(0.388236\pi\)
\(384\) 0 0
\(385\) −8.17466e7 −0.0730058
\(386\) 1.09407e8 0.0968255
\(387\) 0 0
\(388\) 3.27512e8 0.284654
\(389\) −1.42837e9 −1.23032 −0.615160 0.788402i \(-0.710908\pi\)
−0.615160 + 0.788402i \(0.710908\pi\)
\(390\) 0 0
\(391\) 1.95909e8 0.165744
\(392\) −1.74120e8 −0.145998
\(393\) 0 0
\(394\) 1.85666e8 0.152931
\(395\) 7.85688e8 0.641446
\(396\) 0 0
\(397\) −1.67152e8 −0.134074 −0.0670372 0.997750i \(-0.521355\pi\)
−0.0670372 + 0.997750i \(0.521355\pi\)
\(398\) −1.62673e7 −0.0129338
\(399\) 0 0
\(400\) 2.46178e8 0.192327
\(401\) −2.32051e9 −1.79712 −0.898561 0.438848i \(-0.855387\pi\)
−0.898561 + 0.438848i \(0.855387\pi\)
\(402\) 0 0
\(403\) 1.25728e9 0.956892
\(404\) 4.66467e8 0.351954
\(405\) 0 0
\(406\) 1.42364e8 0.105574
\(407\) −3.45249e8 −0.253835
\(408\) 0 0
\(409\) −8.24735e8 −0.596050 −0.298025 0.954558i \(-0.596328\pi\)
−0.298025 + 0.954558i \(0.596328\pi\)
\(410\) 1.00549e8 0.0720502
\(411\) 0 0
\(412\) −1.09703e9 −0.772817
\(413\) 7.65326e8 0.534590
\(414\) 0 0
\(415\) 1.14646e9 0.787389
\(416\) −4.37991e8 −0.298290
\(417\) 0 0
\(418\) −3.45410e7 −0.0231323
\(419\) −8.23968e8 −0.547219 −0.273610 0.961841i \(-0.588218\pi\)
−0.273610 + 0.961841i \(0.588218\pi\)
\(420\) 0 0
\(421\) −2.12046e8 −0.138498 −0.0692488 0.997599i \(-0.522060\pi\)
−0.0692488 + 0.997599i \(0.522060\pi\)
\(422\) 1.21467e8 0.0786801
\(423\) 0 0
\(424\) 2.38141e8 0.151724
\(425\) 5.23145e7 0.0330568
\(426\) 0 0
\(427\) 1.43336e8 0.0890956
\(428\) 1.92210e9 1.18501
\(429\) 0 0
\(430\) 2.64276e7 0.0160295
\(431\) −7.44023e8 −0.447627 −0.223813 0.974632i \(-0.571851\pi\)
−0.223813 + 0.974632i \(0.571851\pi\)
\(432\) 0 0
\(433\) −1.93573e9 −1.14588 −0.572938 0.819598i \(-0.694197\pi\)
−0.572938 + 0.819598i \(0.694197\pi\)
\(434\) 1.22711e8 0.0720557
\(435\) 0 0
\(436\) 2.03235e8 0.117435
\(437\) 1.29722e9 0.743581
\(438\) 0 0
\(439\) −1.35485e9 −0.764300 −0.382150 0.924100i \(-0.624816\pi\)
−0.382150 + 0.924100i \(0.624816\pi\)
\(440\) 4.95367e7 0.0277232
\(441\) 0 0
\(442\) −3.03531e7 −0.0167196
\(443\) −1.05985e9 −0.579203 −0.289601 0.957147i \(-0.593523\pi\)
−0.289601 + 0.957147i \(0.593523\pi\)
\(444\) 0 0
\(445\) −3.03303e7 −0.0163161
\(446\) 2.93053e8 0.156413
\(447\) 0 0
\(448\) 1.04263e9 0.547843
\(449\) 1.70272e9 0.887730 0.443865 0.896094i \(-0.353607\pi\)
0.443865 + 0.896094i \(0.353607\pi\)
\(450\) 0 0
\(451\) −7.62309e8 −0.391303
\(452\) −3.32021e9 −1.69114
\(453\) 0 0
\(454\) −3.85414e8 −0.193300
\(455\) −4.75660e8 −0.236732
\(456\) 0 0
\(457\) −3.76431e9 −1.84493 −0.922463 0.386085i \(-0.873827\pi\)
−0.922463 + 0.386085i \(0.873827\pi\)
\(458\) 1.35071e8 0.0656949
\(459\) 0 0
\(460\) −9.24185e8 −0.442697
\(461\) −3.59084e9 −1.70704 −0.853519 0.521062i \(-0.825536\pi\)
−0.853519 + 0.521062i \(0.825536\pi\)
\(462\) 0 0
\(463\) −2.45649e8 −0.115022 −0.0575111 0.998345i \(-0.518316\pi\)
−0.0575111 + 0.998345i \(0.518316\pi\)
\(464\) 3.25036e9 1.51049
\(465\) 0 0
\(466\) 4.19532e8 0.192050
\(467\) 4.04985e8 0.184005 0.0920025 0.995759i \(-0.470673\pi\)
0.0920025 + 0.995759i \(0.470673\pi\)
\(468\) 0 0
\(469\) −1.58783e9 −0.710722
\(470\) −7.20205e7 −0.0319973
\(471\) 0 0
\(472\) −4.63771e8 −0.203005
\(473\) −2.00360e8 −0.0870556
\(474\) 0 0
\(475\) 3.46401e8 0.148304
\(476\) 2.27687e8 0.0967641
\(477\) 0 0
\(478\) −7.34559e7 −0.0307630
\(479\) −4.18334e9 −1.73920 −0.869598 0.493760i \(-0.835622\pi\)
−0.869598 + 0.493760i \(0.835622\pi\)
\(480\) 0 0
\(481\) −2.00890e9 −0.823097
\(482\) −3.64513e8 −0.148268
\(483\) 0 0
\(484\) 2.27575e9 0.912361
\(485\) −3.23998e8 −0.128957
\(486\) 0 0
\(487\) 3.25089e9 1.27541 0.637706 0.770280i \(-0.279883\pi\)
0.637706 + 0.770280i \(0.279883\pi\)
\(488\) −8.68583e7 −0.0338331
\(489\) 0 0
\(490\) 8.55689e7 0.0328571
\(491\) 3.37360e9 1.28620 0.643100 0.765782i \(-0.277648\pi\)
0.643100 + 0.765782i \(0.277648\pi\)
\(492\) 0 0
\(493\) 6.90723e8 0.259621
\(494\) −2.00984e8 −0.0750097
\(495\) 0 0
\(496\) 2.80165e9 1.03093
\(497\) 4.95753e8 0.181142
\(498\) 0 0
\(499\) 3.74951e9 1.35090 0.675449 0.737406i \(-0.263950\pi\)
0.675449 + 0.737406i \(0.263950\pi\)
\(500\) −2.46789e8 −0.0882939
\(501\) 0 0
\(502\) −3.45141e7 −0.0121768
\(503\) 3.09301e9 1.08366 0.541830 0.840488i \(-0.317732\pi\)
0.541830 + 0.840488i \(0.317732\pi\)
\(504\) 0 0
\(505\) −4.61461e8 −0.159447
\(506\) −9.11651e7 −0.0312825
\(507\) 0 0
\(508\) 2.42432e9 0.820476
\(509\) −1.36862e9 −0.460015 −0.230007 0.973189i \(-0.573875\pi\)
−0.230007 + 0.973189i \(0.573875\pi\)
\(510\) 0 0
\(511\) −2.29087e9 −0.759499
\(512\) −1.63371e9 −0.537937
\(513\) 0 0
\(514\) −4.21523e8 −0.136915
\(515\) 1.08525e9 0.350111
\(516\) 0 0
\(517\) 5.46020e8 0.173777
\(518\) −1.96070e8 −0.0619808
\(519\) 0 0
\(520\) 2.88240e8 0.0898963
\(521\) 4.47414e9 1.38604 0.693022 0.720916i \(-0.256279\pi\)
0.693022 + 0.720916i \(0.256279\pi\)
\(522\) 0 0
\(523\) −3.01993e9 −0.923085 −0.461542 0.887118i \(-0.652704\pi\)
−0.461542 + 0.887118i \(0.652704\pi\)
\(524\) 3.87936e9 1.17788
\(525\) 0 0
\(526\) 2.37963e8 0.0712952
\(527\) 5.95370e8 0.177194
\(528\) 0 0
\(529\) 1.89619e7 0.00556913
\(530\) −1.17031e8 −0.0341458
\(531\) 0 0
\(532\) 1.50764e9 0.434116
\(533\) −4.43565e9 −1.26885
\(534\) 0 0
\(535\) −1.90148e9 −0.536850
\(536\) 9.62193e8 0.269889
\(537\) 0 0
\(538\) 3.47318e8 0.0961587
\(539\) −6.48737e8 −0.178446
\(540\) 0 0
\(541\) 3.23946e9 0.879593 0.439796 0.898097i \(-0.355051\pi\)
0.439796 + 0.898097i \(0.355051\pi\)
\(542\) −2.95859e8 −0.0798154
\(543\) 0 0
\(544\) −2.07406e8 −0.0552365
\(545\) −2.01054e8 −0.0532017
\(546\) 0 0
\(547\) 4.25742e9 1.11222 0.556111 0.831108i \(-0.312293\pi\)
0.556111 + 0.831108i \(0.312293\pi\)
\(548\) −4.00355e9 −1.03923
\(549\) 0 0
\(550\) −2.43442e7 −0.00623916
\(551\) 4.57364e9 1.16475
\(552\) 0 0
\(553\) −3.38284e9 −0.850635
\(554\) −1.82148e8 −0.0455135
\(555\) 0 0
\(556\) −2.62291e9 −0.647175
\(557\) 5.65828e9 1.38737 0.693684 0.720280i \(-0.255987\pi\)
0.693684 + 0.720280i \(0.255987\pi\)
\(558\) 0 0
\(559\) −1.16584e9 −0.282290
\(560\) −1.05994e9 −0.255048
\(561\) 0 0
\(562\) −1.47918e8 −0.0351515
\(563\) −4.37511e9 −1.03326 −0.516630 0.856209i \(-0.672814\pi\)
−0.516630 + 0.856209i \(0.672814\pi\)
\(564\) 0 0
\(565\) 3.28458e9 0.766143
\(566\) −2.79623e8 −0.0648210
\(567\) 0 0
\(568\) −3.00416e8 −0.0687866
\(569\) −1.67226e9 −0.380550 −0.190275 0.981731i \(-0.560938\pi\)
−0.190275 + 0.981731i \(0.560938\pi\)
\(570\) 0 0
\(571\) 6.39802e8 0.143820 0.0719100 0.997411i \(-0.477091\pi\)
0.0719100 + 0.997411i \(0.477091\pi\)
\(572\) −1.08558e9 −0.242535
\(573\) 0 0
\(574\) −4.32922e8 −0.0955472
\(575\) 9.14268e8 0.200556
\(576\) 0 0
\(577\) 4.87101e9 1.05561 0.527805 0.849366i \(-0.323015\pi\)
0.527805 + 0.849366i \(0.323015\pi\)
\(578\) 5.11764e8 0.110236
\(579\) 0 0
\(580\) −3.25843e9 −0.693442
\(581\) −4.93615e9 −1.04417
\(582\) 0 0
\(583\) 8.87268e8 0.185445
\(584\) 1.38822e9 0.288412
\(585\) 0 0
\(586\) 5.28760e8 0.108547
\(587\) 2.32406e9 0.474258 0.237129 0.971478i \(-0.423794\pi\)
0.237129 + 0.971478i \(0.423794\pi\)
\(588\) 0 0
\(589\) 3.94226e9 0.794953
\(590\) 2.27914e8 0.0456867
\(591\) 0 0
\(592\) −4.47654e9 −0.886782
\(593\) −4.27080e9 −0.841043 −0.420522 0.907283i \(-0.638153\pi\)
−0.420522 + 0.907283i \(0.638153\pi\)
\(594\) 0 0
\(595\) −2.25244e8 −0.0438373
\(596\) 3.72254e9 0.720240
\(597\) 0 0
\(598\) −5.30463e8 −0.101438
\(599\) −3.50335e9 −0.666023 −0.333012 0.942923i \(-0.608065\pi\)
−0.333012 + 0.942923i \(0.608065\pi\)
\(600\) 0 0
\(601\) 2.98866e9 0.561585 0.280792 0.959769i \(-0.409403\pi\)
0.280792 + 0.959769i \(0.409403\pi\)
\(602\) −1.13786e8 −0.0212570
\(603\) 0 0
\(604\) −5.81240e9 −1.07331
\(605\) −2.25133e9 −0.413329
\(606\) 0 0
\(607\) −7.31901e9 −1.32829 −0.664143 0.747605i \(-0.731203\pi\)
−0.664143 + 0.747605i \(0.731203\pi\)
\(608\) −1.37335e9 −0.247809
\(609\) 0 0
\(610\) 4.26854e7 0.00761421
\(611\) 3.17713e9 0.563496
\(612\) 0 0
\(613\) −8.32799e9 −1.46026 −0.730128 0.683311i \(-0.760539\pi\)
−0.730128 + 0.683311i \(0.760539\pi\)
\(614\) −2.02566e8 −0.0353165
\(615\) 0 0
\(616\) −2.13284e8 −0.0367643
\(617\) 2.88456e9 0.494403 0.247201 0.968964i \(-0.420489\pi\)
0.247201 + 0.968964i \(0.420489\pi\)
\(618\) 0 0
\(619\) −2.27213e9 −0.385049 −0.192525 0.981292i \(-0.561668\pi\)
−0.192525 + 0.981292i \(0.561668\pi\)
\(620\) −2.80861e9 −0.473282
\(621\) 0 0
\(622\) −2.16909e8 −0.0361420
\(623\) 1.30589e8 0.0216371
\(624\) 0 0
\(625\) 2.44141e8 0.0400000
\(626\) 6.69459e8 0.109072
\(627\) 0 0
\(628\) −2.43865e9 −0.392907
\(629\) −9.51296e8 −0.152419
\(630\) 0 0
\(631\) −2.90856e7 −0.00460867 −0.00230434 0.999997i \(-0.500733\pi\)
−0.00230434 + 0.999997i \(0.500733\pi\)
\(632\) 2.04993e9 0.323020
\(633\) 0 0
\(634\) 6.06841e8 0.0945719
\(635\) −2.39830e9 −0.371702
\(636\) 0 0
\(637\) −3.77481e9 −0.578638
\(638\) −3.21423e8 −0.0490010
\(639\) 0 0
\(640\) 1.30165e9 0.196274
\(641\) 3.12634e9 0.468849 0.234424 0.972134i \(-0.424680\pi\)
0.234424 + 0.972134i \(0.424680\pi\)
\(642\) 0 0
\(643\) 2.48120e9 0.368064 0.184032 0.982920i \(-0.441085\pi\)
0.184032 + 0.982920i \(0.441085\pi\)
\(644\) 3.97915e9 0.587070
\(645\) 0 0
\(646\) −9.51740e7 −0.0138901
\(647\) −3.10080e9 −0.450100 −0.225050 0.974347i \(-0.572254\pi\)
−0.225050 + 0.974347i \(0.572254\pi\)
\(648\) 0 0
\(649\) −1.72792e9 −0.248123
\(650\) −1.41652e8 −0.0202314
\(651\) 0 0
\(652\) −2.97726e9 −0.420678
\(653\) −9.64911e8 −0.135610 −0.0678049 0.997699i \(-0.521600\pi\)
−0.0678049 + 0.997699i \(0.521600\pi\)
\(654\) 0 0
\(655\) −3.83773e9 −0.533617
\(656\) −9.88419e9 −1.36703
\(657\) 0 0
\(658\) 3.10089e8 0.0424323
\(659\) 7.70039e9 1.04813 0.524063 0.851679i \(-0.324416\pi\)
0.524063 + 0.851679i \(0.324416\pi\)
\(660\) 0 0
\(661\) 1.30650e10 1.75956 0.879779 0.475382i \(-0.157690\pi\)
0.879779 + 0.475382i \(0.157690\pi\)
\(662\) 1.12307e8 0.0150454
\(663\) 0 0
\(664\) 2.99120e9 0.396513
\(665\) −1.49146e9 −0.196669
\(666\) 0 0
\(667\) 1.20713e10 1.57513
\(668\) 2.76498e9 0.358900
\(669\) 0 0
\(670\) −4.72857e8 −0.0607391
\(671\) −3.23617e8 −0.0413526
\(672\) 0 0
\(673\) 1.31771e10 1.66636 0.833179 0.553003i \(-0.186518\pi\)
0.833179 + 0.553003i \(0.186518\pi\)
\(674\) 3.89942e8 0.0490558
\(675\) 0 0
\(676\) 1.61201e9 0.200703
\(677\) 3.18151e9 0.394069 0.197035 0.980397i \(-0.436869\pi\)
0.197035 + 0.980397i \(0.436869\pi\)
\(678\) 0 0
\(679\) 1.39500e9 0.171013
\(680\) 1.36493e8 0.0166467
\(681\) 0 0
\(682\) −2.77051e8 −0.0334438
\(683\) 3.33139e8 0.0400086 0.0200043 0.999800i \(-0.493632\pi\)
0.0200043 + 0.999800i \(0.493632\pi\)
\(684\) 0 0
\(685\) 3.96059e9 0.470807
\(686\) −9.36731e8 −0.110785
\(687\) 0 0
\(688\) −2.59789e9 −0.304132
\(689\) 5.16275e9 0.601331
\(690\) 0 0
\(691\) −4.45248e9 −0.513368 −0.256684 0.966495i \(-0.582630\pi\)
−0.256684 + 0.966495i \(0.582630\pi\)
\(692\) −1.21594e10 −1.39489
\(693\) 0 0
\(694\) 4.04339e8 0.0459185
\(695\) 2.59476e9 0.293191
\(696\) 0 0
\(697\) −2.10046e9 −0.234963
\(698\) 6.71127e8 0.0746983
\(699\) 0 0
\(700\) 1.06257e9 0.117088
\(701\) 1.91380e9 0.209838 0.104919 0.994481i \(-0.466542\pi\)
0.104919 + 0.994481i \(0.466542\pi\)
\(702\) 0 0
\(703\) −6.29902e9 −0.683801
\(704\) −2.35400e9 −0.254274
\(705\) 0 0
\(706\) −5.30785e8 −0.0567679
\(707\) 1.98686e9 0.211445
\(708\) 0 0
\(709\) 1.38704e9 0.146160 0.0730799 0.997326i \(-0.476717\pi\)
0.0730799 + 0.997326i \(0.476717\pi\)
\(710\) 1.47636e8 0.0154806
\(711\) 0 0
\(712\) −7.91344e7 −0.00821647
\(713\) 1.04049e10 1.07504
\(714\) 0 0
\(715\) 1.07393e9 0.109876
\(716\) 1.06995e10 1.08935
\(717\) 0 0
\(718\) −3.18970e8 −0.0321599
\(719\) −9.42958e9 −0.946109 −0.473055 0.881033i \(-0.656849\pi\)
−0.473055 + 0.881033i \(0.656849\pi\)
\(720\) 0 0
\(721\) −4.67264e9 −0.464290
\(722\) 5.15928e8 0.0510163
\(723\) 0 0
\(724\) 1.21965e10 1.19440
\(725\) 3.22346e9 0.314152
\(726\) 0 0
\(727\) −2.99387e9 −0.288976 −0.144488 0.989507i \(-0.546154\pi\)
−0.144488 + 0.989507i \(0.546154\pi\)
\(728\) −1.24104e9 −0.119213
\(729\) 0 0
\(730\) −6.82222e8 −0.0649076
\(731\) −5.52070e8 −0.0522737
\(732\) 0 0
\(733\) 1.11711e10 1.04768 0.523842 0.851815i \(-0.324498\pi\)
0.523842 + 0.851815i \(0.324498\pi\)
\(734\) −1.87053e9 −0.174594
\(735\) 0 0
\(736\) −3.62471e9 −0.335121
\(737\) 3.58495e9 0.329873
\(738\) 0 0
\(739\) −6.96449e9 −0.634796 −0.317398 0.948292i \(-0.602809\pi\)
−0.317398 + 0.948292i \(0.602809\pi\)
\(740\) 4.48765e9 0.407107
\(741\) 0 0
\(742\) 5.03887e8 0.0452814
\(743\) −1.27161e9 −0.113734 −0.0568672 0.998382i \(-0.518111\pi\)
−0.0568672 + 0.998382i \(0.518111\pi\)
\(744\) 0 0
\(745\) −3.68259e9 −0.326292
\(746\) −8.06666e8 −0.0711390
\(747\) 0 0
\(748\) −5.14063e8 −0.0449119
\(749\) 8.18695e9 0.711927
\(750\) 0 0
\(751\) −1.70771e10 −1.47121 −0.735603 0.677413i \(-0.763101\pi\)
−0.735603 + 0.677413i \(0.763101\pi\)
\(752\) 7.07976e9 0.607094
\(753\) 0 0
\(754\) −1.87027e9 −0.158893
\(755\) 5.75002e9 0.486245
\(756\) 0 0
\(757\) 1.37933e10 1.15567 0.577833 0.816155i \(-0.303899\pi\)
0.577833 + 0.816155i \(0.303899\pi\)
\(758\) −1.09584e8 −0.00913917
\(759\) 0 0
\(760\) 9.03791e8 0.0746828
\(761\) −1.71364e10 −1.40953 −0.704765 0.709441i \(-0.748947\pi\)
−0.704765 + 0.709441i \(0.748947\pi\)
\(762\) 0 0
\(763\) 8.65654e8 0.0705518
\(764\) −1.85070e10 −1.50145
\(765\) 0 0
\(766\) −9.69780e8 −0.0779602
\(767\) −1.00543e10 −0.804575
\(768\) 0 0
\(769\) −4.41529e9 −0.350120 −0.175060 0.984558i \(-0.556012\pi\)
−0.175060 + 0.984558i \(0.556012\pi\)
\(770\) 1.04816e8 0.00827387
\(771\) 0 0
\(772\) 1.07816e10 0.843381
\(773\) 5.87300e8 0.0457332 0.0228666 0.999739i \(-0.492721\pi\)
0.0228666 + 0.999739i \(0.492721\pi\)
\(774\) 0 0
\(775\) 2.77847e9 0.214412
\(776\) −8.45338e8 −0.0649403
\(777\) 0 0
\(778\) 1.83146e9 0.139434
\(779\) −1.39082e10 −1.05412
\(780\) 0 0
\(781\) −1.11929e9 −0.0840746
\(782\) −2.51195e8 −0.0187840
\(783\) 0 0
\(784\) −8.41160e9 −0.623408
\(785\) 2.41248e9 0.178000
\(786\) 0 0
\(787\) −2.30069e10 −1.68247 −0.841235 0.540670i \(-0.818171\pi\)
−0.841235 + 0.540670i \(0.818171\pi\)
\(788\) 1.82967e10 1.33208
\(789\) 0 0
\(790\) −1.00741e9 −0.0726962
\(791\) −1.41420e10 −1.01600
\(792\) 0 0
\(793\) −1.88303e9 −0.134092
\(794\) 2.14323e8 0.0151949
\(795\) 0 0
\(796\) −1.60308e9 −0.112658
\(797\) −2.49526e10 −1.74587 −0.872935 0.487836i \(-0.837787\pi\)
−0.872935 + 0.487836i \(0.837787\pi\)
\(798\) 0 0
\(799\) 1.50450e9 0.104346
\(800\) −9.67921e8 −0.0668383
\(801\) 0 0
\(802\) 2.97536e9 0.203671
\(803\) 5.17223e9 0.352512
\(804\) 0 0
\(805\) −3.93645e9 −0.265962
\(806\) −1.61208e9 −0.108446
\(807\) 0 0
\(808\) −1.20399e9 −0.0802942
\(809\) 1.29758e10 0.861616 0.430808 0.902443i \(-0.358229\pi\)
0.430808 + 0.902443i \(0.358229\pi\)
\(810\) 0 0
\(811\) −2.04887e10 −1.34878 −0.674391 0.738374i \(-0.735594\pi\)
−0.674391 + 0.738374i \(0.735594\pi\)
\(812\) 1.40294e10 0.919587
\(813\) 0 0
\(814\) 4.42679e8 0.0287676
\(815\) 2.94531e9 0.190581
\(816\) 0 0
\(817\) −3.65554e9 −0.234517
\(818\) 1.05748e9 0.0675514
\(819\) 0 0
\(820\) 9.90872e9 0.627580
\(821\) 7.97556e9 0.502991 0.251495 0.967858i \(-0.419078\pi\)
0.251495 + 0.967858i \(0.419078\pi\)
\(822\) 0 0
\(823\) 5.64462e9 0.352968 0.176484 0.984304i \(-0.443528\pi\)
0.176484 + 0.984304i \(0.443528\pi\)
\(824\) 2.83152e9 0.176309
\(825\) 0 0
\(826\) −9.81302e8 −0.0605860
\(827\) −1.22946e10 −0.755866 −0.377933 0.925833i \(-0.623365\pi\)
−0.377933 + 0.925833i \(0.623365\pi\)
\(828\) 0 0
\(829\) −1.72844e10 −1.05369 −0.526845 0.849962i \(-0.676625\pi\)
−0.526845 + 0.849962i \(0.676625\pi\)
\(830\) −1.46999e9 −0.0892361
\(831\) 0 0
\(832\) −1.36973e10 −0.824521
\(833\) −1.78752e9 −0.107150
\(834\) 0 0
\(835\) −2.73530e9 −0.162593
\(836\) −3.40388e9 −0.201489
\(837\) 0 0
\(838\) 1.05649e9 0.0620173
\(839\) 4.87580e9 0.285023 0.142511 0.989793i \(-0.454482\pi\)
0.142511 + 0.989793i \(0.454482\pi\)
\(840\) 0 0
\(841\) 2.53104e10 1.46728
\(842\) 2.71885e8 0.0156962
\(843\) 0 0
\(844\) 1.19701e10 0.685329
\(845\) −1.59471e9 −0.0909249
\(846\) 0 0
\(847\) 9.69328e9 0.548124
\(848\) 1.15044e10 0.647857
\(849\) 0 0
\(850\) −6.70777e7 −0.00374638
\(851\) −1.66252e10 −0.924727
\(852\) 0 0
\(853\) −1.67542e10 −0.924277 −0.462138 0.886808i \(-0.652918\pi\)
−0.462138 + 0.886808i \(0.652918\pi\)
\(854\) −1.83785e8 −0.0100974
\(855\) 0 0
\(856\) −4.96112e9 −0.270347
\(857\) 1.45198e10 0.788001 0.394001 0.919110i \(-0.371091\pi\)
0.394001 + 0.919110i \(0.371091\pi\)
\(858\) 0 0
\(859\) 2.44108e10 1.31403 0.657016 0.753877i \(-0.271819\pi\)
0.657016 + 0.753877i \(0.271819\pi\)
\(860\) 2.60434e9 0.139622
\(861\) 0 0
\(862\) 9.53988e8 0.0507303
\(863\) 2.03914e10 1.07996 0.539981 0.841677i \(-0.318431\pi\)
0.539981 + 0.841677i \(0.318431\pi\)
\(864\) 0 0
\(865\) 1.20289e10 0.631931
\(866\) 2.48200e9 0.129864
\(867\) 0 0
\(868\) 1.20927e10 0.627629
\(869\) 7.63764e9 0.394812
\(870\) 0 0
\(871\) 2.08597e10 1.06966
\(872\) −5.24568e8 −0.0267913
\(873\) 0 0
\(874\) −1.66330e9 −0.0842713
\(875\) −1.05117e9 −0.0530448
\(876\) 0 0
\(877\) −3.75418e10 −1.87939 −0.939693 0.342018i \(-0.888890\pi\)
−0.939693 + 0.342018i \(0.888890\pi\)
\(878\) 1.73719e9 0.0866194
\(879\) 0 0
\(880\) 2.39308e9 0.118377
\(881\) −1.05852e10 −0.521533 −0.260767 0.965402i \(-0.583975\pi\)
−0.260767 + 0.965402i \(0.583975\pi\)
\(882\) 0 0
\(883\) 3.45129e10 1.68702 0.843509 0.537116i \(-0.180486\pi\)
0.843509 + 0.537116i \(0.180486\pi\)
\(884\) −2.99118e9 −0.145633
\(885\) 0 0
\(886\) 1.35894e9 0.0656420
\(887\) −1.68685e10 −0.811602 −0.405801 0.913961i \(-0.633007\pi\)
−0.405801 + 0.913961i \(0.633007\pi\)
\(888\) 0 0
\(889\) 1.03261e10 0.492922
\(890\) 3.88896e7 0.00184913
\(891\) 0 0
\(892\) 2.88792e10 1.36241
\(893\) 9.96206e9 0.468133
\(894\) 0 0
\(895\) −1.05847e10 −0.493512
\(896\) −5.60434e9 −0.260283
\(897\) 0 0
\(898\) −2.18323e9 −0.100608
\(899\) 3.66849e10 1.68395
\(900\) 0 0
\(901\) 2.44477e9 0.111353
\(902\) 9.77434e8 0.0443470
\(903\) 0 0
\(904\) 8.56974e9 0.385814
\(905\) −1.20656e10 −0.541102
\(906\) 0 0
\(907\) −1.14713e10 −0.510492 −0.255246 0.966876i \(-0.582156\pi\)
−0.255246 + 0.966876i \(0.582156\pi\)
\(908\) −3.79810e10 −1.68370
\(909\) 0 0
\(910\) 6.09892e8 0.0268292
\(911\) −1.62306e10 −0.711248 −0.355624 0.934629i \(-0.615732\pi\)
−0.355624 + 0.934629i \(0.615732\pi\)
\(912\) 0 0
\(913\) 1.11446e10 0.484639
\(914\) 4.82661e9 0.209089
\(915\) 0 0
\(916\) 1.33107e10 0.572224
\(917\) 1.65236e10 0.707641
\(918\) 0 0
\(919\) −4.36259e10 −1.85413 −0.927065 0.374900i \(-0.877677\pi\)
−0.927065 + 0.374900i \(0.877677\pi\)
\(920\) 2.38540e9 0.100996
\(921\) 0 0
\(922\) 4.60419e9 0.193462
\(923\) −6.51283e9 −0.272624
\(924\) 0 0
\(925\) −4.43950e9 −0.184433
\(926\) 3.14972e8 0.0130357
\(927\) 0 0
\(928\) −1.27797e10 −0.524934
\(929\) −1.67801e10 −0.686656 −0.343328 0.939216i \(-0.611554\pi\)
−0.343328 + 0.939216i \(0.611554\pi\)
\(930\) 0 0
\(931\) −1.18361e10 −0.480713
\(932\) 4.13432e10 1.67282
\(933\) 0 0
\(934\) −5.19273e8 −0.0208536
\(935\) 5.08547e8 0.0203465
\(936\) 0 0
\(937\) 1.94934e10 0.774105 0.387053 0.922058i \(-0.373493\pi\)
0.387053 + 0.922058i \(0.373493\pi\)
\(938\) 2.03592e9 0.0805474
\(939\) 0 0
\(940\) −7.09733e9 −0.278707
\(941\) 4.91523e10 1.92300 0.961502 0.274797i \(-0.0886108\pi\)
0.961502 + 0.274797i \(0.0886108\pi\)
\(942\) 0 0
\(943\) −3.67084e10 −1.42552
\(944\) −2.24045e10 −0.866827
\(945\) 0 0
\(946\) 2.56902e8 0.00986617
\(947\) −3.01570e10 −1.15389 −0.576944 0.816784i \(-0.695755\pi\)
−0.576944 + 0.816784i \(0.695755\pi\)
\(948\) 0 0
\(949\) 3.00957e10 1.14307
\(950\) −4.44157e8 −0.0168075
\(951\) 0 0
\(952\) −5.87681e8 −0.0220756
\(953\) 1.86916e10 0.699554 0.349777 0.936833i \(-0.386257\pi\)
0.349777 + 0.936833i \(0.386257\pi\)
\(954\) 0 0
\(955\) 1.83084e10 0.680204
\(956\) −7.23879e9 −0.267956
\(957\) 0 0
\(958\) 5.36388e9 0.197106
\(959\) −1.70526e10 −0.624346
\(960\) 0 0
\(961\) 4.10799e9 0.149313
\(962\) 2.57582e9 0.0932830
\(963\) 0 0
\(964\) −3.59213e10 −1.29146
\(965\) −1.06659e10 −0.382079
\(966\) 0 0
\(967\) −7.61328e9 −0.270757 −0.135378 0.990794i \(-0.543225\pi\)
−0.135378 + 0.990794i \(0.543225\pi\)
\(968\) −5.87392e9 −0.208144
\(969\) 0 0
\(970\) 4.15431e8 0.0146150
\(971\) 4.83242e10 1.69394 0.846969 0.531643i \(-0.178425\pi\)
0.846969 + 0.531643i \(0.178425\pi\)
\(972\) 0 0
\(973\) −1.11720e10 −0.388807
\(974\) −4.16829e9 −0.144545
\(975\) 0 0
\(976\) −4.19606e9 −0.144467
\(977\) −1.42491e9 −0.0488829 −0.0244414 0.999701i \(-0.507781\pi\)
−0.0244414 + 0.999701i \(0.507781\pi\)
\(978\) 0 0
\(979\) −2.94840e8 −0.0100426
\(980\) 8.43248e9 0.286196
\(981\) 0 0
\(982\) −4.32564e9 −0.145767
\(983\) −4.85675e10 −1.63083 −0.815415 0.578877i \(-0.803491\pi\)
−0.815415 + 0.578877i \(0.803491\pi\)
\(984\) 0 0
\(985\) −1.81003e10 −0.603475
\(986\) −8.85647e8 −0.0294233
\(987\) 0 0
\(988\) −1.98062e10 −0.653358
\(989\) −9.64818e9 −0.317145
\(990\) 0 0
\(991\) −1.69341e10 −0.552719 −0.276360 0.961054i \(-0.589128\pi\)
−0.276360 + 0.961054i \(0.589128\pi\)
\(992\) −1.10155e10 −0.358273
\(993\) 0 0
\(994\) −6.35656e8 −0.0205291
\(995\) 1.58588e9 0.0510375
\(996\) 0 0
\(997\) 2.36849e10 0.756900 0.378450 0.925622i \(-0.376457\pi\)
0.378450 + 0.925622i \(0.376457\pi\)
\(998\) −4.80763e9 −0.153100
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 45.8.a.h.1.2 2
3.2 odd 2 5.8.a.b.1.1 2
5.2 odd 4 225.8.b.m.199.2 4
5.3 odd 4 225.8.b.m.199.3 4
5.4 even 2 225.8.a.w.1.1 2
12.11 even 2 80.8.a.g.1.1 2
15.2 even 4 25.8.b.c.24.3 4
15.8 even 4 25.8.b.c.24.2 4
15.14 odd 2 25.8.a.b.1.2 2
21.20 even 2 245.8.a.c.1.1 2
24.5 odd 2 320.8.a.l.1.1 2
24.11 even 2 320.8.a.u.1.2 2
33.32 even 2 605.8.a.d.1.2 2
60.23 odd 4 400.8.c.m.49.1 4
60.47 odd 4 400.8.c.m.49.4 4
60.59 even 2 400.8.a.bb.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
5.8.a.b.1.1 2 3.2 odd 2
25.8.a.b.1.2 2 15.14 odd 2
25.8.b.c.24.2 4 15.8 even 4
25.8.b.c.24.3 4 15.2 even 4
45.8.a.h.1.2 2 1.1 even 1 trivial
80.8.a.g.1.1 2 12.11 even 2
225.8.a.w.1.1 2 5.4 even 2
225.8.b.m.199.2 4 5.2 odd 4
225.8.b.m.199.3 4 5.3 odd 4
245.8.a.c.1.1 2 21.20 even 2
320.8.a.l.1.1 2 24.5 odd 2
320.8.a.u.1.2 2 24.11 even 2
400.8.a.bb.1.2 2 60.59 even 2
400.8.c.m.49.1 4 60.23 odd 4
400.8.c.m.49.4 4 60.47 odd 4
605.8.a.d.1.2 2 33.32 even 2