Properties

Label 320.8
Level 320
Weight 8
Dimension 11022
Nonzero newspaces 14
Sturm bound 49152
Trace bound 12

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 320 = 2^{6} \cdot 5 \)
Weight: \( k \) = \( 8 \)
Nonzero newspaces: \( 14 \)
Sturm bound: \(49152\)
Trace bound: \(12\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_1(320))\).

Total New Old
Modular forms 21792 11154 10638
Cusp forms 21216 11022 10194
Eisenstein series 576 132 444

Trace form

\( 11022 q - 16 q^{2} - 12 q^{3} - 16 q^{4} - 24 q^{5} - 48 q^{6} - 8 q^{7} - 16 q^{8} + 4354 q^{9} - 24 q^{10} + 2372 q^{11} - 16 q^{12} + 14112 q^{13} - 16 q^{14} - 27020 q^{15} - 48 q^{16} + 11604 q^{17}+ \cdots - 668740 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_1(320))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
320.8.a \(\chi_{320}(1, \cdot)\) 320.8.a.a 1 1
320.8.a.b 1
320.8.a.c 1
320.8.a.d 1
320.8.a.e 1
320.8.a.f 1
320.8.a.g 1
320.8.a.h 1
320.8.a.i 2
320.8.a.j 2
320.8.a.k 2
320.8.a.l 2
320.8.a.m 2
320.8.a.n 2
320.8.a.o 2
320.8.a.p 2
320.8.a.q 2
320.8.a.r 2
320.8.a.s 2
320.8.a.t 2
320.8.a.u 2
320.8.a.v 2
320.8.a.w 2
320.8.a.x 3
320.8.a.y 3
320.8.a.z 4
320.8.a.ba 4
320.8.a.bb 4
320.8.c \(\chi_{320}(129, \cdot)\) 320.8.c.a 2 1
320.8.c.b 2
320.8.c.c 2
320.8.c.d 2
320.8.c.e 2
320.8.c.f 4
320.8.c.g 4
320.8.c.h 4
320.8.c.i 4
320.8.c.j 4
320.8.c.k 8
320.8.c.l 8
320.8.c.m 16
320.8.c.n 20
320.8.d \(\chi_{320}(161, \cdot)\) 320.8.d.a 8 1
320.8.d.b 8
320.8.d.c 20
320.8.d.d 20
320.8.f \(\chi_{320}(289, \cdot)\) 320.8.f.a 4 1
320.8.f.b 24
320.8.f.c 56
320.8.j \(\chi_{320}(47, \cdot)\) n/a 164 2
320.8.l \(\chi_{320}(81, \cdot)\) n/a 112 2
320.8.n \(\chi_{320}(63, \cdot)\) n/a 164 2
320.8.o \(\chi_{320}(223, \cdot)\) n/a 168 2
320.8.q \(\chi_{320}(49, \cdot)\) n/a 164 2
320.8.s \(\chi_{320}(207, \cdot)\) n/a 164 2
320.8.u \(\chi_{320}(87, \cdot)\) None 0 4
320.8.x \(\chi_{320}(41, \cdot)\) None 0 4
320.8.z \(\chi_{320}(9, \cdot)\) None 0 4
320.8.ba \(\chi_{320}(7, \cdot)\) None 0 4
320.8.bd \(\chi_{320}(43, \cdot)\) n/a 2672 8
320.8.be \(\chi_{320}(21, \cdot)\) n/a 1792 8
320.8.bf \(\chi_{320}(29, \cdot)\) n/a 2672 8
320.8.bj \(\chi_{320}(3, \cdot)\) n/a 2672 8

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_1(320))\) into lower level spaces

\( S_{8}^{\mathrm{old}}(\Gamma_1(320)) \cong \) \(S_{8}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 14}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 10}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 7}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 8}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 5}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(40))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(64))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(80))\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(160))\)\(^{\oplus 2}\)