Properties

Label 320.4.a.p.1.2
Level $320$
Weight $4$
Character 320.1
Self dual yes
Analytic conductor $18.881$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [320,4,Mod(1,320)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("320.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(320, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 320 = 2^{6} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 320.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,-10,0,0,0,26] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.8806112018\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{10}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 10 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 160)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(3.16228\) of defining polynomial
Character \(\chi\) \(=\) 320.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+6.32456 q^{3} -5.00000 q^{5} -18.9737 q^{7} +13.0000 q^{9} -12.6491 q^{11} -38.0000 q^{13} -31.6228 q^{15} +34.0000 q^{17} -101.193 q^{19} -120.000 q^{21} -82.2192 q^{23} +25.0000 q^{25} -88.5438 q^{27} -270.000 q^{29} +341.526 q^{31} -80.0000 q^{33} +94.8683 q^{35} -206.000 q^{37} -240.333 q^{39} -270.000 q^{41} +537.587 q^{43} -65.0000 q^{45} +132.816 q^{47} +17.0000 q^{49} +215.035 q^{51} +258.000 q^{53} +63.2456 q^{55} -640.000 q^{57} -75.8947 q^{59} +250.000 q^{61} -246.658 q^{63} +190.000 q^{65} -815.868 q^{67} -520.000 q^{69} +645.105 q^{71} -1078.00 q^{73} +158.114 q^{75} +240.000 q^{77} +278.280 q^{79} -911.000 q^{81} -1106.80 q^{83} -170.000 q^{85} -1707.63 q^{87} +890.000 q^{89} +720.999 q^{91} +2160.00 q^{93} +505.964 q^{95} -254.000 q^{97} -164.438 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 10 q^{5} + 26 q^{9} - 76 q^{13} + 68 q^{17} - 240 q^{21} + 50 q^{25} - 540 q^{29} - 160 q^{33} - 412 q^{37} - 540 q^{41} - 130 q^{45} + 34 q^{49} + 516 q^{53} - 1280 q^{57} + 500 q^{61} + 380 q^{65}+ \cdots - 508 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 6.32456 1.21716 0.608581 0.793492i \(-0.291739\pi\)
0.608581 + 0.793492i \(0.291739\pi\)
\(4\) 0 0
\(5\) −5.00000 −0.447214
\(6\) 0 0
\(7\) −18.9737 −1.02448 −0.512241 0.858842i \(-0.671184\pi\)
−0.512241 + 0.858842i \(0.671184\pi\)
\(8\) 0 0
\(9\) 13.0000 0.481481
\(10\) 0 0
\(11\) −12.6491 −0.346714 −0.173357 0.984859i \(-0.555461\pi\)
−0.173357 + 0.984859i \(0.555461\pi\)
\(12\) 0 0
\(13\) −38.0000 −0.810716 −0.405358 0.914158i \(-0.632853\pi\)
−0.405358 + 0.914158i \(0.632853\pi\)
\(14\) 0 0
\(15\) −31.6228 −0.544331
\(16\) 0 0
\(17\) 34.0000 0.485071 0.242536 0.970143i \(-0.422021\pi\)
0.242536 + 0.970143i \(0.422021\pi\)
\(18\) 0 0
\(19\) −101.193 −1.22185 −0.610927 0.791687i \(-0.709203\pi\)
−0.610927 + 0.791687i \(0.709203\pi\)
\(20\) 0 0
\(21\) −120.000 −1.24696
\(22\) 0 0
\(23\) −82.2192 −0.745387 −0.372693 0.927955i \(-0.621566\pi\)
−0.372693 + 0.927955i \(0.621566\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) −88.5438 −0.631121
\(28\) 0 0
\(29\) −270.000 −1.72889 −0.864444 0.502729i \(-0.832329\pi\)
−0.864444 + 0.502729i \(0.832329\pi\)
\(30\) 0 0
\(31\) 341.526 1.97871 0.989353 0.145537i \(-0.0464908\pi\)
0.989353 + 0.145537i \(0.0464908\pi\)
\(32\) 0 0
\(33\) −80.0000 −0.422006
\(34\) 0 0
\(35\) 94.8683 0.458162
\(36\) 0 0
\(37\) −206.000 −0.915302 −0.457651 0.889132i \(-0.651309\pi\)
−0.457651 + 0.889132i \(0.651309\pi\)
\(38\) 0 0
\(39\) −240.333 −0.986772
\(40\) 0 0
\(41\) −270.000 −1.02846 −0.514231 0.857652i \(-0.671922\pi\)
−0.514231 + 0.857652i \(0.671922\pi\)
\(42\) 0 0
\(43\) 537.587 1.90654 0.953271 0.302117i \(-0.0976935\pi\)
0.953271 + 0.302117i \(0.0976935\pi\)
\(44\) 0 0
\(45\) −65.0000 −0.215325
\(46\) 0 0
\(47\) 132.816 0.412195 0.206097 0.978531i \(-0.433924\pi\)
0.206097 + 0.978531i \(0.433924\pi\)
\(48\) 0 0
\(49\) 17.0000 0.0495627
\(50\) 0 0
\(51\) 215.035 0.590410
\(52\) 0 0
\(53\) 258.000 0.668661 0.334330 0.942456i \(-0.391490\pi\)
0.334330 + 0.942456i \(0.391490\pi\)
\(54\) 0 0
\(55\) 63.2456 0.155055
\(56\) 0 0
\(57\) −640.000 −1.48719
\(58\) 0 0
\(59\) −75.8947 −0.167469 −0.0837343 0.996488i \(-0.526685\pi\)
−0.0837343 + 0.996488i \(0.526685\pi\)
\(60\) 0 0
\(61\) 250.000 0.524741 0.262371 0.964967i \(-0.415496\pi\)
0.262371 + 0.964967i \(0.415496\pi\)
\(62\) 0 0
\(63\) −246.658 −0.493269
\(64\) 0 0
\(65\) 190.000 0.362563
\(66\) 0 0
\(67\) −815.868 −1.48767 −0.743837 0.668362i \(-0.766996\pi\)
−0.743837 + 0.668362i \(0.766996\pi\)
\(68\) 0 0
\(69\) −520.000 −0.907256
\(70\) 0 0
\(71\) 645.105 1.07831 0.539154 0.842207i \(-0.318744\pi\)
0.539154 + 0.842207i \(0.318744\pi\)
\(72\) 0 0
\(73\) −1078.00 −1.72836 −0.864181 0.503182i \(-0.832163\pi\)
−0.864181 + 0.503182i \(0.832163\pi\)
\(74\) 0 0
\(75\) 158.114 0.243432
\(76\) 0 0
\(77\) 240.000 0.355202
\(78\) 0 0
\(79\) 278.280 0.396316 0.198158 0.980170i \(-0.436504\pi\)
0.198158 + 0.980170i \(0.436504\pi\)
\(80\) 0 0
\(81\) −911.000 −1.24966
\(82\) 0 0
\(83\) −1106.80 −1.46370 −0.731848 0.681468i \(-0.761342\pi\)
−0.731848 + 0.681468i \(0.761342\pi\)
\(84\) 0 0
\(85\) −170.000 −0.216930
\(86\) 0 0
\(87\) −1707.63 −2.10434
\(88\) 0 0
\(89\) 890.000 1.06000 0.529999 0.847998i \(-0.322192\pi\)
0.529999 + 0.847998i \(0.322192\pi\)
\(90\) 0 0
\(91\) 720.999 0.830563
\(92\) 0 0
\(93\) 2160.00 2.40840
\(94\) 0 0
\(95\) 505.964 0.546430
\(96\) 0 0
\(97\) −254.000 −0.265874 −0.132937 0.991124i \(-0.542441\pi\)
−0.132937 + 0.991124i \(0.542441\pi\)
\(98\) 0 0
\(99\) −164.438 −0.166936
\(100\) 0 0
\(101\) −598.000 −0.589141 −0.294570 0.955630i \(-0.595177\pi\)
−0.294570 + 0.955630i \(0.595177\pi\)
\(102\) 0 0
\(103\) 499.640 0.477971 0.238985 0.971023i \(-0.423185\pi\)
0.238985 + 0.971023i \(0.423185\pi\)
\(104\) 0 0
\(105\) 600.000 0.557657
\(106\) 0 0
\(107\) 626.131 0.565704 0.282852 0.959164i \(-0.408719\pi\)
0.282852 + 0.959164i \(0.408719\pi\)
\(108\) 0 0
\(109\) −854.000 −0.750444 −0.375222 0.926935i \(-0.622433\pi\)
−0.375222 + 0.926935i \(0.622433\pi\)
\(110\) 0 0
\(111\) −1302.86 −1.11407
\(112\) 0 0
\(113\) 1698.00 1.41358 0.706789 0.707424i \(-0.250143\pi\)
0.706789 + 0.707424i \(0.250143\pi\)
\(114\) 0 0
\(115\) 411.096 0.333347
\(116\) 0 0
\(117\) −494.000 −0.390345
\(118\) 0 0
\(119\) −645.105 −0.496947
\(120\) 0 0
\(121\) −1171.00 −0.879790
\(122\) 0 0
\(123\) −1707.63 −1.25180
\(124\) 0 0
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) 234.009 0.163503 0.0817516 0.996653i \(-0.473949\pi\)
0.0817516 + 0.996653i \(0.473949\pi\)
\(128\) 0 0
\(129\) 3400.00 2.32057
\(130\) 0 0
\(131\) 1732.93 1.15578 0.577888 0.816116i \(-0.303877\pi\)
0.577888 + 0.816116i \(0.303877\pi\)
\(132\) 0 0
\(133\) 1920.00 1.25177
\(134\) 0 0
\(135\) 442.719 0.282246
\(136\) 0 0
\(137\) 1546.00 0.964115 0.482057 0.876140i \(-0.339890\pi\)
0.482057 + 0.876140i \(0.339890\pi\)
\(138\) 0 0
\(139\) 328.877 0.200683 0.100342 0.994953i \(-0.468006\pi\)
0.100342 + 0.994953i \(0.468006\pi\)
\(140\) 0 0
\(141\) 840.000 0.501708
\(142\) 0 0
\(143\) 480.666 0.281086
\(144\) 0 0
\(145\) 1350.00 0.773182
\(146\) 0 0
\(147\) 107.517 0.0603258
\(148\) 0 0
\(149\) −3246.00 −1.78472 −0.892358 0.451328i \(-0.850950\pi\)
−0.892358 + 0.451328i \(0.850950\pi\)
\(150\) 0 0
\(151\) 1505.24 0.811225 0.405613 0.914045i \(-0.367058\pi\)
0.405613 + 0.914045i \(0.367058\pi\)
\(152\) 0 0
\(153\) 442.000 0.233553
\(154\) 0 0
\(155\) −1707.63 −0.884904
\(156\) 0 0
\(157\) 1226.00 0.623219 0.311610 0.950210i \(-0.399132\pi\)
0.311610 + 0.950210i \(0.399132\pi\)
\(158\) 0 0
\(159\) 1631.74 0.813868
\(160\) 0 0
\(161\) 1560.00 0.763635
\(162\) 0 0
\(163\) 1448.32 0.695960 0.347980 0.937502i \(-0.386868\pi\)
0.347980 + 0.937502i \(0.386868\pi\)
\(164\) 0 0
\(165\) 400.000 0.188727
\(166\) 0 0
\(167\) 2333.76 1.08139 0.540694 0.841219i \(-0.318162\pi\)
0.540694 + 0.841219i \(0.318162\pi\)
\(168\) 0 0
\(169\) −753.000 −0.342740
\(170\) 0 0
\(171\) −1315.51 −0.588300
\(172\) 0 0
\(173\) 3098.00 1.36148 0.680742 0.732524i \(-0.261658\pi\)
0.680742 + 0.732524i \(0.261658\pi\)
\(174\) 0 0
\(175\) −474.342 −0.204896
\(176\) 0 0
\(177\) −480.000 −0.203836
\(178\) 0 0
\(179\) 2352.73 0.982411 0.491206 0.871044i \(-0.336556\pi\)
0.491206 + 0.871044i \(0.336556\pi\)
\(180\) 0 0
\(181\) −2182.00 −0.896060 −0.448030 0.894019i \(-0.647874\pi\)
−0.448030 + 0.894019i \(0.647874\pi\)
\(182\) 0 0
\(183\) 1581.14 0.638695
\(184\) 0 0
\(185\) 1030.00 0.409336
\(186\) 0 0
\(187\) −430.070 −0.168181
\(188\) 0 0
\(189\) 1680.00 0.646572
\(190\) 0 0
\(191\) −3023.14 −1.14527 −0.572635 0.819810i \(-0.694079\pi\)
−0.572635 + 0.819810i \(0.694079\pi\)
\(192\) 0 0
\(193\) 1298.00 0.484104 0.242052 0.970263i \(-0.422180\pi\)
0.242052 + 0.970263i \(0.422180\pi\)
\(194\) 0 0
\(195\) 1201.67 0.441298
\(196\) 0 0
\(197\) −2846.00 −1.02928 −0.514642 0.857405i \(-0.672075\pi\)
−0.514642 + 0.857405i \(0.672075\pi\)
\(198\) 0 0
\(199\) −3592.35 −1.27967 −0.639836 0.768511i \(-0.720998\pi\)
−0.639836 + 0.768511i \(0.720998\pi\)
\(200\) 0 0
\(201\) −5160.00 −1.81074
\(202\) 0 0
\(203\) 5122.89 1.77121
\(204\) 0 0
\(205\) 1350.00 0.459942
\(206\) 0 0
\(207\) −1068.85 −0.358890
\(208\) 0 0
\(209\) 1280.00 0.423634
\(210\) 0 0
\(211\) −4186.86 −1.36604 −0.683021 0.730398i \(-0.739334\pi\)
−0.683021 + 0.730398i \(0.739334\pi\)
\(212\) 0 0
\(213\) 4080.00 1.31247
\(214\) 0 0
\(215\) −2687.94 −0.852631
\(216\) 0 0
\(217\) −6480.00 −2.02715
\(218\) 0 0
\(219\) −6817.87 −2.10369
\(220\) 0 0
\(221\) −1292.00 −0.393255
\(222\) 0 0
\(223\) −4762.39 −1.43010 −0.715052 0.699071i \(-0.753597\pi\)
−0.715052 + 0.699071i \(0.753597\pi\)
\(224\) 0 0
\(225\) 325.000 0.0962963
\(226\) 0 0
\(227\) 1663.36 0.486348 0.243174 0.969983i \(-0.421811\pi\)
0.243174 + 0.969983i \(0.421811\pi\)
\(228\) 0 0
\(229\) 1050.00 0.302995 0.151498 0.988458i \(-0.451590\pi\)
0.151498 + 0.988458i \(0.451590\pi\)
\(230\) 0 0
\(231\) 1517.89 0.432338
\(232\) 0 0
\(233\) 2778.00 0.781085 0.390543 0.920585i \(-0.372287\pi\)
0.390543 + 0.920585i \(0.372287\pi\)
\(234\) 0 0
\(235\) −664.078 −0.184339
\(236\) 0 0
\(237\) 1760.00 0.482381
\(238\) 0 0
\(239\) 2555.12 0.691536 0.345768 0.938320i \(-0.387618\pi\)
0.345768 + 0.938320i \(0.387618\pi\)
\(240\) 0 0
\(241\) −5350.00 −1.42997 −0.714987 0.699138i \(-0.753567\pi\)
−0.714987 + 0.699138i \(0.753567\pi\)
\(242\) 0 0
\(243\) −3370.99 −0.889913
\(244\) 0 0
\(245\) −85.0000 −0.0221651
\(246\) 0 0
\(247\) 3845.33 0.990577
\(248\) 0 0
\(249\) −7000.00 −1.78155
\(250\) 0 0
\(251\) −5881.84 −1.47912 −0.739558 0.673093i \(-0.764966\pi\)
−0.739558 + 0.673093i \(0.764966\pi\)
\(252\) 0 0
\(253\) 1040.00 0.258436
\(254\) 0 0
\(255\) −1075.17 −0.264039
\(256\) 0 0
\(257\) 1074.00 0.260678 0.130339 0.991469i \(-0.458393\pi\)
0.130339 + 0.991469i \(0.458393\pi\)
\(258\) 0 0
\(259\) 3908.58 0.937711
\(260\) 0 0
\(261\) −3510.00 −0.832427
\(262\) 0 0
\(263\) 1486.27 0.348469 0.174235 0.984704i \(-0.444255\pi\)
0.174235 + 0.984704i \(0.444255\pi\)
\(264\) 0 0
\(265\) −1290.00 −0.299034
\(266\) 0 0
\(267\) 5628.85 1.29019
\(268\) 0 0
\(269\) −406.000 −0.0920233 −0.0460116 0.998941i \(-0.514651\pi\)
−0.0460116 + 0.998941i \(0.514651\pi\)
\(270\) 0 0
\(271\) −392.122 −0.0878957 −0.0439479 0.999034i \(-0.513994\pi\)
−0.0439479 + 0.999034i \(0.513994\pi\)
\(272\) 0 0
\(273\) 4560.00 1.01093
\(274\) 0 0
\(275\) −316.228 −0.0693427
\(276\) 0 0
\(277\) −5934.00 −1.28715 −0.643573 0.765385i \(-0.722549\pi\)
−0.643573 + 0.765385i \(0.722549\pi\)
\(278\) 0 0
\(279\) 4439.84 0.952710
\(280\) 0 0
\(281\) −1870.00 −0.396992 −0.198496 0.980102i \(-0.563606\pi\)
−0.198496 + 0.980102i \(0.563606\pi\)
\(282\) 0 0
\(283\) 4888.88 1.02690 0.513452 0.858118i \(-0.328366\pi\)
0.513452 + 0.858118i \(0.328366\pi\)
\(284\) 0 0
\(285\) 3200.00 0.665093
\(286\) 0 0
\(287\) 5122.89 1.05364
\(288\) 0 0
\(289\) −3757.00 −0.764706
\(290\) 0 0
\(291\) −1606.44 −0.323612
\(292\) 0 0
\(293\) −5198.00 −1.03642 −0.518209 0.855254i \(-0.673401\pi\)
−0.518209 + 0.855254i \(0.673401\pi\)
\(294\) 0 0
\(295\) 379.473 0.0748942
\(296\) 0 0
\(297\) 1120.00 0.218818
\(298\) 0 0
\(299\) 3124.33 0.604297
\(300\) 0 0
\(301\) −10200.0 −1.95322
\(302\) 0 0
\(303\) −3782.08 −0.717079
\(304\) 0 0
\(305\) −1250.00 −0.234671
\(306\) 0 0
\(307\) −3750.46 −0.697232 −0.348616 0.937266i \(-0.613348\pi\)
−0.348616 + 0.937266i \(0.613348\pi\)
\(308\) 0 0
\(309\) 3160.00 0.581767
\(310\) 0 0
\(311\) −6261.31 −1.14163 −0.570814 0.821079i \(-0.693372\pi\)
−0.570814 + 0.821079i \(0.693372\pi\)
\(312\) 0 0
\(313\) 2218.00 0.400539 0.200270 0.979741i \(-0.435818\pi\)
0.200270 + 0.979741i \(0.435818\pi\)
\(314\) 0 0
\(315\) 1233.29 0.220597
\(316\) 0 0
\(317\) −4134.00 −0.732456 −0.366228 0.930525i \(-0.619351\pi\)
−0.366228 + 0.930525i \(0.619351\pi\)
\(318\) 0 0
\(319\) 3415.26 0.599429
\(320\) 0 0
\(321\) 3960.00 0.688553
\(322\) 0 0
\(323\) −3440.56 −0.592687
\(324\) 0 0
\(325\) −950.000 −0.162143
\(326\) 0 0
\(327\) −5401.17 −0.913411
\(328\) 0 0
\(329\) −2520.00 −0.422286
\(330\) 0 0
\(331\) 11953.4 1.98495 0.992476 0.122443i \(-0.0390729\pi\)
0.992476 + 0.122443i \(0.0390729\pi\)
\(332\) 0 0
\(333\) −2678.00 −0.440701
\(334\) 0 0
\(335\) 4079.34 0.665308
\(336\) 0 0
\(337\) −8014.00 −1.29540 −0.647701 0.761895i \(-0.724269\pi\)
−0.647701 + 0.761895i \(0.724269\pi\)
\(338\) 0 0
\(339\) 10739.1 1.72055
\(340\) 0 0
\(341\) −4320.00 −0.686044
\(342\) 0 0
\(343\) 6185.42 0.973706
\(344\) 0 0
\(345\) 2600.00 0.405737
\(346\) 0 0
\(347\) −4484.11 −0.693716 −0.346858 0.937918i \(-0.612752\pi\)
−0.346858 + 0.937918i \(0.612752\pi\)
\(348\) 0 0
\(349\) −910.000 −0.139574 −0.0697868 0.997562i \(-0.522232\pi\)
−0.0697868 + 0.997562i \(0.522232\pi\)
\(350\) 0 0
\(351\) 3364.66 0.511659
\(352\) 0 0
\(353\) 12962.0 1.95438 0.977192 0.212357i \(-0.0681140\pi\)
0.977192 + 0.212357i \(0.0681140\pi\)
\(354\) 0 0
\(355\) −3225.52 −0.482234
\(356\) 0 0
\(357\) −4080.00 −0.604864
\(358\) 0 0
\(359\) −12193.7 −1.79265 −0.896325 0.443398i \(-0.853773\pi\)
−0.896325 + 0.443398i \(0.853773\pi\)
\(360\) 0 0
\(361\) 3381.00 0.492929
\(362\) 0 0
\(363\) −7406.05 −1.07085
\(364\) 0 0
\(365\) 5390.00 0.772947
\(366\) 0 0
\(367\) −3434.23 −0.488462 −0.244231 0.969717i \(-0.578536\pi\)
−0.244231 + 0.969717i \(0.578536\pi\)
\(368\) 0 0
\(369\) −3510.00 −0.495185
\(370\) 0 0
\(371\) −4895.21 −0.685031
\(372\) 0 0
\(373\) −4622.00 −0.641603 −0.320802 0.947146i \(-0.603952\pi\)
−0.320802 + 0.947146i \(0.603952\pi\)
\(374\) 0 0
\(375\) −790.569 −0.108866
\(376\) 0 0
\(377\) 10260.0 1.40164
\(378\) 0 0
\(379\) −8449.61 −1.14519 −0.572595 0.819838i \(-0.694063\pi\)
−0.572595 + 0.819838i \(0.694063\pi\)
\(380\) 0 0
\(381\) 1480.00 0.199010
\(382\) 0 0
\(383\) 1815.15 0.242166 0.121083 0.992642i \(-0.461363\pi\)
0.121083 + 0.992642i \(0.461363\pi\)
\(384\) 0 0
\(385\) −1200.00 −0.158851
\(386\) 0 0
\(387\) 6988.63 0.917964
\(388\) 0 0
\(389\) 11106.0 1.44755 0.723774 0.690037i \(-0.242406\pi\)
0.723774 + 0.690037i \(0.242406\pi\)
\(390\) 0 0
\(391\) −2795.45 −0.361566
\(392\) 0 0
\(393\) 10960.0 1.40677
\(394\) 0 0
\(395\) −1391.40 −0.177238
\(396\) 0 0
\(397\) 5754.00 0.727418 0.363709 0.931513i \(-0.381510\pi\)
0.363709 + 0.931513i \(0.381510\pi\)
\(398\) 0 0
\(399\) 12143.1 1.52360
\(400\) 0 0
\(401\) −1118.00 −0.139228 −0.0696138 0.997574i \(-0.522177\pi\)
−0.0696138 + 0.997574i \(0.522177\pi\)
\(402\) 0 0
\(403\) −12978.0 −1.60417
\(404\) 0 0
\(405\) 4555.00 0.558864
\(406\) 0 0
\(407\) 2605.72 0.317348
\(408\) 0 0
\(409\) −11374.0 −1.37508 −0.687540 0.726146i \(-0.741310\pi\)
−0.687540 + 0.726146i \(0.741310\pi\)
\(410\) 0 0
\(411\) 9777.76 1.17348
\(412\) 0 0
\(413\) 1440.00 0.171568
\(414\) 0 0
\(415\) 5533.99 0.654585
\(416\) 0 0
\(417\) 2080.00 0.244264
\(418\) 0 0
\(419\) −12674.4 −1.47777 −0.738885 0.673832i \(-0.764647\pi\)
−0.738885 + 0.673832i \(0.764647\pi\)
\(420\) 0 0
\(421\) −1150.00 −0.133130 −0.0665648 0.997782i \(-0.521204\pi\)
−0.0665648 + 0.997782i \(0.521204\pi\)
\(422\) 0 0
\(423\) 1726.60 0.198464
\(424\) 0 0
\(425\) 850.000 0.0970143
\(426\) 0 0
\(427\) −4743.42 −0.537588
\(428\) 0 0
\(429\) 3040.00 0.342127
\(430\) 0 0
\(431\) −1353.45 −0.151261 −0.0756307 0.997136i \(-0.524097\pi\)
−0.0756307 + 0.997136i \(0.524097\pi\)
\(432\) 0 0
\(433\) −7918.00 −0.878787 −0.439394 0.898295i \(-0.644807\pi\)
−0.439394 + 0.898295i \(0.644807\pi\)
\(434\) 0 0
\(435\) 8538.15 0.941087
\(436\) 0 0
\(437\) 8320.00 0.910754
\(438\) 0 0
\(439\) −14217.6 −1.54572 −0.772858 0.634579i \(-0.781173\pi\)
−0.772858 + 0.634579i \(0.781173\pi\)
\(440\) 0 0
\(441\) 221.000 0.0238635
\(442\) 0 0
\(443\) 10581.0 1.13480 0.567401 0.823441i \(-0.307949\pi\)
0.567401 + 0.823441i \(0.307949\pi\)
\(444\) 0 0
\(445\) −4450.00 −0.474045
\(446\) 0 0
\(447\) −20529.5 −2.17229
\(448\) 0 0
\(449\) 4474.00 0.470247 0.235124 0.971965i \(-0.424450\pi\)
0.235124 + 0.971965i \(0.424450\pi\)
\(450\) 0 0
\(451\) 3415.26 0.356582
\(452\) 0 0
\(453\) 9520.00 0.987392
\(454\) 0 0
\(455\) −3605.00 −0.371439
\(456\) 0 0
\(457\) 4154.00 0.425199 0.212599 0.977139i \(-0.431807\pi\)
0.212599 + 0.977139i \(0.431807\pi\)
\(458\) 0 0
\(459\) −3010.49 −0.306138
\(460\) 0 0
\(461\) 11282.0 1.13982 0.569908 0.821709i \(-0.306979\pi\)
0.569908 + 0.821709i \(0.306979\pi\)
\(462\) 0 0
\(463\) 5458.09 0.547860 0.273930 0.961750i \(-0.411676\pi\)
0.273930 + 0.961750i \(0.411676\pi\)
\(464\) 0 0
\(465\) −10800.0 −1.07707
\(466\) 0 0
\(467\) −3775.76 −0.374136 −0.187068 0.982347i \(-0.559898\pi\)
−0.187068 + 0.982347i \(0.559898\pi\)
\(468\) 0 0
\(469\) 15480.0 1.52409
\(470\) 0 0
\(471\) 7753.90 0.758559
\(472\) 0 0
\(473\) −6800.00 −0.661024
\(474\) 0 0
\(475\) −2529.82 −0.244371
\(476\) 0 0
\(477\) 3354.00 0.321948
\(478\) 0 0
\(479\) −8930.27 −0.851847 −0.425923 0.904759i \(-0.640051\pi\)
−0.425923 + 0.904759i \(0.640051\pi\)
\(480\) 0 0
\(481\) 7828.00 0.742050
\(482\) 0 0
\(483\) 9866.31 0.929467
\(484\) 0 0
\(485\) 1270.00 0.118903
\(486\) 0 0
\(487\) −2422.30 −0.225390 −0.112695 0.993630i \(-0.535948\pi\)
−0.112695 + 0.993630i \(0.535948\pi\)
\(488\) 0 0
\(489\) 9160.00 0.847095
\(490\) 0 0
\(491\) 8993.52 0.826623 0.413311 0.910590i \(-0.364372\pi\)
0.413311 + 0.910590i \(0.364372\pi\)
\(492\) 0 0
\(493\) −9180.00 −0.838634
\(494\) 0 0
\(495\) 822.192 0.0746561
\(496\) 0 0
\(497\) −12240.0 −1.10471
\(498\) 0 0
\(499\) 3541.75 0.317737 0.158868 0.987300i \(-0.449215\pi\)
0.158868 + 0.987300i \(0.449215\pi\)
\(500\) 0 0
\(501\) 14760.0 1.31622
\(502\) 0 0
\(503\) −2384.36 −0.211358 −0.105679 0.994400i \(-0.533702\pi\)
−0.105679 + 0.994400i \(0.533702\pi\)
\(504\) 0 0
\(505\) 2990.00 0.263472
\(506\) 0 0
\(507\) −4762.39 −0.417170
\(508\) 0 0
\(509\) −2350.00 −0.204640 −0.102320 0.994752i \(-0.532627\pi\)
−0.102320 + 0.994752i \(0.532627\pi\)
\(510\) 0 0
\(511\) 20453.6 1.77067
\(512\) 0 0
\(513\) 8960.00 0.771138
\(514\) 0 0
\(515\) −2498.20 −0.213755
\(516\) 0 0
\(517\) −1680.00 −0.142914
\(518\) 0 0
\(519\) 19593.5 1.65714
\(520\) 0 0
\(521\) 858.000 0.0721491 0.0360745 0.999349i \(-0.488515\pi\)
0.0360745 + 0.999349i \(0.488515\pi\)
\(522\) 0 0
\(523\) 5799.62 0.484894 0.242447 0.970165i \(-0.422050\pi\)
0.242447 + 0.970165i \(0.422050\pi\)
\(524\) 0 0
\(525\) −3000.00 −0.249392
\(526\) 0 0
\(527\) 11611.9 0.959813
\(528\) 0 0
\(529\) −5407.00 −0.444399
\(530\) 0 0
\(531\) −986.631 −0.0806330
\(532\) 0 0
\(533\) 10260.0 0.833790
\(534\) 0 0
\(535\) −3130.65 −0.252991
\(536\) 0 0
\(537\) 14880.0 1.19575
\(538\) 0 0
\(539\) −215.035 −0.0171841
\(540\) 0 0
\(541\) −20478.0 −1.62739 −0.813695 0.581292i \(-0.802547\pi\)
−0.813695 + 0.581292i \(0.802547\pi\)
\(542\) 0 0
\(543\) −13800.2 −1.09065
\(544\) 0 0
\(545\) 4270.00 0.335609
\(546\) 0 0
\(547\) −10429.2 −0.815210 −0.407605 0.913158i \(-0.633636\pi\)
−0.407605 + 0.913158i \(0.633636\pi\)
\(548\) 0 0
\(549\) 3250.00 0.252653
\(550\) 0 0
\(551\) 27322.1 2.11245
\(552\) 0 0
\(553\) −5280.00 −0.406019
\(554\) 0 0
\(555\) 6514.29 0.498228
\(556\) 0 0
\(557\) 13194.0 1.00368 0.501838 0.864962i \(-0.332657\pi\)
0.501838 + 0.864962i \(0.332657\pi\)
\(558\) 0 0
\(559\) −20428.3 −1.54566
\(560\) 0 0
\(561\) −2720.00 −0.204703
\(562\) 0 0
\(563\) 9771.44 0.731469 0.365734 0.930719i \(-0.380818\pi\)
0.365734 + 0.930719i \(0.380818\pi\)
\(564\) 0 0
\(565\) −8490.00 −0.632172
\(566\) 0 0
\(567\) 17285.0 1.28025
\(568\) 0 0
\(569\) 4594.00 0.338472 0.169236 0.985576i \(-0.445870\pi\)
0.169236 + 0.985576i \(0.445870\pi\)
\(570\) 0 0
\(571\) −4389.24 −0.321688 −0.160844 0.986980i \(-0.551422\pi\)
−0.160844 + 0.986980i \(0.551422\pi\)
\(572\) 0 0
\(573\) −19120.0 −1.39398
\(574\) 0 0
\(575\) −2055.48 −0.149077
\(576\) 0 0
\(577\) −14926.0 −1.07691 −0.538455 0.842654i \(-0.680992\pi\)
−0.538455 + 0.842654i \(0.680992\pi\)
\(578\) 0 0
\(579\) 8209.27 0.589233
\(580\) 0 0
\(581\) 21000.0 1.49953
\(582\) 0 0
\(583\) −3263.47 −0.231834
\(584\) 0 0
\(585\) 2470.00 0.174567
\(586\) 0 0
\(587\) −8101.76 −0.569668 −0.284834 0.958577i \(-0.591939\pi\)
−0.284834 + 0.958577i \(0.591939\pi\)
\(588\) 0 0
\(589\) −34560.0 −2.41769
\(590\) 0 0
\(591\) −17999.7 −1.25281
\(592\) 0 0
\(593\) −26958.0 −1.86683 −0.933417 0.358794i \(-0.883188\pi\)
−0.933417 + 0.358794i \(0.883188\pi\)
\(594\) 0 0
\(595\) 3225.52 0.222241
\(596\) 0 0
\(597\) −22720.0 −1.55757
\(598\) 0 0
\(599\) 6349.85 0.433135 0.216568 0.976268i \(-0.430514\pi\)
0.216568 + 0.976268i \(0.430514\pi\)
\(600\) 0 0
\(601\) 21970.0 1.49114 0.745570 0.666427i \(-0.232177\pi\)
0.745570 + 0.666427i \(0.232177\pi\)
\(602\) 0 0
\(603\) −10606.3 −0.716287
\(604\) 0 0
\(605\) 5855.00 0.393454
\(606\) 0 0
\(607\) 3876.95 0.259243 0.129622 0.991564i \(-0.458624\pi\)
0.129622 + 0.991564i \(0.458624\pi\)
\(608\) 0 0
\(609\) 32400.0 2.15585
\(610\) 0 0
\(611\) −5047.00 −0.334173
\(612\) 0 0
\(613\) −2878.00 −0.189627 −0.0948135 0.995495i \(-0.530225\pi\)
−0.0948135 + 0.995495i \(0.530225\pi\)
\(614\) 0 0
\(615\) 8538.15 0.559823
\(616\) 0 0
\(617\) 27354.0 1.78481 0.892407 0.451231i \(-0.149015\pi\)
0.892407 + 0.451231i \(0.149015\pi\)
\(618\) 0 0
\(619\) −12547.9 −0.814771 −0.407386 0.913256i \(-0.633559\pi\)
−0.407386 + 0.913256i \(0.633559\pi\)
\(620\) 0 0
\(621\) 7280.00 0.470429
\(622\) 0 0
\(623\) −16886.6 −1.08595
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) 8095.43 0.515631
\(628\) 0 0
\(629\) −7004.00 −0.443987
\(630\) 0 0
\(631\) −30876.5 −1.94798 −0.973988 0.226598i \(-0.927240\pi\)
−0.973988 + 0.226598i \(0.927240\pi\)
\(632\) 0 0
\(633\) −26480.0 −1.66269
\(634\) 0 0
\(635\) −1170.04 −0.0731208
\(636\) 0 0
\(637\) −646.000 −0.0401812
\(638\) 0 0
\(639\) 8386.36 0.519185
\(640\) 0 0
\(641\) −9430.00 −0.581065 −0.290532 0.956865i \(-0.593832\pi\)
−0.290532 + 0.956865i \(0.593832\pi\)
\(642\) 0 0
\(643\) 9847.33 0.603952 0.301976 0.953316i \(-0.402354\pi\)
0.301976 + 0.953316i \(0.402354\pi\)
\(644\) 0 0
\(645\) −17000.0 −1.03779
\(646\) 0 0
\(647\) −30048.0 −1.82582 −0.912911 0.408158i \(-0.866171\pi\)
−0.912911 + 0.408158i \(0.866171\pi\)
\(648\) 0 0
\(649\) 960.000 0.0580636
\(650\) 0 0
\(651\) −40983.1 −2.46737
\(652\) 0 0
\(653\) −18742.0 −1.12317 −0.561586 0.827418i \(-0.689809\pi\)
−0.561586 + 0.827418i \(0.689809\pi\)
\(654\) 0 0
\(655\) −8664.64 −0.516879
\(656\) 0 0
\(657\) −14014.0 −0.832174
\(658\) 0 0
\(659\) 8323.11 0.491992 0.245996 0.969271i \(-0.420885\pi\)
0.245996 + 0.969271i \(0.420885\pi\)
\(660\) 0 0
\(661\) −7630.00 −0.448975 −0.224488 0.974477i \(-0.572071\pi\)
−0.224488 + 0.974477i \(0.572071\pi\)
\(662\) 0 0
\(663\) −8171.33 −0.478655
\(664\) 0 0
\(665\) −9600.00 −0.559808
\(666\) 0 0
\(667\) 22199.2 1.28869
\(668\) 0 0
\(669\) −30120.0 −1.74067
\(670\) 0 0
\(671\) −3162.28 −0.181935
\(672\) 0 0
\(673\) −10878.0 −0.623055 −0.311528 0.950237i \(-0.600841\pi\)
−0.311528 + 0.950237i \(0.600841\pi\)
\(674\) 0 0
\(675\) −2213.59 −0.126224
\(676\) 0 0
\(677\) −126.000 −0.00715299 −0.00357649 0.999994i \(-0.501138\pi\)
−0.00357649 + 0.999994i \(0.501138\pi\)
\(678\) 0 0
\(679\) 4819.31 0.272383
\(680\) 0 0
\(681\) 10520.0 0.591964
\(682\) 0 0
\(683\) −16412.2 −0.919467 −0.459734 0.888057i \(-0.652055\pi\)
−0.459734 + 0.888057i \(0.652055\pi\)
\(684\) 0 0
\(685\) −7730.00 −0.431165
\(686\) 0 0
\(687\) 6640.78 0.368794
\(688\) 0 0
\(689\) −9804.00 −0.542094
\(690\) 0 0
\(691\) 13193.0 0.726319 0.363159 0.931727i \(-0.381698\pi\)
0.363159 + 0.931727i \(0.381698\pi\)
\(692\) 0 0
\(693\) 3120.00 0.171023
\(694\) 0 0
\(695\) −1644.38 −0.0897483
\(696\) 0 0
\(697\) −9180.00 −0.498877
\(698\) 0 0
\(699\) 17569.6 0.950707
\(700\) 0 0
\(701\) 22010.0 1.18589 0.592943 0.805244i \(-0.297966\pi\)
0.592943 + 0.805244i \(0.297966\pi\)
\(702\) 0 0
\(703\) 20845.7 1.11837
\(704\) 0 0
\(705\) −4200.00 −0.224370
\(706\) 0 0
\(707\) 11346.3 0.603564
\(708\) 0 0
\(709\) −550.000 −0.0291335 −0.0145668 0.999894i \(-0.504637\pi\)
−0.0145668 + 0.999894i \(0.504637\pi\)
\(710\) 0 0
\(711\) 3617.65 0.190819
\(712\) 0 0
\(713\) −28080.0 −1.47490
\(714\) 0 0
\(715\) −2403.33 −0.125706
\(716\) 0 0
\(717\) 16160.0 0.841710
\(718\) 0 0
\(719\) 17936.4 0.930343 0.465171 0.885221i \(-0.345993\pi\)
0.465171 + 0.885221i \(0.345993\pi\)
\(720\) 0 0
\(721\) −9480.00 −0.489672
\(722\) 0 0
\(723\) −33836.4 −1.74051
\(724\) 0 0
\(725\) −6750.00 −0.345778
\(726\) 0 0
\(727\) 16728.4 0.853403 0.426701 0.904393i \(-0.359676\pi\)
0.426701 + 0.904393i \(0.359676\pi\)
\(728\) 0 0
\(729\) 3277.00 0.166489
\(730\) 0 0
\(731\) 18278.0 0.924808
\(732\) 0 0
\(733\) −2422.00 −0.122044 −0.0610222 0.998136i \(-0.519436\pi\)
−0.0610222 + 0.998136i \(0.519436\pi\)
\(734\) 0 0
\(735\) −537.587 −0.0269785
\(736\) 0 0
\(737\) 10320.0 0.515797
\(738\) 0 0
\(739\) −19555.5 −0.973426 −0.486713 0.873562i \(-0.661804\pi\)
−0.486713 + 0.873562i \(0.661804\pi\)
\(740\) 0 0
\(741\) 24320.0 1.20569
\(742\) 0 0
\(743\) 31059.9 1.53362 0.766808 0.641876i \(-0.221844\pi\)
0.766808 + 0.641876i \(0.221844\pi\)
\(744\) 0 0
\(745\) 16230.0 0.798149
\(746\) 0 0
\(747\) −14388.4 −0.704743
\(748\) 0 0
\(749\) −11880.0 −0.579554
\(750\) 0 0
\(751\) −12155.8 −0.590641 −0.295320 0.955398i \(-0.595426\pi\)
−0.295320 + 0.955398i \(0.595426\pi\)
\(752\) 0 0
\(753\) −37200.0 −1.80032
\(754\) 0 0
\(755\) −7526.22 −0.362791
\(756\) 0 0
\(757\) 19346.0 0.928854 0.464427 0.885611i \(-0.346260\pi\)
0.464427 + 0.885611i \(0.346260\pi\)
\(758\) 0 0
\(759\) 6577.54 0.314558
\(760\) 0 0
\(761\) −33078.0 −1.57566 −0.787830 0.615893i \(-0.788795\pi\)
−0.787830 + 0.615893i \(0.788795\pi\)
\(762\) 0 0
\(763\) 16203.5 0.768816
\(764\) 0 0
\(765\) −2210.00 −0.104448
\(766\) 0 0
\(767\) 2884.00 0.135769
\(768\) 0 0
\(769\) 32530.0 1.52544 0.762719 0.646730i \(-0.223864\pi\)
0.762719 + 0.646730i \(0.223864\pi\)
\(770\) 0 0
\(771\) 6792.57 0.317287
\(772\) 0 0
\(773\) 12002.0 0.558450 0.279225 0.960226i \(-0.409922\pi\)
0.279225 + 0.960226i \(0.409922\pi\)
\(774\) 0 0
\(775\) 8538.15 0.395741
\(776\) 0 0
\(777\) 24720.0 1.14134
\(778\) 0 0
\(779\) 27322.1 1.25663
\(780\) 0 0
\(781\) −8160.00 −0.373864
\(782\) 0 0
\(783\) 23906.8 1.09114
\(784\) 0 0
\(785\) −6130.00 −0.278712
\(786\) 0 0
\(787\) 19954.0 0.903789 0.451895 0.892071i \(-0.350748\pi\)
0.451895 + 0.892071i \(0.350748\pi\)
\(788\) 0 0
\(789\) 9400.00 0.424143
\(790\) 0 0
\(791\) −32217.3 −1.44819
\(792\) 0 0
\(793\) −9500.00 −0.425416
\(794\) 0 0
\(795\) −8158.68 −0.363973
\(796\) 0 0
\(797\) 32666.0 1.45181 0.725903 0.687797i \(-0.241422\pi\)
0.725903 + 0.687797i \(0.241422\pi\)
\(798\) 0 0
\(799\) 4515.73 0.199944
\(800\) 0 0
\(801\) 11570.0 0.510369
\(802\) 0 0
\(803\) 13635.7 0.599246
\(804\) 0 0
\(805\) −7800.00 −0.341508
\(806\) 0 0
\(807\) −2567.77 −0.112007
\(808\) 0 0
\(809\) −23110.0 −1.00433 −0.502166 0.864771i \(-0.667463\pi\)
−0.502166 + 0.864771i \(0.667463\pi\)
\(810\) 0 0
\(811\) −35632.5 −1.54282 −0.771411 0.636338i \(-0.780448\pi\)
−0.771411 + 0.636338i \(0.780448\pi\)
\(812\) 0 0
\(813\) −2480.00 −0.106983
\(814\) 0 0
\(815\) −7241.62 −0.311243
\(816\) 0 0
\(817\) −54400.0 −2.32952
\(818\) 0 0
\(819\) 9372.99 0.399901
\(820\) 0 0
\(821\) 8850.00 0.376208 0.188104 0.982149i \(-0.439766\pi\)
0.188104 + 0.982149i \(0.439766\pi\)
\(822\) 0 0
\(823\) −13895.0 −0.588519 −0.294259 0.955726i \(-0.595073\pi\)
−0.294259 + 0.955726i \(0.595073\pi\)
\(824\) 0 0
\(825\) −2000.00 −0.0844013
\(826\) 0 0
\(827\) 35841.3 1.50704 0.753520 0.657425i \(-0.228354\pi\)
0.753520 + 0.657425i \(0.228354\pi\)
\(828\) 0 0
\(829\) 23034.0 0.965023 0.482511 0.875890i \(-0.339725\pi\)
0.482511 + 0.875890i \(0.339725\pi\)
\(830\) 0 0
\(831\) −37529.9 −1.56666
\(832\) 0 0
\(833\) 578.000 0.0240414
\(834\) 0 0
\(835\) −11668.8 −0.483612
\(836\) 0 0
\(837\) −30240.0 −1.24880
\(838\) 0 0
\(839\) −36960.7 −1.52089 −0.760444 0.649403i \(-0.775019\pi\)
−0.760444 + 0.649403i \(0.775019\pi\)
\(840\) 0 0
\(841\) 48511.0 1.98905
\(842\) 0 0
\(843\) −11826.9 −0.483204
\(844\) 0 0
\(845\) 3765.00 0.153278
\(846\) 0 0
\(847\) 22218.2 0.901328
\(848\) 0 0
\(849\) 30920.0 1.24991
\(850\) 0 0
\(851\) 16937.2 0.682254
\(852\) 0 0
\(853\) 19122.0 0.767555 0.383778 0.923425i \(-0.374623\pi\)
0.383778 + 0.923425i \(0.374623\pi\)
\(854\) 0 0
\(855\) 6577.54 0.263096
\(856\) 0 0
\(857\) 17786.0 0.708936 0.354468 0.935068i \(-0.384662\pi\)
0.354468 + 0.935068i \(0.384662\pi\)
\(858\) 0 0
\(859\) 28713.5 1.14050 0.570251 0.821470i \(-0.306846\pi\)
0.570251 + 0.821470i \(0.306846\pi\)
\(860\) 0 0
\(861\) 32400.0 1.28245
\(862\) 0 0
\(863\) 23748.7 0.936750 0.468375 0.883530i \(-0.344840\pi\)
0.468375 + 0.883530i \(0.344840\pi\)
\(864\) 0 0
\(865\) −15490.0 −0.608874
\(866\) 0 0
\(867\) −23761.4 −0.930770
\(868\) 0 0
\(869\) −3520.00 −0.137408
\(870\) 0 0
\(871\) 31003.0 1.20608
\(872\) 0 0
\(873\) −3302.00 −0.128013
\(874\) 0 0
\(875\) 2371.71 0.0916324
\(876\) 0 0
\(877\) 7706.00 0.296708 0.148354 0.988934i \(-0.452602\pi\)
0.148354 + 0.988934i \(0.452602\pi\)
\(878\) 0 0
\(879\) −32875.0 −1.26149
\(880\) 0 0
\(881\) 10410.0 0.398095 0.199048 0.979990i \(-0.436215\pi\)
0.199048 + 0.979990i \(0.436215\pi\)
\(882\) 0 0
\(883\) 26822.4 1.02225 0.511125 0.859506i \(-0.329229\pi\)
0.511125 + 0.859506i \(0.329229\pi\)
\(884\) 0 0
\(885\) 2400.00 0.0911583
\(886\) 0 0
\(887\) 21130.3 0.799873 0.399937 0.916543i \(-0.369032\pi\)
0.399937 + 0.916543i \(0.369032\pi\)
\(888\) 0 0
\(889\) −4440.00 −0.167506
\(890\) 0 0
\(891\) 11523.3 0.433273
\(892\) 0 0
\(893\) −13440.0 −0.503642
\(894\) 0 0
\(895\) −11763.7 −0.439348
\(896\) 0 0
\(897\) 19760.0 0.735526
\(898\) 0 0
\(899\) −92212.0 −3.42096
\(900\) 0 0
\(901\) 8772.00 0.324348
\(902\) 0 0
\(903\) −64510.5 −2.37738
\(904\) 0 0
\(905\) 10910.0 0.400730
\(906\) 0 0
\(907\) 19220.3 0.703639 0.351819 0.936068i \(-0.385563\pi\)
0.351819 + 0.936068i \(0.385563\pi\)
\(908\) 0 0
\(909\) −7774.00 −0.283660
\(910\) 0 0
\(911\) 39402.0 1.43298 0.716491 0.697597i \(-0.245747\pi\)
0.716491 + 0.697597i \(0.245747\pi\)
\(912\) 0 0
\(913\) 14000.0 0.507483
\(914\) 0 0
\(915\) −7905.69 −0.285633
\(916\) 0 0
\(917\) −32880.0 −1.18407
\(918\) 0 0
\(919\) 42931.1 1.54099 0.770493 0.637449i \(-0.220010\pi\)
0.770493 + 0.637449i \(0.220010\pi\)
\(920\) 0 0
\(921\) −23720.0 −0.848643
\(922\) 0 0
\(923\) −24514.0 −0.874201
\(924\) 0 0
\(925\) −5150.00 −0.183060
\(926\) 0 0
\(927\) 6495.32 0.230134
\(928\) 0 0
\(929\) 34746.0 1.22710 0.613552 0.789654i \(-0.289740\pi\)
0.613552 + 0.789654i \(0.289740\pi\)
\(930\) 0 0
\(931\) −1720.28 −0.0605584
\(932\) 0 0
\(933\) −39600.0 −1.38955
\(934\) 0 0
\(935\) 2150.35 0.0752128
\(936\) 0 0
\(937\) 21594.0 0.752876 0.376438 0.926442i \(-0.377149\pi\)
0.376438 + 0.926442i \(0.377149\pi\)
\(938\) 0 0
\(939\) 14027.9 0.487521
\(940\) 0 0
\(941\) 20018.0 0.693484 0.346742 0.937961i \(-0.387288\pi\)
0.346742 + 0.937961i \(0.387288\pi\)
\(942\) 0 0
\(943\) 22199.2 0.766601
\(944\) 0 0
\(945\) −8400.00 −0.289156
\(946\) 0 0
\(947\) −46150.3 −1.58361 −0.791807 0.610771i \(-0.790859\pi\)
−0.791807 + 0.610771i \(0.790859\pi\)
\(948\) 0 0
\(949\) 40964.0 1.40121
\(950\) 0 0
\(951\) −26145.7 −0.891517
\(952\) 0 0
\(953\) −342.000 −0.0116248 −0.00581242 0.999983i \(-0.501850\pi\)
−0.00581242 + 0.999983i \(0.501850\pi\)
\(954\) 0 0
\(955\) 15115.7 0.512180
\(956\) 0 0
\(957\) 21600.0 0.729602
\(958\) 0 0
\(959\) −29333.3 −0.987718
\(960\) 0 0
\(961\) 86849.0 2.91528
\(962\) 0 0
\(963\) 8139.70 0.272376
\(964\) 0 0
\(965\) −6490.00 −0.216498
\(966\) 0 0
\(967\) −51728.5 −1.72025 −0.860123 0.510087i \(-0.829613\pi\)
−0.860123 + 0.510087i \(0.829613\pi\)
\(968\) 0 0
\(969\) −21760.0 −0.721395
\(970\) 0 0
\(971\) 3099.03 0.102423 0.0512115 0.998688i \(-0.483692\pi\)
0.0512115 + 0.998688i \(0.483692\pi\)
\(972\) 0 0
\(973\) −6240.00 −0.205596
\(974\) 0 0
\(975\) −6008.33 −0.197354
\(976\) 0 0
\(977\) 26226.0 0.858796 0.429398 0.903115i \(-0.358726\pi\)
0.429398 + 0.903115i \(0.358726\pi\)
\(978\) 0 0
\(979\) −11257.7 −0.367516
\(980\) 0 0
\(981\) −11102.0 −0.361325
\(982\) 0 0
\(983\) 11049.0 0.358503 0.179251 0.983803i \(-0.442632\pi\)
0.179251 + 0.983803i \(0.442632\pi\)
\(984\) 0 0
\(985\) 14230.0 0.460310
\(986\) 0 0
\(987\) −15937.9 −0.513990
\(988\) 0 0
\(989\) −44200.0 −1.42111
\(990\) 0 0
\(991\) 45928.9 1.47223 0.736115 0.676856i \(-0.236658\pi\)
0.736115 + 0.676856i \(0.236658\pi\)
\(992\) 0 0
\(993\) 75600.0 2.41601
\(994\) 0 0
\(995\) 17961.7 0.572287
\(996\) 0 0
\(997\) 31026.0 0.985560 0.492780 0.870154i \(-0.335981\pi\)
0.492780 + 0.870154i \(0.335981\pi\)
\(998\) 0 0
\(999\) 18240.0 0.577666
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 320.4.a.p.1.2 2
4.3 odd 2 inner 320.4.a.p.1.1 2
5.4 even 2 1600.4.a.ch.1.1 2
8.3 odd 2 160.4.a.f.1.2 yes 2
8.5 even 2 160.4.a.f.1.1 2
16.3 odd 4 1280.4.d.u.641.2 4
16.5 even 4 1280.4.d.u.641.1 4
16.11 odd 4 1280.4.d.u.641.3 4
16.13 even 4 1280.4.d.u.641.4 4
20.19 odd 2 1600.4.a.ch.1.2 2
24.5 odd 2 1440.4.a.v.1.1 2
24.11 even 2 1440.4.a.v.1.2 2
40.3 even 4 800.4.c.j.449.3 4
40.13 odd 4 800.4.c.j.449.2 4
40.19 odd 2 800.4.a.p.1.1 2
40.27 even 4 800.4.c.j.449.1 4
40.29 even 2 800.4.a.p.1.2 2
40.37 odd 4 800.4.c.j.449.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
160.4.a.f.1.1 2 8.5 even 2
160.4.a.f.1.2 yes 2 8.3 odd 2
320.4.a.p.1.1 2 4.3 odd 2 inner
320.4.a.p.1.2 2 1.1 even 1 trivial
800.4.a.p.1.1 2 40.19 odd 2
800.4.a.p.1.2 2 40.29 even 2
800.4.c.j.449.1 4 40.27 even 4
800.4.c.j.449.2 4 40.13 odd 4
800.4.c.j.449.3 4 40.3 even 4
800.4.c.j.449.4 4 40.37 odd 4
1280.4.d.u.641.1 4 16.5 even 4
1280.4.d.u.641.2 4 16.3 odd 4
1280.4.d.u.641.3 4 16.11 odd 4
1280.4.d.u.641.4 4 16.13 even 4
1440.4.a.v.1.1 2 24.5 odd 2
1440.4.a.v.1.2 2 24.11 even 2
1600.4.a.ch.1.1 2 5.4 even 2
1600.4.a.ch.1.2 2 20.19 odd 2