Properties

Label 1440.4.a.v.1.2
Level $1440$
Weight $4$
Character 1440.1
Self dual yes
Analytic conductor $84.963$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1440,4,Mod(1,1440)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1440.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1440, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1440 = 2^{5} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1440.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,-10,0,0,0,0,0,0,0,76] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(84.9627504083\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{10}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 10 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 160)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(3.16228\) of defining polynomial
Character \(\chi\) \(=\) 1440.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.00000 q^{5} +18.9737 q^{7} +12.6491 q^{11} +38.0000 q^{13} -34.0000 q^{17} -101.193 q^{19} -82.2192 q^{23} +25.0000 q^{25} -270.000 q^{29} -341.526 q^{31} -94.8683 q^{35} +206.000 q^{37} +270.000 q^{41} +537.587 q^{43} +132.816 q^{47} +17.0000 q^{49} +258.000 q^{53} -63.2456 q^{55} +75.8947 q^{59} -250.000 q^{61} -190.000 q^{65} -815.868 q^{67} +645.105 q^{71} -1078.00 q^{73} +240.000 q^{77} -278.280 q^{79} +1106.80 q^{83} +170.000 q^{85} -890.000 q^{89} +720.999 q^{91} +505.964 q^{95} -254.000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 10 q^{5} + 76 q^{13} - 68 q^{17} + 50 q^{25} - 540 q^{29} + 412 q^{37} + 540 q^{41} + 34 q^{49} + 516 q^{53} - 500 q^{61} - 380 q^{65} - 2156 q^{73} + 480 q^{77} + 340 q^{85} - 1780 q^{89} - 508 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −5.00000 −0.447214
\(6\) 0 0
\(7\) 18.9737 1.02448 0.512241 0.858842i \(-0.328816\pi\)
0.512241 + 0.858842i \(0.328816\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 12.6491 0.346714 0.173357 0.984859i \(-0.444539\pi\)
0.173357 + 0.984859i \(0.444539\pi\)
\(12\) 0 0
\(13\) 38.0000 0.810716 0.405358 0.914158i \(-0.367147\pi\)
0.405358 + 0.914158i \(0.367147\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −34.0000 −0.485071 −0.242536 0.970143i \(-0.577979\pi\)
−0.242536 + 0.970143i \(0.577979\pi\)
\(18\) 0 0
\(19\) −101.193 −1.22185 −0.610927 0.791687i \(-0.709203\pi\)
−0.610927 + 0.791687i \(0.709203\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −82.2192 −0.745387 −0.372693 0.927955i \(-0.621566\pi\)
−0.372693 + 0.927955i \(0.621566\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −270.000 −1.72889 −0.864444 0.502729i \(-0.832329\pi\)
−0.864444 + 0.502729i \(0.832329\pi\)
\(30\) 0 0
\(31\) −341.526 −1.97871 −0.989353 0.145537i \(-0.953509\pi\)
−0.989353 + 0.145537i \(0.953509\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −94.8683 −0.458162
\(36\) 0 0
\(37\) 206.000 0.915302 0.457651 0.889132i \(-0.348691\pi\)
0.457651 + 0.889132i \(0.348691\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 270.000 1.02846 0.514231 0.857652i \(-0.328078\pi\)
0.514231 + 0.857652i \(0.328078\pi\)
\(42\) 0 0
\(43\) 537.587 1.90654 0.953271 0.302117i \(-0.0976935\pi\)
0.953271 + 0.302117i \(0.0976935\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 132.816 0.412195 0.206097 0.978531i \(-0.433924\pi\)
0.206097 + 0.978531i \(0.433924\pi\)
\(48\) 0 0
\(49\) 17.0000 0.0495627
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 258.000 0.668661 0.334330 0.942456i \(-0.391490\pi\)
0.334330 + 0.942456i \(0.391490\pi\)
\(54\) 0 0
\(55\) −63.2456 −0.155055
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 75.8947 0.167469 0.0837343 0.996488i \(-0.473315\pi\)
0.0837343 + 0.996488i \(0.473315\pi\)
\(60\) 0 0
\(61\) −250.000 −0.524741 −0.262371 0.964967i \(-0.584504\pi\)
−0.262371 + 0.964967i \(0.584504\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −190.000 −0.362563
\(66\) 0 0
\(67\) −815.868 −1.48767 −0.743837 0.668362i \(-0.766996\pi\)
−0.743837 + 0.668362i \(0.766996\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 645.105 1.07831 0.539154 0.842207i \(-0.318744\pi\)
0.539154 + 0.842207i \(0.318744\pi\)
\(72\) 0 0
\(73\) −1078.00 −1.72836 −0.864181 0.503182i \(-0.832163\pi\)
−0.864181 + 0.503182i \(0.832163\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 240.000 0.355202
\(78\) 0 0
\(79\) −278.280 −0.396316 −0.198158 0.980170i \(-0.563496\pi\)
−0.198158 + 0.980170i \(0.563496\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 1106.80 1.46370 0.731848 0.681468i \(-0.238658\pi\)
0.731848 + 0.681468i \(0.238658\pi\)
\(84\) 0 0
\(85\) 170.000 0.216930
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −890.000 −1.06000 −0.529999 0.847998i \(-0.677808\pi\)
−0.529999 + 0.847998i \(0.677808\pi\)
\(90\) 0 0
\(91\) 720.999 0.830563
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 505.964 0.546430
\(96\) 0 0
\(97\) −254.000 −0.265874 −0.132937 0.991124i \(-0.542441\pi\)
−0.132937 + 0.991124i \(0.542441\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −598.000 −0.589141 −0.294570 0.955630i \(-0.595177\pi\)
−0.294570 + 0.955630i \(0.595177\pi\)
\(102\) 0 0
\(103\) −499.640 −0.477971 −0.238985 0.971023i \(-0.576815\pi\)
−0.238985 + 0.971023i \(0.576815\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −626.131 −0.565704 −0.282852 0.959164i \(-0.591281\pi\)
−0.282852 + 0.959164i \(0.591281\pi\)
\(108\) 0 0
\(109\) 854.000 0.750444 0.375222 0.926935i \(-0.377567\pi\)
0.375222 + 0.926935i \(0.377567\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −1698.00 −1.41358 −0.706789 0.707424i \(-0.749857\pi\)
−0.706789 + 0.707424i \(0.749857\pi\)
\(114\) 0 0
\(115\) 411.096 0.333347
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −645.105 −0.496947
\(120\) 0 0
\(121\) −1171.00 −0.879790
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) −234.009 −0.163503 −0.0817516 0.996653i \(-0.526051\pi\)
−0.0817516 + 0.996653i \(0.526051\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −1732.93 −1.15578 −0.577888 0.816116i \(-0.696123\pi\)
−0.577888 + 0.816116i \(0.696123\pi\)
\(132\) 0 0
\(133\) −1920.00 −1.25177
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −1546.00 −0.964115 −0.482057 0.876140i \(-0.660110\pi\)
−0.482057 + 0.876140i \(0.660110\pi\)
\(138\) 0 0
\(139\) 328.877 0.200683 0.100342 0.994953i \(-0.468006\pi\)
0.100342 + 0.994953i \(0.468006\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 480.666 0.281086
\(144\) 0 0
\(145\) 1350.00 0.773182
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −3246.00 −1.78472 −0.892358 0.451328i \(-0.850950\pi\)
−0.892358 + 0.451328i \(0.850950\pi\)
\(150\) 0 0
\(151\) −1505.24 −0.811225 −0.405613 0.914045i \(-0.632942\pi\)
−0.405613 + 0.914045i \(0.632942\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 1707.63 0.884904
\(156\) 0 0
\(157\) −1226.00 −0.623219 −0.311610 0.950210i \(-0.600868\pi\)
−0.311610 + 0.950210i \(0.600868\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −1560.00 −0.763635
\(162\) 0 0
\(163\) 1448.32 0.695960 0.347980 0.937502i \(-0.386868\pi\)
0.347980 + 0.937502i \(0.386868\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 2333.76 1.08139 0.540694 0.841219i \(-0.318162\pi\)
0.540694 + 0.841219i \(0.318162\pi\)
\(168\) 0 0
\(169\) −753.000 −0.342740
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 3098.00 1.36148 0.680742 0.732524i \(-0.261658\pi\)
0.680742 + 0.732524i \(0.261658\pi\)
\(174\) 0 0
\(175\) 474.342 0.204896
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −2352.73 −0.982411 −0.491206 0.871044i \(-0.663444\pi\)
−0.491206 + 0.871044i \(0.663444\pi\)
\(180\) 0 0
\(181\) 2182.00 0.896060 0.448030 0.894019i \(-0.352126\pi\)
0.448030 + 0.894019i \(0.352126\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −1030.00 −0.409336
\(186\) 0 0
\(187\) −430.070 −0.168181
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −3023.14 −1.14527 −0.572635 0.819810i \(-0.694079\pi\)
−0.572635 + 0.819810i \(0.694079\pi\)
\(192\) 0 0
\(193\) 1298.00 0.484104 0.242052 0.970263i \(-0.422180\pi\)
0.242052 + 0.970263i \(0.422180\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −2846.00 −1.02928 −0.514642 0.857405i \(-0.672075\pi\)
−0.514642 + 0.857405i \(0.672075\pi\)
\(198\) 0 0
\(199\) 3592.35 1.27967 0.639836 0.768511i \(-0.279002\pi\)
0.639836 + 0.768511i \(0.279002\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −5122.89 −1.77121
\(204\) 0 0
\(205\) −1350.00 −0.459942
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −1280.00 −0.423634
\(210\) 0 0
\(211\) −4186.86 −1.36604 −0.683021 0.730398i \(-0.739334\pi\)
−0.683021 + 0.730398i \(0.739334\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −2687.94 −0.852631
\(216\) 0 0
\(217\) −6480.00 −2.02715
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −1292.00 −0.393255
\(222\) 0 0
\(223\) 4762.39 1.43010 0.715052 0.699071i \(-0.246403\pi\)
0.715052 + 0.699071i \(0.246403\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −1663.36 −0.486348 −0.243174 0.969983i \(-0.578189\pi\)
−0.243174 + 0.969983i \(0.578189\pi\)
\(228\) 0 0
\(229\) −1050.00 −0.302995 −0.151498 0.988458i \(-0.548410\pi\)
−0.151498 + 0.988458i \(0.548410\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −2778.00 −0.781085 −0.390543 0.920585i \(-0.627713\pi\)
−0.390543 + 0.920585i \(0.627713\pi\)
\(234\) 0 0
\(235\) −664.078 −0.184339
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 2555.12 0.691536 0.345768 0.938320i \(-0.387618\pi\)
0.345768 + 0.938320i \(0.387618\pi\)
\(240\) 0 0
\(241\) −5350.00 −1.42997 −0.714987 0.699138i \(-0.753567\pi\)
−0.714987 + 0.699138i \(0.753567\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −85.0000 −0.0221651
\(246\) 0 0
\(247\) −3845.33 −0.990577
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 5881.84 1.47912 0.739558 0.673093i \(-0.235034\pi\)
0.739558 + 0.673093i \(0.235034\pi\)
\(252\) 0 0
\(253\) −1040.00 −0.258436
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −1074.00 −0.260678 −0.130339 0.991469i \(-0.541607\pi\)
−0.130339 + 0.991469i \(0.541607\pi\)
\(258\) 0 0
\(259\) 3908.58 0.937711
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 1486.27 0.348469 0.174235 0.984704i \(-0.444255\pi\)
0.174235 + 0.984704i \(0.444255\pi\)
\(264\) 0 0
\(265\) −1290.00 −0.299034
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −406.000 −0.0920233 −0.0460116 0.998941i \(-0.514651\pi\)
−0.0460116 + 0.998941i \(0.514651\pi\)
\(270\) 0 0
\(271\) 392.122 0.0878957 0.0439479 0.999034i \(-0.486006\pi\)
0.0439479 + 0.999034i \(0.486006\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 316.228 0.0693427
\(276\) 0 0
\(277\) 5934.00 1.28715 0.643573 0.765385i \(-0.277451\pi\)
0.643573 + 0.765385i \(0.277451\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 1870.00 0.396992 0.198496 0.980102i \(-0.436394\pi\)
0.198496 + 0.980102i \(0.436394\pi\)
\(282\) 0 0
\(283\) 4888.88 1.02690 0.513452 0.858118i \(-0.328366\pi\)
0.513452 + 0.858118i \(0.328366\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 5122.89 1.05364
\(288\) 0 0
\(289\) −3757.00 −0.764706
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −5198.00 −1.03642 −0.518209 0.855254i \(-0.673401\pi\)
−0.518209 + 0.855254i \(0.673401\pi\)
\(294\) 0 0
\(295\) −379.473 −0.0748942
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −3124.33 −0.604297
\(300\) 0 0
\(301\) 10200.0 1.95322
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 1250.00 0.234671
\(306\) 0 0
\(307\) −3750.46 −0.697232 −0.348616 0.937266i \(-0.613348\pi\)
−0.348616 + 0.937266i \(0.613348\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −6261.31 −1.14163 −0.570814 0.821079i \(-0.693372\pi\)
−0.570814 + 0.821079i \(0.693372\pi\)
\(312\) 0 0
\(313\) 2218.00 0.400539 0.200270 0.979741i \(-0.435818\pi\)
0.200270 + 0.979741i \(0.435818\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −4134.00 −0.732456 −0.366228 0.930525i \(-0.619351\pi\)
−0.366228 + 0.930525i \(0.619351\pi\)
\(318\) 0 0
\(319\) −3415.26 −0.599429
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 3440.56 0.592687
\(324\) 0 0
\(325\) 950.000 0.162143
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 2520.00 0.422286
\(330\) 0 0
\(331\) 11953.4 1.98495 0.992476 0.122443i \(-0.0390729\pi\)
0.992476 + 0.122443i \(0.0390729\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 4079.34 0.665308
\(336\) 0 0
\(337\) −8014.00 −1.29540 −0.647701 0.761895i \(-0.724269\pi\)
−0.647701 + 0.761895i \(0.724269\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −4320.00 −0.686044
\(342\) 0 0
\(343\) −6185.42 −0.973706
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 4484.11 0.693716 0.346858 0.937918i \(-0.387248\pi\)
0.346858 + 0.937918i \(0.387248\pi\)
\(348\) 0 0
\(349\) 910.000 0.139574 0.0697868 0.997562i \(-0.477768\pi\)
0.0697868 + 0.997562i \(0.477768\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −12962.0 −1.95438 −0.977192 0.212357i \(-0.931886\pi\)
−0.977192 + 0.212357i \(0.931886\pi\)
\(354\) 0 0
\(355\) −3225.52 −0.482234
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −12193.7 −1.79265 −0.896325 0.443398i \(-0.853773\pi\)
−0.896325 + 0.443398i \(0.853773\pi\)
\(360\) 0 0
\(361\) 3381.00 0.492929
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 5390.00 0.772947
\(366\) 0 0
\(367\) 3434.23 0.488462 0.244231 0.969717i \(-0.421464\pi\)
0.244231 + 0.969717i \(0.421464\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 4895.21 0.685031
\(372\) 0 0
\(373\) 4622.00 0.641603 0.320802 0.947146i \(-0.396048\pi\)
0.320802 + 0.947146i \(0.396048\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −10260.0 −1.40164
\(378\) 0 0
\(379\) −8449.61 −1.14519 −0.572595 0.819838i \(-0.694063\pi\)
−0.572595 + 0.819838i \(0.694063\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 1815.15 0.242166 0.121083 0.992642i \(-0.461363\pi\)
0.121083 + 0.992642i \(0.461363\pi\)
\(384\) 0 0
\(385\) −1200.00 −0.158851
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 11106.0 1.44755 0.723774 0.690037i \(-0.242406\pi\)
0.723774 + 0.690037i \(0.242406\pi\)
\(390\) 0 0
\(391\) 2795.45 0.361566
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 1391.40 0.177238
\(396\) 0 0
\(397\) −5754.00 −0.727418 −0.363709 0.931513i \(-0.618490\pi\)
−0.363709 + 0.931513i \(0.618490\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 1118.00 0.139228 0.0696138 0.997574i \(-0.477823\pi\)
0.0696138 + 0.997574i \(0.477823\pi\)
\(402\) 0 0
\(403\) −12978.0 −1.60417
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 2605.72 0.317348
\(408\) 0 0
\(409\) −11374.0 −1.37508 −0.687540 0.726146i \(-0.741310\pi\)
−0.687540 + 0.726146i \(0.741310\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 1440.00 0.171568
\(414\) 0 0
\(415\) −5533.99 −0.654585
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 12674.4 1.47777 0.738885 0.673832i \(-0.235353\pi\)
0.738885 + 0.673832i \(0.235353\pi\)
\(420\) 0 0
\(421\) 1150.00 0.133130 0.0665648 0.997782i \(-0.478796\pi\)
0.0665648 + 0.997782i \(0.478796\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −850.000 −0.0970143
\(426\) 0 0
\(427\) −4743.42 −0.537588
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −1353.45 −0.151261 −0.0756307 0.997136i \(-0.524097\pi\)
−0.0756307 + 0.997136i \(0.524097\pi\)
\(432\) 0 0
\(433\) −7918.00 −0.878787 −0.439394 0.898295i \(-0.644807\pi\)
−0.439394 + 0.898295i \(0.644807\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 8320.00 0.910754
\(438\) 0 0
\(439\) 14217.6 1.54572 0.772858 0.634579i \(-0.218827\pi\)
0.772858 + 0.634579i \(0.218827\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −10581.0 −1.13480 −0.567401 0.823441i \(-0.692051\pi\)
−0.567401 + 0.823441i \(0.692051\pi\)
\(444\) 0 0
\(445\) 4450.00 0.474045
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −4474.00 −0.470247 −0.235124 0.971965i \(-0.575550\pi\)
−0.235124 + 0.971965i \(0.575550\pi\)
\(450\) 0 0
\(451\) 3415.26 0.356582
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −3605.00 −0.371439
\(456\) 0 0
\(457\) 4154.00 0.425199 0.212599 0.977139i \(-0.431807\pi\)
0.212599 + 0.977139i \(0.431807\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 11282.0 1.13982 0.569908 0.821709i \(-0.306979\pi\)
0.569908 + 0.821709i \(0.306979\pi\)
\(462\) 0 0
\(463\) −5458.09 −0.547860 −0.273930 0.961750i \(-0.588324\pi\)
−0.273930 + 0.961750i \(0.588324\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 3775.76 0.374136 0.187068 0.982347i \(-0.440102\pi\)
0.187068 + 0.982347i \(0.440102\pi\)
\(468\) 0 0
\(469\) −15480.0 −1.52409
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 6800.00 0.661024
\(474\) 0 0
\(475\) −2529.82 −0.244371
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −8930.27 −0.851847 −0.425923 0.904759i \(-0.640051\pi\)
−0.425923 + 0.904759i \(0.640051\pi\)
\(480\) 0 0
\(481\) 7828.00 0.742050
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 1270.00 0.118903
\(486\) 0 0
\(487\) 2422.30 0.225390 0.112695 0.993630i \(-0.464052\pi\)
0.112695 + 0.993630i \(0.464052\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −8993.52 −0.826623 −0.413311 0.910590i \(-0.635628\pi\)
−0.413311 + 0.910590i \(0.635628\pi\)
\(492\) 0 0
\(493\) 9180.00 0.838634
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 12240.0 1.10471
\(498\) 0 0
\(499\) 3541.75 0.317737 0.158868 0.987300i \(-0.449215\pi\)
0.158868 + 0.987300i \(0.449215\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −2384.36 −0.211358 −0.105679 0.994400i \(-0.533702\pi\)
−0.105679 + 0.994400i \(0.533702\pi\)
\(504\) 0 0
\(505\) 2990.00 0.263472
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −2350.00 −0.204640 −0.102320 0.994752i \(-0.532627\pi\)
−0.102320 + 0.994752i \(0.532627\pi\)
\(510\) 0 0
\(511\) −20453.6 −1.77067
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 2498.20 0.213755
\(516\) 0 0
\(517\) 1680.00 0.142914
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −858.000 −0.0721491 −0.0360745 0.999349i \(-0.511485\pi\)
−0.0360745 + 0.999349i \(0.511485\pi\)
\(522\) 0 0
\(523\) 5799.62 0.484894 0.242447 0.970165i \(-0.422050\pi\)
0.242447 + 0.970165i \(0.422050\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 11611.9 0.959813
\(528\) 0 0
\(529\) −5407.00 −0.444399
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 10260.0 0.833790
\(534\) 0 0
\(535\) 3130.65 0.252991
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 215.035 0.0171841
\(540\) 0 0
\(541\) 20478.0 1.62739 0.813695 0.581292i \(-0.197453\pi\)
0.813695 + 0.581292i \(0.197453\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −4270.00 −0.335609
\(546\) 0 0
\(547\) −10429.2 −0.815210 −0.407605 0.913158i \(-0.633636\pi\)
−0.407605 + 0.913158i \(0.633636\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 27322.1 2.11245
\(552\) 0 0
\(553\) −5280.00 −0.406019
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 13194.0 1.00368 0.501838 0.864962i \(-0.332657\pi\)
0.501838 + 0.864962i \(0.332657\pi\)
\(558\) 0 0
\(559\) 20428.3 1.54566
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −9771.44 −0.731469 −0.365734 0.930719i \(-0.619182\pi\)
−0.365734 + 0.930719i \(0.619182\pi\)
\(564\) 0 0
\(565\) 8490.00 0.632172
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −4594.00 −0.338472 −0.169236 0.985576i \(-0.554130\pi\)
−0.169236 + 0.985576i \(0.554130\pi\)
\(570\) 0 0
\(571\) −4389.24 −0.321688 −0.160844 0.986980i \(-0.551422\pi\)
−0.160844 + 0.986980i \(0.551422\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −2055.48 −0.149077
\(576\) 0 0
\(577\) −14926.0 −1.07691 −0.538455 0.842654i \(-0.680992\pi\)
−0.538455 + 0.842654i \(0.680992\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 21000.0 1.49953
\(582\) 0 0
\(583\) 3263.47 0.231834
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 8101.76 0.569668 0.284834 0.958577i \(-0.408061\pi\)
0.284834 + 0.958577i \(0.408061\pi\)
\(588\) 0 0
\(589\) 34560.0 2.41769
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 26958.0 1.86683 0.933417 0.358794i \(-0.116812\pi\)
0.933417 + 0.358794i \(0.116812\pi\)
\(594\) 0 0
\(595\) 3225.52 0.222241
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 6349.85 0.433135 0.216568 0.976268i \(-0.430514\pi\)
0.216568 + 0.976268i \(0.430514\pi\)
\(600\) 0 0
\(601\) 21970.0 1.49114 0.745570 0.666427i \(-0.232177\pi\)
0.745570 + 0.666427i \(0.232177\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 5855.00 0.393454
\(606\) 0 0
\(607\) −3876.95 −0.259243 −0.129622 0.991564i \(-0.541376\pi\)
−0.129622 + 0.991564i \(0.541376\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 5047.00 0.334173
\(612\) 0 0
\(613\) 2878.00 0.189627 0.0948135 0.995495i \(-0.469775\pi\)
0.0948135 + 0.995495i \(0.469775\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −27354.0 −1.78481 −0.892407 0.451231i \(-0.850985\pi\)
−0.892407 + 0.451231i \(0.850985\pi\)
\(618\) 0 0
\(619\) −12547.9 −0.814771 −0.407386 0.913256i \(-0.633559\pi\)
−0.407386 + 0.913256i \(0.633559\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −16886.6 −1.08595
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −7004.00 −0.443987
\(630\) 0 0
\(631\) 30876.5 1.94798 0.973988 0.226598i \(-0.0727605\pi\)
0.973988 + 0.226598i \(0.0727605\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 1170.04 0.0731208
\(636\) 0 0
\(637\) 646.000 0.0401812
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 9430.00 0.581065 0.290532 0.956865i \(-0.406168\pi\)
0.290532 + 0.956865i \(0.406168\pi\)
\(642\) 0 0
\(643\) 9847.33 0.603952 0.301976 0.953316i \(-0.402354\pi\)
0.301976 + 0.953316i \(0.402354\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −30048.0 −1.82582 −0.912911 0.408158i \(-0.866171\pi\)
−0.912911 + 0.408158i \(0.866171\pi\)
\(648\) 0 0
\(649\) 960.000 0.0580636
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −18742.0 −1.12317 −0.561586 0.827418i \(-0.689809\pi\)
−0.561586 + 0.827418i \(0.689809\pi\)
\(654\) 0 0
\(655\) 8664.64 0.516879
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −8323.11 −0.491992 −0.245996 0.969271i \(-0.579115\pi\)
−0.245996 + 0.969271i \(0.579115\pi\)
\(660\) 0 0
\(661\) 7630.00 0.448975 0.224488 0.974477i \(-0.427929\pi\)
0.224488 + 0.974477i \(0.427929\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 9600.00 0.559808
\(666\) 0 0
\(667\) 22199.2 1.28869
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −3162.28 −0.181935
\(672\) 0 0
\(673\) −10878.0 −0.623055 −0.311528 0.950237i \(-0.600841\pi\)
−0.311528 + 0.950237i \(0.600841\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −126.000 −0.00715299 −0.00357649 0.999994i \(-0.501138\pi\)
−0.00357649 + 0.999994i \(0.501138\pi\)
\(678\) 0 0
\(679\) −4819.31 −0.272383
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 16412.2 0.919467 0.459734 0.888057i \(-0.347945\pi\)
0.459734 + 0.888057i \(0.347945\pi\)
\(684\) 0 0
\(685\) 7730.00 0.431165
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 9804.00 0.542094
\(690\) 0 0
\(691\) 13193.0 0.726319 0.363159 0.931727i \(-0.381698\pi\)
0.363159 + 0.931727i \(0.381698\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −1644.38 −0.0897483
\(696\) 0 0
\(697\) −9180.00 −0.498877
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 22010.0 1.18589 0.592943 0.805244i \(-0.297966\pi\)
0.592943 + 0.805244i \(0.297966\pi\)
\(702\) 0 0
\(703\) −20845.7 −1.11837
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −11346.3 −0.603564
\(708\) 0 0
\(709\) 550.000 0.0291335 0.0145668 0.999894i \(-0.495363\pi\)
0.0145668 + 0.999894i \(0.495363\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 28080.0 1.47490
\(714\) 0 0
\(715\) −2403.33 −0.125706
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 17936.4 0.930343 0.465171 0.885221i \(-0.345993\pi\)
0.465171 + 0.885221i \(0.345993\pi\)
\(720\) 0 0
\(721\) −9480.00 −0.489672
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −6750.00 −0.345778
\(726\) 0 0
\(727\) −16728.4 −0.853403 −0.426701 0.904393i \(-0.640324\pi\)
−0.426701 + 0.904393i \(0.640324\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −18278.0 −0.924808
\(732\) 0 0
\(733\) 2422.00 0.122044 0.0610222 0.998136i \(-0.480564\pi\)
0.0610222 + 0.998136i \(0.480564\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −10320.0 −0.515797
\(738\) 0 0
\(739\) −19555.5 −0.973426 −0.486713 0.873562i \(-0.661804\pi\)
−0.486713 + 0.873562i \(0.661804\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 31059.9 1.53362 0.766808 0.641876i \(-0.221844\pi\)
0.766808 + 0.641876i \(0.221844\pi\)
\(744\) 0 0
\(745\) 16230.0 0.798149
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −11880.0 −0.579554
\(750\) 0 0
\(751\) 12155.8 0.590641 0.295320 0.955398i \(-0.404574\pi\)
0.295320 + 0.955398i \(0.404574\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 7526.22 0.362791
\(756\) 0 0
\(757\) −19346.0 −0.928854 −0.464427 0.885611i \(-0.653740\pi\)
−0.464427 + 0.885611i \(0.653740\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 33078.0 1.57566 0.787830 0.615893i \(-0.211205\pi\)
0.787830 + 0.615893i \(0.211205\pi\)
\(762\) 0 0
\(763\) 16203.5 0.768816
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 2884.00 0.135769
\(768\) 0 0
\(769\) 32530.0 1.52544 0.762719 0.646730i \(-0.223864\pi\)
0.762719 + 0.646730i \(0.223864\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 12002.0 0.558450 0.279225 0.960226i \(-0.409922\pi\)
0.279225 + 0.960226i \(0.409922\pi\)
\(774\) 0 0
\(775\) −8538.15 −0.395741
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −27322.1 −1.25663
\(780\) 0 0
\(781\) 8160.00 0.373864
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 6130.00 0.278712
\(786\) 0 0
\(787\) 19954.0 0.903789 0.451895 0.892071i \(-0.350748\pi\)
0.451895 + 0.892071i \(0.350748\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −32217.3 −1.44819
\(792\) 0 0
\(793\) −9500.00 −0.425416
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 32666.0 1.45181 0.725903 0.687797i \(-0.241422\pi\)
0.725903 + 0.687797i \(0.241422\pi\)
\(798\) 0 0
\(799\) −4515.73 −0.199944
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −13635.7 −0.599246
\(804\) 0 0
\(805\) 7800.00 0.341508
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 23110.0 1.00433 0.502166 0.864771i \(-0.332537\pi\)
0.502166 + 0.864771i \(0.332537\pi\)
\(810\) 0 0
\(811\) −35632.5 −1.54282 −0.771411 0.636338i \(-0.780448\pi\)
−0.771411 + 0.636338i \(0.780448\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −7241.62 −0.311243
\(816\) 0 0
\(817\) −54400.0 −2.32952
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 8850.00 0.376208 0.188104 0.982149i \(-0.439766\pi\)
0.188104 + 0.982149i \(0.439766\pi\)
\(822\) 0 0
\(823\) 13895.0 0.588519 0.294259 0.955726i \(-0.404927\pi\)
0.294259 + 0.955726i \(0.404927\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −35841.3 −1.50704 −0.753520 0.657425i \(-0.771646\pi\)
−0.753520 + 0.657425i \(0.771646\pi\)
\(828\) 0 0
\(829\) −23034.0 −0.965023 −0.482511 0.875890i \(-0.660275\pi\)
−0.482511 + 0.875890i \(0.660275\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −578.000 −0.0240414
\(834\) 0 0
\(835\) −11668.8 −0.483612
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −36960.7 −1.52089 −0.760444 0.649403i \(-0.775019\pi\)
−0.760444 + 0.649403i \(0.775019\pi\)
\(840\) 0 0
\(841\) 48511.0 1.98905
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 3765.00 0.153278
\(846\) 0 0
\(847\) −22218.2 −0.901328
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −16937.2 −0.682254
\(852\) 0 0
\(853\) −19122.0 −0.767555 −0.383778 0.923425i \(-0.625377\pi\)
−0.383778 + 0.923425i \(0.625377\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −17786.0 −0.708936 −0.354468 0.935068i \(-0.615338\pi\)
−0.354468 + 0.935068i \(0.615338\pi\)
\(858\) 0 0
\(859\) 28713.5 1.14050 0.570251 0.821470i \(-0.306846\pi\)
0.570251 + 0.821470i \(0.306846\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 23748.7 0.936750 0.468375 0.883530i \(-0.344840\pi\)
0.468375 + 0.883530i \(0.344840\pi\)
\(864\) 0 0
\(865\) −15490.0 −0.608874
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −3520.00 −0.137408
\(870\) 0 0
\(871\) −31003.0 −1.20608
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −2371.71 −0.0916324
\(876\) 0 0
\(877\) −7706.00 −0.296708 −0.148354 0.988934i \(-0.547398\pi\)
−0.148354 + 0.988934i \(0.547398\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −10410.0 −0.398095 −0.199048 0.979990i \(-0.563785\pi\)
−0.199048 + 0.979990i \(0.563785\pi\)
\(882\) 0 0
\(883\) 26822.4 1.02225 0.511125 0.859506i \(-0.329229\pi\)
0.511125 + 0.859506i \(0.329229\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 21130.3 0.799873 0.399937 0.916543i \(-0.369032\pi\)
0.399937 + 0.916543i \(0.369032\pi\)
\(888\) 0 0
\(889\) −4440.00 −0.167506
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −13440.0 −0.503642
\(894\) 0 0
\(895\) 11763.7 0.439348
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 92212.0 3.42096
\(900\) 0 0
\(901\) −8772.00 −0.324348
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −10910.0 −0.400730
\(906\) 0 0
\(907\) 19220.3 0.703639 0.351819 0.936068i \(-0.385563\pi\)
0.351819 + 0.936068i \(0.385563\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 39402.0 1.43298 0.716491 0.697597i \(-0.245747\pi\)
0.716491 + 0.697597i \(0.245747\pi\)
\(912\) 0 0
\(913\) 14000.0 0.507483
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −32880.0 −1.18407
\(918\) 0 0
\(919\) −42931.1 −1.54099 −0.770493 0.637449i \(-0.779990\pi\)
−0.770493 + 0.637449i \(0.779990\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 24514.0 0.874201
\(924\) 0 0
\(925\) 5150.00 0.183060
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −34746.0 −1.22710 −0.613552 0.789654i \(-0.710260\pi\)
−0.613552 + 0.789654i \(0.710260\pi\)
\(930\) 0 0
\(931\) −1720.28 −0.0605584
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 2150.35 0.0752128
\(936\) 0 0
\(937\) 21594.0 0.752876 0.376438 0.926442i \(-0.377149\pi\)
0.376438 + 0.926442i \(0.377149\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 20018.0 0.693484 0.346742 0.937961i \(-0.387288\pi\)
0.346742 + 0.937961i \(0.387288\pi\)
\(942\) 0 0
\(943\) −22199.2 −0.766601
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 46150.3 1.58361 0.791807 0.610771i \(-0.209141\pi\)
0.791807 + 0.610771i \(0.209141\pi\)
\(948\) 0 0
\(949\) −40964.0 −1.40121
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 342.000 0.0116248 0.00581242 0.999983i \(-0.498150\pi\)
0.00581242 + 0.999983i \(0.498150\pi\)
\(954\) 0 0
\(955\) 15115.7 0.512180
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −29333.3 −0.987718
\(960\) 0 0
\(961\) 86849.0 2.91528
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −6490.00 −0.216498
\(966\) 0 0
\(967\) 51728.5 1.72025 0.860123 0.510087i \(-0.170387\pi\)
0.860123 + 0.510087i \(0.170387\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −3099.03 −0.102423 −0.0512115 0.998688i \(-0.516308\pi\)
−0.0512115 + 0.998688i \(0.516308\pi\)
\(972\) 0 0
\(973\) 6240.00 0.205596
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −26226.0 −0.858796 −0.429398 0.903115i \(-0.641274\pi\)
−0.429398 + 0.903115i \(0.641274\pi\)
\(978\) 0 0
\(979\) −11257.7 −0.367516
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 11049.0 0.358503 0.179251 0.983803i \(-0.442632\pi\)
0.179251 + 0.983803i \(0.442632\pi\)
\(984\) 0 0
\(985\) 14230.0 0.460310
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −44200.0 −1.42111
\(990\) 0 0
\(991\) −45928.9 −1.47223 −0.736115 0.676856i \(-0.763342\pi\)
−0.736115 + 0.676856i \(0.763342\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −17961.7 −0.572287
\(996\) 0 0
\(997\) −31026.0 −0.985560 −0.492780 0.870154i \(-0.664019\pi\)
−0.492780 + 0.870154i \(0.664019\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1440.4.a.v.1.2 2
3.2 odd 2 160.4.a.f.1.2 yes 2
4.3 odd 2 inner 1440.4.a.v.1.1 2
12.11 even 2 160.4.a.f.1.1 2
15.2 even 4 800.4.c.j.449.1 4
15.8 even 4 800.4.c.j.449.3 4
15.14 odd 2 800.4.a.p.1.1 2
24.5 odd 2 320.4.a.p.1.1 2
24.11 even 2 320.4.a.p.1.2 2
48.5 odd 4 1280.4.d.u.641.2 4
48.11 even 4 1280.4.d.u.641.4 4
48.29 odd 4 1280.4.d.u.641.3 4
48.35 even 4 1280.4.d.u.641.1 4
60.23 odd 4 800.4.c.j.449.2 4
60.47 odd 4 800.4.c.j.449.4 4
60.59 even 2 800.4.a.p.1.2 2
120.29 odd 2 1600.4.a.ch.1.2 2
120.59 even 2 1600.4.a.ch.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
160.4.a.f.1.1 2 12.11 even 2
160.4.a.f.1.2 yes 2 3.2 odd 2
320.4.a.p.1.1 2 24.5 odd 2
320.4.a.p.1.2 2 24.11 even 2
800.4.a.p.1.1 2 15.14 odd 2
800.4.a.p.1.2 2 60.59 even 2
800.4.c.j.449.1 4 15.2 even 4
800.4.c.j.449.2 4 60.23 odd 4
800.4.c.j.449.3 4 15.8 even 4
800.4.c.j.449.4 4 60.47 odd 4
1280.4.d.u.641.1 4 48.35 even 4
1280.4.d.u.641.2 4 48.5 odd 4
1280.4.d.u.641.3 4 48.29 odd 4
1280.4.d.u.641.4 4 48.11 even 4
1440.4.a.v.1.1 2 4.3 odd 2 inner
1440.4.a.v.1.2 2 1.1 even 1 trivial
1600.4.a.ch.1.1 2 120.59 even 2
1600.4.a.ch.1.2 2 120.29 odd 2