Properties

Label 320.10.a.u
Level $320$
Weight $10$
Character orbit 320.a
Self dual yes
Analytic conductor $164.811$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [320,10,Mod(1,320)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(320, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("320.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 320 = 2^{6} \cdot 5 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 320.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,-84,0,-1875,0,-5520,0,47079] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(164.811467572\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.7117.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 19x - 22 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{9}\cdot 3^{3}\cdot 5 \)
Twist minimal: no (minimal twist has level 40)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 - 28) q^{3} - 625 q^{5} + ( - \beta_{2} + 17 \beta_1 - 1840) q^{7} + (4 \beta_{2} + 76 \beta_1 + 15693) q^{9} + ( - \beta_{2} - 292 \beta_1 - 1852) q^{11} + (16 \beta_{2} + 28 \beta_1 + 27698) q^{13}+ \cdots + ( - 70093 \beta_{2} - 10349092 \beta_1 - 957255180) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 84 q^{3} - 1875 q^{5} - 5520 q^{7} + 47079 q^{9} - 5556 q^{11} + 83094 q^{13} + 52500 q^{15} + 367062 q^{17} - 1489116 q^{19} - 1573728 q^{21} - 499920 q^{23} + 1171875 q^{25} - 7695432 q^{27} - 5234682 q^{29}+ \cdots - 2871765540 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 19x - 22 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( -12\nu^{2} + 84\nu + 128 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( 1272\nu^{2} - 3144\nu - 15488 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + 106\beta _1 + 1920 ) / 5760 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 7\beta_{2} + 262\beta _1 + 74880 ) / 5760 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
5.33466
−1.41013
−2.92453
0 −262.608 0 −625.000 0 −1790.86 0 49280.0 0
1.2 0 −13.6876 0 −625.000 0 6441.91 0 −19495.7 0
1.3 0 192.296 0 −625.000 0 −10171.1 0 17294.6 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 320.10.a.u 3
4.b odd 2 1 320.10.a.v 3
8.b even 2 1 40.10.a.d 3
8.d odd 2 1 80.10.a.k 3
24.h odd 2 1 360.10.a.j 3
40.e odd 2 1 400.10.a.x 3
40.f even 2 1 200.10.a.f 3
40.i odd 4 2 200.10.c.f 6
40.k even 4 2 400.10.c.r 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
40.10.a.d 3 8.b even 2 1
80.10.a.k 3 8.d odd 2 1
200.10.a.f 3 40.f even 2 1
200.10.c.f 6 40.i odd 4 2
320.10.a.u 3 1.a even 1 1 trivial
320.10.a.v 3 4.b odd 2 1
360.10.a.j 3 24.h odd 2 1
400.10.a.x 3 40.e odd 2 1
400.10.c.r 6 40.k even 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{3} + 84T_{3}^{2} - 49536T_{3} - 691200 \) acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(320))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( T^{3} + 84 T^{2} + \cdots - 691200 \) Copy content Toggle raw display
$5$ \( (T + 625)^{3} \) Copy content Toggle raw display
$7$ \( T^{3} + \cdots - 117339254144 \) Copy content Toggle raw display
$11$ \( T^{3} + \cdots + 46675499449024 \) Copy content Toggle raw display
$13$ \( T^{3} + \cdots + 10\!\cdots\!88 \) Copy content Toggle raw display
$17$ \( T^{3} + \cdots + 17\!\cdots\!00 \) Copy content Toggle raw display
$19$ \( T^{3} + \cdots - 13\!\cdots\!96 \) Copy content Toggle raw display
$23$ \( T^{3} + \cdots - 59\!\cdots\!96 \) Copy content Toggle raw display
$29$ \( T^{3} + \cdots - 81\!\cdots\!08 \) Copy content Toggle raw display
$31$ \( T^{3} + \cdots - 55\!\cdots\!00 \) Copy content Toggle raw display
$37$ \( T^{3} + \cdots - 28\!\cdots\!04 \) Copy content Toggle raw display
$41$ \( T^{3} + \cdots - 62\!\cdots\!56 \) Copy content Toggle raw display
$43$ \( T^{3} + \cdots + 20\!\cdots\!92 \) Copy content Toggle raw display
$47$ \( T^{3} + \cdots - 19\!\cdots\!24 \) Copy content Toggle raw display
$53$ \( T^{3} + \cdots - 76\!\cdots\!84 \) Copy content Toggle raw display
$59$ \( T^{3} + \cdots - 34\!\cdots\!36 \) Copy content Toggle raw display
$61$ \( T^{3} + \cdots - 17\!\cdots\!00 \) Copy content Toggle raw display
$67$ \( T^{3} + \cdots - 46\!\cdots\!72 \) Copy content Toggle raw display
$71$ \( T^{3} + \cdots - 54\!\cdots\!00 \) Copy content Toggle raw display
$73$ \( T^{3} + \cdots + 89\!\cdots\!24 \) Copy content Toggle raw display
$79$ \( T^{3} + \cdots - 67\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{3} + \cdots + 65\!\cdots\!36 \) Copy content Toggle raw display
$89$ \( T^{3} + \cdots + 71\!\cdots\!96 \) Copy content Toggle raw display
$97$ \( T^{3} + \cdots + 77\!\cdots\!04 \) Copy content Toggle raw display
show more
show less