Properties

Label 32.16.a.d
Level $32$
Weight $16$
Character orbit 32.a
Self dual yes
Analytic conductor $45.662$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [32,16,Mod(1,32)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("32.1"); S:= CuspForms(chi, 16); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(32, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 16, names="a")
 
Level: \( N \) \(=\) \( 32 = 2^{5} \)
Weight: \( k \) \(=\) \( 16 \)
Character orbit: \([\chi]\) \(=\) 32.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(45.6619216320\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.2657491200.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 624x^{2} - 4680x + 4329 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{27}\cdot 3^{5}\cdot 5^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{3} + ( - \beta_{2} + 94630) q^{5} + (\beta_{3} + 313 \beta_1) q^{7} + ( - 62 \beta_{2} + 5868693) q^{9} + (10 \beta_{3} - 893 \beta_1) q^{11} + ( - 1105 \beta_{2} + 104866398) q^{13} + ( - 249 \beta_{3} - 221689 \beta_1) q^{15}+ \cdots + ( - 33875784 \beta_{3} + 50625015777 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 378520 q^{5} + 23474772 q^{9} + 419465592 q^{13} + 591835016 q^{17} - 25285478400 q^{21} + 79371614300 q^{25} + 91238304440 q^{29} + 72486835200 q^{33} + 782453280664 q^{37} + 1391017598440 q^{41}+ \cdots - 41\!\cdots\!36 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 624x^{2} - 4680x + 4329 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -96\nu^{3} - 464\nu^{2} + 113952\nu + 481728 ) / 209 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 7680\nu^{3} - 230400\nu^{2} - 2695680\nu + 44928000 ) / 209 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 385056\nu^{3} - 2419216\nu^{2} - 200242272\nu - 596751168 ) / 209 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} - 16\beta_{2} + 2731\beta_1 ) / 737280 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} - 40\beta_{2} + 811\beta _1 + 9584640 ) / 30720 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 357\beta_{3} - 4784\beta_{2} + 514167\beta _1 + 862617600 ) / 245760 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
28.0263
0.832660
−9.66442
−19.1946
0 −5730.06 0 298114. 0 3.55222e6 0 1.84847e7 0
1.2 0 −2757.10 0 −108854. 0 −2.79703e6 0 −6.74730e6 0
1.3 0 2757.10 0 −108854. 0 2.79703e6 0 −6.74730e6 0
1.4 0 5730.06 0 298114. 0 −3.55222e6 0 1.84847e7 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 32.16.a.d 4
4.b odd 2 1 inner 32.16.a.d 4
8.b even 2 1 64.16.a.p 4
8.d odd 2 1 64.16.a.p 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
32.16.a.d 4 1.a even 1 1 trivial
32.16.a.d 4 4.b odd 2 1 inner
64.16.a.p 4 8.b even 2 1
64.16.a.p 4 8.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} - 40435200T_{3}^{2} + 249588051148800 \) acting on \(S_{16}^{\mathrm{new}}(\Gamma_0(32))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} + \cdots + 249588051148800 \) Copy content Toggle raw display
$5$ \( (T^{2} - 189260 T - 32450807900)^{2} \) Copy content Toggle raw display
$7$ \( T^{4} + \cdots + 98\!\cdots\!00 \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots + 23\!\cdots\!00 \) Copy content Toggle raw display
$13$ \( (T^{2} + \cdots - 39\!\cdots\!96)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} + \cdots - 63\!\cdots\!84)^{2} \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots + 13\!\cdots\!00 \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 11\!\cdots\!00 \) Copy content Toggle raw display
$29$ \( (T^{2} + \cdots + 60\!\cdots\!00)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots + 24\!\cdots\!00 \) Copy content Toggle raw display
$37$ \( (T^{2} + \cdots + 30\!\cdots\!56)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} + \cdots - 47\!\cdots\!00)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 48\!\cdots\!00 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 51\!\cdots\!00 \) Copy content Toggle raw display
$53$ \( (T^{2} + \cdots + 31\!\cdots\!24)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 52\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( (T^{2} + \cdots + 41\!\cdots\!00)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 15\!\cdots\!00 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots + 44\!\cdots\!00 \) Copy content Toggle raw display
$73$ \( (T^{2} + \cdots - 16\!\cdots\!76)^{2} \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 18\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 91\!\cdots\!00 \) Copy content Toggle raw display
$89$ \( (T^{2} + \cdots - 15\!\cdots\!00)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} + \cdots + 96\!\cdots\!56)^{2} \) Copy content Toggle raw display
show more
show less