Dirichlet series
| L(s) = 1 | + 3.78e5·5-s − 1.69e7·9-s + 4.19e8·13-s + 5.91e8·17-s + 5.02e10·25-s + 9.12e10·29-s + 7.82e11·37-s + 1.39e12·41-s − 6.41e12·45-s + 1.45e12·49-s + 2.74e13·53-s + 9.98e13·61-s + 1.58e14·65-s − 1.07e14·73-s − 3.68e13·81-s + 2.24e14·85-s − 9.70e14·89-s − 4.18e15·97-s + 1.38e15·101-s − 9.69e14·109-s − 7.10e15·113-s − 7.11e15·117-s − 1.50e16·121-s + 6.20e15·125-s + 127-s + 131-s + 137-s + ⋯ |
| L(s) = 1 | + 2.16·5-s − 1.18·9-s + 1.85·13-s + 0.349·17-s + 1.64·25-s + 0.982·29-s + 1.35·37-s + 1.11·41-s − 2.56·45-s + 0.305·49-s + 3.20·53-s + 4.06·61-s + 4.01·65-s − 1.13·73-s − 0.179·81-s + 0.757·85-s − 2.32·89-s − 5.25·97-s + 1.28·101-s − 0.508·109-s − 2.84·113-s − 2.19·117-s − 3.59·121-s + 1.16·125-s + 2.12·145-s + ⋯ |
Functional equation
Invariants
| Degree: | \(8\) |
| Conductor: | \(1048576\) = \(2^{20}\) |
| Sign: | $1$ |
| Analytic conductor: | \(4.34727\times 10^{6}\) |
| Root analytic conductor: | \(6.75736\) |
| Motivic weight: | \(15\) |
| Rational: | yes |
| Arithmetic: | yes |
| Character: | Trivial |
| Primitive: | no |
| Self-dual: | yes |
| Analytic rank: | \(0\) |
| Selberg data: | \((8,\ 1048576,\ (\ :15/2, 15/2, 15/2, 15/2),\ 1)\) |
Particular Values
| \(L(8)\) | \(\approx\) | \(4.568634203\) |
| \(L(\frac12)\) | \(\approx\) | \(4.568634203\) |
| \(L(\frac{17}{2})\) | not available | |
| \(L(1)\) | not available |
Euler product
| $p$ | $\Gal(F_p)$ | $F_p(T)$ | |
|---|---|---|---|
| bad | 2 | \( 1 \) | |
| good | 3 | $C_2^2 \wr C_2$ | \( 1 + 69796 p^{5} T^{2} + 1335526728658 p^{5} T^{4} + 69796 p^{35} T^{6} + p^{60} T^{8} \) |
| 5 | $D_{4}$ | \( ( 1 - 37852 p T + 1143373934 p^{2} T^{2} - 37852 p^{16} T^{3} + p^{30} T^{4} )^{2} \) | |
| 7 | $C_2^2 \wr C_2$ | \( 1 - 207337852604 p T^{2} + \)\(11\!\cdots\!58\)\( p^{3} T^{4} - 207337852604 p^{31} T^{6} + p^{60} T^{8} \) | |
| 11 | $C_2^2 \wr C_2$ | \( 1 + 15027641705873804 T^{2} + \)\(75\!\cdots\!86\)\( p^{2} T^{4} + 15027641705873804 p^{30} T^{6} + p^{60} T^{8} \) | |
| 13 | $D_{4}$ | \( ( 1 - 16133292 p T + 371665207193822 p^{2} T^{2} - 16133292 p^{16} T^{3} + p^{30} T^{4} )^{2} \) | |
| 17 | $D_{4}$ | \( ( 1 - 295917508 T + 5661117481739052902 T^{2} - 295917508 p^{15} T^{3} + p^{30} T^{4} )^{2} \) | |
| 19 | $C_2^2 \wr C_2$ | \( 1 + 13726564111136812396 T^{2} + \)\(88\!\cdots\!06\)\( T^{4} + 13726564111136812396 p^{30} T^{6} + p^{60} T^{8} \) | |
| 23 | $C_2^2 \wr C_2$ | \( 1 + 95722800574964483228 T^{2} + \)\(23\!\cdots\!94\)\( T^{4} + 95722800574964483228 p^{30} T^{6} + p^{60} T^{8} \) | |
| 29 | $D_{4}$ | \( ( 1 - 45619152220 T + \)\(17\!\cdots\!98\)\( T^{2} - 45619152220 p^{15} T^{3} + p^{30} T^{4} )^{2} \) | |
| 31 | $C_2^2 \wr C_2$ | \( 1 + \)\(54\!\cdots\!04\)\( T^{2} + \)\(17\!\cdots\!06\)\( T^{4} + \)\(54\!\cdots\!04\)\( p^{30} T^{6} + p^{60} T^{8} \) | |
| 37 | $D_{4}$ | \( ( 1 - 391226640332 T + \)\(69\!\cdots\!42\)\( T^{2} - 391226640332 p^{15} T^{3} + p^{30} T^{4} )^{2} \) | |
| 41 | $D_{4}$ | \( ( 1 - 695508799220 T + \)\(26\!\cdots\!02\)\( T^{2} - 695508799220 p^{15} T^{3} + p^{30} T^{4} )^{2} \) | |
| 43 | $C_2^2 \wr C_2$ | \( 1 + \)\(11\!\cdots\!28\)\( T^{2} + \)\(54\!\cdots\!94\)\( T^{4} + \)\(11\!\cdots\!28\)\( p^{30} T^{6} + p^{60} T^{8} \) | |
| 47 | $C_2^2 \wr C_2$ | \( 1 + \)\(18\!\cdots\!72\)\( T^{2} + \)\(26\!\cdots\!94\)\( T^{4} + \)\(18\!\cdots\!72\)\( p^{30} T^{6} + p^{60} T^{8} \) | |
| 53 | $D_{4}$ | \( ( 1 - 13710604776364 T + \)\(14\!\cdots\!38\)\( T^{2} - 13710604776364 p^{15} T^{3} + p^{30} T^{4} )^{2} \) | |
| 59 | $C_2^2 \wr C_2$ | \( 1 + \)\(12\!\cdots\!96\)\( T^{2} + \)\(63\!\cdots\!06\)\( T^{4} + \)\(12\!\cdots\!96\)\( p^{30} T^{6} + p^{60} T^{8} \) | |
| 61 | $D_{4}$ | \( ( 1 - 49940568380380 T + \)\(16\!\cdots\!02\)\( T^{2} - 49940568380380 p^{15} T^{3} + p^{30} T^{4} )^{2} \) | |
| 67 | $C_2^2 \wr C_2$ | \( 1 + \)\(82\!\cdots\!72\)\( T^{2} + \)\(71\!\cdots\!94\)\( T^{4} + \)\(82\!\cdots\!72\)\( p^{30} T^{6} + p^{60} T^{8} \) | |
| 71 | $C_2^2 \wr C_2$ | \( 1 + \)\(10\!\cdots\!04\)\( T^{2} + \)\(94\!\cdots\!06\)\( T^{4} + \)\(10\!\cdots\!04\)\( p^{30} T^{6} + p^{60} T^{8} \) | |
| 73 | $D_{4}$ | \( ( 1 + 53601560152236 T + \)\(14\!\cdots\!38\)\( T^{2} + 53601560152236 p^{15} T^{3} + p^{30} T^{4} )^{2} \) | |
| 79 | $C_2^2 \wr C_2$ | \( 1 + \)\(25\!\cdots\!96\)\( T^{2} + \)\(15\!\cdots\!06\)\( T^{4} + \)\(25\!\cdots\!96\)\( p^{30} T^{6} + p^{60} T^{8} \) | |
| 83 | $C_2^2 \wr C_2$ | \( 1 + \)\(23\!\cdots\!28\)\( T^{2} + \)\(21\!\cdots\!94\)\( T^{4} + \)\(23\!\cdots\!28\)\( p^{30} T^{6} + p^{60} T^{8} \) | |
| 89 | $D_{4}$ | \( ( 1 + 485365640175820 T + \)\(19\!\cdots\!98\)\( T^{2} + 485365640175820 p^{15} T^{3} + p^{30} T^{4} )^{2} \) | |
| 97 | $D_{4}$ | \( ( 1 + 2091084224632668 T + \)\(22\!\cdots\!42\)\( T^{2} + 2091084224632668 p^{15} T^{3} + p^{30} T^{4} )^{2} \) | |
| show more | |||
| show less | |||
Imaginary part of the first few zeros on the critical line
−9.406835855392783714373741053805, −8.832548608024304545555037005521, −8.386178190153422782290298691761, −8.298490684827248844331962144500, −8.255683349143794865938913828518, −7.37981489367896883650033060056, −6.91467028761653264678787007899, −6.76822703382298078701117968659, −6.34547401514804715141681133017, −5.74502848027610153718619736395, −5.70042470992069949220438134717, −5.66595194014617017570824960290, −5.32962996102068298878373654536, −4.58426779174670274183358915594, −4.05145445362851103696175730521, −3.92873588961967973087349051123, −3.43532217312714933784985807926, −2.65252431470071012217599982671, −2.55771290572372417412884753681, −2.50833515403247027245766666923, −1.86846986736552603554994429709, −1.28221855739760611674964585835, −1.05474467637054563241661327541, −0.973772409920768027263188547750, −0.21626326753537711194708386769, 0.21626326753537711194708386769, 0.973772409920768027263188547750, 1.05474467637054563241661327541, 1.28221855739760611674964585835, 1.86846986736552603554994429709, 2.50833515403247027245766666923, 2.55771290572372417412884753681, 2.65252431470071012217599982671, 3.43532217312714933784985807926, 3.92873588961967973087349051123, 4.05145445362851103696175730521, 4.58426779174670274183358915594, 5.32962996102068298878373654536, 5.66595194014617017570824960290, 5.70042470992069949220438134717, 5.74502848027610153718619736395, 6.34547401514804715141681133017, 6.76822703382298078701117968659, 6.91467028761653264678787007899, 7.37981489367896883650033060056, 8.255683349143794865938913828518, 8.298490684827248844331962144500, 8.386178190153422782290298691761, 8.832548608024304545555037005521, 9.406835855392783714373741053805