Properties

Label 32.16
Level 32
Weight 16
Dimension 265
Nonzero newspaces 3
Sturm bound 1024
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 32 = 2^{5} \)
Weight: \( k \) = \( 16 \)
Nonzero newspaces: \( 3 \)
Sturm bound: \(1024\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{16}(\Gamma_1(32))\).

Total New Old
Modular forms 496 275 221
Cusp forms 464 265 199
Eisenstein series 32 10 22

Trace form

\( 265 q - 4 q^{2} - 4 q^{3} - 4 q^{4} + 136758 q^{5} - 4 q^{6} + 1647084 q^{7} - 4 q^{8} + 21973001 q^{9} - 58125004 q^{10} - 4 q^{11} - 576983092 q^{12} + 120424702 q^{13} + 724400556 q^{14} - 712135312 q^{15}+ \cdots + 60\!\cdots\!08 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{16}^{\mathrm{new}}(\Gamma_1(32))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
32.16.a \(\chi_{32}(1, \cdot)\) 32.16.a.a 1 1
32.16.a.b 2
32.16.a.c 4
32.16.a.d 4
32.16.a.e 4
32.16.b \(\chi_{32}(17, \cdot)\) 32.16.b.a 14 1
32.16.e \(\chi_{32}(9, \cdot)\) None 0 2
32.16.g \(\chi_{32}(5, \cdot)\) n/a 236 4

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{16}^{\mathrm{old}}(\Gamma_1(32))\) into lower level spaces

\( S_{16}^{\mathrm{old}}(\Gamma_1(32)) \cong \) \(S_{16}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{16}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 5}\)\(\oplus\)\(S_{16}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 4}\)\(\oplus\)\(S_{16}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 3}\)\(\oplus\)\(S_{16}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 2}\)