Properties

Label 32.16.a.c.1.4
Level $32$
Weight $16$
Character 32.1
Self dual yes
Analytic conductor $45.662$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [32,16,Mod(1,32)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("32.1"); S:= CuspForms(chi, 16); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(32, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 16, names="a")
 
Level: \( N \) \(=\) \( 32 = 2^{5} \)
Weight: \( k \) \(=\) \( 16 \)
Character orbit: \([\chi]\) \(=\) 32.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-2912] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(45.6619216320\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 10174x^{2} - 369720x - 3191805 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{27}\cdot 3\cdot 5 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-76.8271\) of defining polynomial
Character \(\chi\) \(=\) 32.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5704.21 q^{3} -70382.7 q^{5} -2.23695e6 q^{7} +1.81891e7 q^{9} +8.51679e7 q^{11} -3.82111e8 q^{13} -4.01478e8 q^{15} -2.06439e9 q^{17} +1.35210e9 q^{19} -1.27601e10 q^{21} -9.91058e9 q^{23} -2.55639e10 q^{25} +2.19055e10 q^{27} +2.07238e10 q^{29} -5.73247e10 q^{31} +4.85816e11 q^{33} +1.57443e11 q^{35} +5.43177e11 q^{37} -2.17964e12 q^{39} -1.83440e12 q^{41} +2.66702e12 q^{43} -1.28020e12 q^{45} -4.86752e12 q^{47} +2.56402e11 q^{49} -1.17757e13 q^{51} -1.10073e13 q^{53} -5.99435e12 q^{55} +7.71267e12 q^{57} -2.11481e13 q^{59} +4.68147e13 q^{61} -4.06883e13 q^{63} +2.68940e13 q^{65} -8.85142e13 q^{67} -5.65321e13 q^{69} +7.43818e13 q^{71} -2.38860e13 q^{73} -1.45822e14 q^{75} -1.90517e14 q^{77} -1.31202e14 q^{79} -1.36041e14 q^{81} +9.29060e13 q^{83} +1.45297e14 q^{85} +1.18213e14 q^{87} +7.29406e14 q^{89} +8.54765e14 q^{91} -3.26992e14 q^{93} -9.51645e13 q^{95} +8.62101e14 q^{97} +1.54913e15 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2912 q^{3} - 98280 q^{5} - 2755776 q^{7} + 26457940 q^{9} + 110853856 q^{11} - 187741448 q^{13} - 442991680 q^{15} + 2121294984 q^{17} + 419203872 q^{19} + 8397459968 q^{21} - 5330808384 q^{23} + 8564955740 q^{25}+ \cdots + 26\!\cdots\!84 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 5704.21 1.50587 0.752933 0.658097i \(-0.228638\pi\)
0.752933 + 0.658097i \(0.228638\pi\)
\(4\) 0 0
\(5\) −70382.7 −0.402894 −0.201447 0.979499i \(-0.564564\pi\)
−0.201447 + 0.979499i \(0.564564\pi\)
\(6\) 0 0
\(7\) −2.23695e6 −1.02665 −0.513324 0.858195i \(-0.671586\pi\)
−0.513324 + 0.858195i \(0.671586\pi\)
\(8\) 0 0
\(9\) 1.81891e7 1.26763
\(10\) 0 0
\(11\) 8.51679e7 1.31774 0.658872 0.752255i \(-0.271034\pi\)
0.658872 + 0.752255i \(0.271034\pi\)
\(12\) 0 0
\(13\) −3.82111e8 −1.68894 −0.844471 0.535601i \(-0.820085\pi\)
−0.844471 + 0.535601i \(0.820085\pi\)
\(14\) 0 0
\(15\) −4.01478e8 −0.606704
\(16\) 0 0
\(17\) −2.06439e9 −1.22018 −0.610091 0.792331i \(-0.708867\pi\)
−0.610091 + 0.792331i \(0.708867\pi\)
\(18\) 0 0
\(19\) 1.35210e9 0.347022 0.173511 0.984832i \(-0.444489\pi\)
0.173511 + 0.984832i \(0.444489\pi\)
\(20\) 0 0
\(21\) −1.27601e10 −1.54600
\(22\) 0 0
\(23\) −9.91058e9 −0.606933 −0.303466 0.952842i \(-0.598144\pi\)
−0.303466 + 0.952842i \(0.598144\pi\)
\(24\) 0 0
\(25\) −2.55639e10 −0.837676
\(26\) 0 0
\(27\) 2.19055e10 0.403019
\(28\) 0 0
\(29\) 2.07238e10 0.223092 0.111546 0.993759i \(-0.464420\pi\)
0.111546 + 0.993759i \(0.464420\pi\)
\(30\) 0 0
\(31\) −5.73247e10 −0.374222 −0.187111 0.982339i \(-0.559912\pi\)
−0.187111 + 0.982339i \(0.559912\pi\)
\(32\) 0 0
\(33\) 4.85816e11 1.98434
\(34\) 0 0
\(35\) 1.57443e11 0.413631
\(36\) 0 0
\(37\) 5.43177e11 0.940651 0.470325 0.882493i \(-0.344137\pi\)
0.470325 + 0.882493i \(0.344137\pi\)
\(38\) 0 0
\(39\) −2.17964e12 −2.54332
\(40\) 0 0
\(41\) −1.83440e12 −1.47101 −0.735504 0.677521i \(-0.763054\pi\)
−0.735504 + 0.677521i \(0.763054\pi\)
\(42\) 0 0
\(43\) 2.66702e12 1.49628 0.748139 0.663542i \(-0.230948\pi\)
0.748139 + 0.663542i \(0.230948\pi\)
\(44\) 0 0
\(45\) −1.28020e12 −0.510722
\(46\) 0 0
\(47\) −4.86752e12 −1.40144 −0.700718 0.713438i \(-0.747137\pi\)
−0.700718 + 0.713438i \(0.747137\pi\)
\(48\) 0 0
\(49\) 2.56402e11 0.0540070
\(50\) 0 0
\(51\) −1.17757e13 −1.83743
\(52\) 0 0
\(53\) −1.10073e13 −1.28710 −0.643552 0.765402i \(-0.722540\pi\)
−0.643552 + 0.765402i \(0.722540\pi\)
\(54\) 0 0
\(55\) −5.99435e12 −0.530911
\(56\) 0 0
\(57\) 7.71267e12 0.522569
\(58\) 0 0
\(59\) −2.11481e13 −1.10632 −0.553160 0.833075i \(-0.686578\pi\)
−0.553160 + 0.833075i \(0.686578\pi\)
\(60\) 0 0
\(61\) 4.68147e13 1.90725 0.953627 0.300991i \(-0.0973175\pi\)
0.953627 + 0.300991i \(0.0973175\pi\)
\(62\) 0 0
\(63\) −4.06883e13 −1.30141
\(64\) 0 0
\(65\) 2.68940e13 0.680465
\(66\) 0 0
\(67\) −8.85142e13 −1.78423 −0.892117 0.451804i \(-0.850781\pi\)
−0.892117 + 0.451804i \(0.850781\pi\)
\(68\) 0 0
\(69\) −5.65321e13 −0.913959
\(70\) 0 0
\(71\) 7.43818e13 0.970575 0.485288 0.874355i \(-0.338715\pi\)
0.485288 + 0.874355i \(0.338715\pi\)
\(72\) 0 0
\(73\) −2.38860e13 −0.253059 −0.126529 0.991963i \(-0.540384\pi\)
−0.126529 + 0.991963i \(0.540384\pi\)
\(74\) 0 0
\(75\) −1.45822e14 −1.26143
\(76\) 0 0
\(77\) −1.90517e14 −1.35286
\(78\) 0 0
\(79\) −1.31202e14 −0.768664 −0.384332 0.923195i \(-0.625568\pi\)
−0.384332 + 0.923195i \(0.625568\pi\)
\(80\) 0 0
\(81\) −1.36041e14 −0.660740
\(82\) 0 0
\(83\) 9.29060e13 0.375801 0.187901 0.982188i \(-0.439832\pi\)
0.187901 + 0.982188i \(0.439832\pi\)
\(84\) 0 0
\(85\) 1.45297e14 0.491604
\(86\) 0 0
\(87\) 1.18213e14 0.335947
\(88\) 0 0
\(89\) 7.29406e14 1.74801 0.874006 0.485915i \(-0.161513\pi\)
0.874006 + 0.485915i \(0.161513\pi\)
\(90\) 0 0
\(91\) 8.54765e14 1.73395
\(92\) 0 0
\(93\) −3.26992e14 −0.563528
\(94\) 0 0
\(95\) −9.51645e13 −0.139813
\(96\) 0 0
\(97\) 8.62101e14 1.08335 0.541676 0.840587i \(-0.317790\pi\)
0.541676 + 0.840587i \(0.317790\pi\)
\(98\) 0 0
\(99\) 1.54913e15 1.67041
\(100\) 0 0
\(101\) −8.30597e14 −0.770868 −0.385434 0.922735i \(-0.625948\pi\)
−0.385434 + 0.922735i \(0.625948\pi\)
\(102\) 0 0
\(103\) −2.37256e13 −0.0190081 −0.00950405 0.999955i \(-0.503025\pi\)
−0.00950405 + 0.999955i \(0.503025\pi\)
\(104\) 0 0
\(105\) 8.98088e14 0.622872
\(106\) 0 0
\(107\) 3.52032e14 0.211935 0.105968 0.994370i \(-0.466206\pi\)
0.105968 + 0.994370i \(0.466206\pi\)
\(108\) 0 0
\(109\) −1.40730e15 −0.737373 −0.368686 0.929554i \(-0.620192\pi\)
−0.368686 + 0.929554i \(0.620192\pi\)
\(110\) 0 0
\(111\) 3.09840e15 1.41649
\(112\) 0 0
\(113\) −1.17002e15 −0.467846 −0.233923 0.972255i \(-0.575156\pi\)
−0.233923 + 0.972255i \(0.575156\pi\)
\(114\) 0 0
\(115\) 6.97534e14 0.244530
\(116\) 0 0
\(117\) −6.95028e15 −2.14096
\(118\) 0 0
\(119\) 4.61794e15 1.25270
\(120\) 0 0
\(121\) 3.07632e15 0.736447
\(122\) 0 0
\(123\) −1.04638e16 −2.21514
\(124\) 0 0
\(125\) 3.94716e15 0.740389
\(126\) 0 0
\(127\) −5.04212e15 −0.839624 −0.419812 0.907611i \(-0.637904\pi\)
−0.419812 + 0.907611i \(0.637904\pi\)
\(128\) 0 0
\(129\) 1.52132e16 2.25319
\(130\) 0 0
\(131\) 6.98891e15 0.922305 0.461152 0.887321i \(-0.347436\pi\)
0.461152 + 0.887321i \(0.347436\pi\)
\(132\) 0 0
\(133\) −3.02459e15 −0.356270
\(134\) 0 0
\(135\) −1.54177e15 −0.162374
\(136\) 0 0
\(137\) 1.10285e16 1.04019 0.520094 0.854109i \(-0.325897\pi\)
0.520094 + 0.854109i \(0.325897\pi\)
\(138\) 0 0
\(139\) −2.00248e16 −1.69417 −0.847086 0.531455i \(-0.821645\pi\)
−0.847086 + 0.531455i \(0.821645\pi\)
\(140\) 0 0
\(141\) −2.77653e16 −2.11038
\(142\) 0 0
\(143\) −3.25436e16 −2.22559
\(144\) 0 0
\(145\) −1.45860e15 −0.0898826
\(146\) 0 0
\(147\) 1.46257e15 0.0813273
\(148\) 0 0
\(149\) 1.17571e16 0.590750 0.295375 0.955381i \(-0.404555\pi\)
0.295375 + 0.955381i \(0.404555\pi\)
\(150\) 0 0
\(151\) 2.45743e16 1.11726 0.558630 0.829417i \(-0.311327\pi\)
0.558630 + 0.829417i \(0.311327\pi\)
\(152\) 0 0
\(153\) −3.75495e16 −1.54674
\(154\) 0 0
\(155\) 4.03467e15 0.150772
\(156\) 0 0
\(157\) −8.88183e15 −0.301478 −0.150739 0.988574i \(-0.548165\pi\)
−0.150739 + 0.988574i \(0.548165\pi\)
\(158\) 0 0
\(159\) −6.27883e16 −1.93821
\(160\) 0 0
\(161\) 2.21695e16 0.623106
\(162\) 0 0
\(163\) 3.08616e16 0.790700 0.395350 0.918531i \(-0.370623\pi\)
0.395350 + 0.918531i \(0.370623\pi\)
\(164\) 0 0
\(165\) −3.41930e16 −0.799481
\(166\) 0 0
\(167\) −7.11004e15 −0.151879 −0.0759396 0.997112i \(-0.524196\pi\)
−0.0759396 + 0.997112i \(0.524196\pi\)
\(168\) 0 0
\(169\) 9.48231e16 1.85253
\(170\) 0 0
\(171\) 2.45936e16 0.439897
\(172\) 0 0
\(173\) 6.43957e16 1.05563 0.527814 0.849360i \(-0.323012\pi\)
0.527814 + 0.849360i \(0.323012\pi\)
\(174\) 0 0
\(175\) 5.71852e16 0.859999
\(176\) 0 0
\(177\) −1.20633e17 −1.66597
\(178\) 0 0
\(179\) 5.50414e16 0.698701 0.349351 0.936992i \(-0.386402\pi\)
0.349351 + 0.936992i \(0.386402\pi\)
\(180\) 0 0
\(181\) 1.60345e17 1.87269 0.936345 0.351080i \(-0.114186\pi\)
0.936345 + 0.351080i \(0.114186\pi\)
\(182\) 0 0
\(183\) 2.67041e17 2.87207
\(184\) 0 0
\(185\) −3.82303e16 −0.378983
\(186\) 0 0
\(187\) −1.75820e17 −1.60789
\(188\) 0 0
\(189\) −4.90016e16 −0.413759
\(190\) 0 0
\(191\) 3.74053e16 0.291865 0.145933 0.989295i \(-0.453382\pi\)
0.145933 + 0.989295i \(0.453382\pi\)
\(192\) 0 0
\(193\) 4.99587e15 0.0360522 0.0180261 0.999838i \(-0.494262\pi\)
0.0180261 + 0.999838i \(0.494262\pi\)
\(194\) 0 0
\(195\) 1.53409e17 1.02469
\(196\) 0 0
\(197\) −1.35723e17 −0.839762 −0.419881 0.907579i \(-0.637928\pi\)
−0.419881 + 0.907579i \(0.637928\pi\)
\(198\) 0 0
\(199\) 5.60008e16 0.321215 0.160608 0.987018i \(-0.448655\pi\)
0.160608 + 0.987018i \(0.448655\pi\)
\(200\) 0 0
\(201\) −5.04904e17 −2.68682
\(202\) 0 0
\(203\) −4.63582e16 −0.229038
\(204\) 0 0
\(205\) 1.29110e17 0.592660
\(206\) 0 0
\(207\) −1.80265e17 −0.769368
\(208\) 0 0
\(209\) 1.15156e17 0.457286
\(210\) 0 0
\(211\) 2.22873e17 0.824022 0.412011 0.911179i \(-0.364827\pi\)
0.412011 + 0.911179i \(0.364827\pi\)
\(212\) 0 0
\(213\) 4.24290e17 1.46156
\(214\) 0 0
\(215\) −1.87712e17 −0.602842
\(216\) 0 0
\(217\) 1.28233e17 0.384194
\(218\) 0 0
\(219\) −1.36251e17 −0.381073
\(220\) 0 0
\(221\) 7.88826e17 2.06082
\(222\) 0 0
\(223\) −3.53475e17 −0.863122 −0.431561 0.902084i \(-0.642037\pi\)
−0.431561 + 0.902084i \(0.642037\pi\)
\(224\) 0 0
\(225\) −4.64985e17 −1.06187
\(226\) 0 0
\(227\) −2.61043e17 −0.557850 −0.278925 0.960313i \(-0.589978\pi\)
−0.278925 + 0.960313i \(0.589978\pi\)
\(228\) 0 0
\(229\) −3.06658e17 −0.613603 −0.306802 0.951773i \(-0.599259\pi\)
−0.306802 + 0.951773i \(0.599259\pi\)
\(230\) 0 0
\(231\) −1.08675e18 −2.03722
\(232\) 0 0
\(233\) 4.33375e17 0.761543 0.380771 0.924669i \(-0.375658\pi\)
0.380771 + 0.924669i \(0.375658\pi\)
\(234\) 0 0
\(235\) 3.42589e17 0.564630
\(236\) 0 0
\(237\) −7.48403e17 −1.15751
\(238\) 0 0
\(239\) 5.62819e17 0.817306 0.408653 0.912690i \(-0.365999\pi\)
0.408653 + 0.912690i \(0.365999\pi\)
\(240\) 0 0
\(241\) −3.81291e17 −0.520150 −0.260075 0.965588i \(-0.583747\pi\)
−0.260075 + 0.965588i \(0.583747\pi\)
\(242\) 0 0
\(243\) −1.09032e18 −1.39801
\(244\) 0 0
\(245\) −1.80462e16 −0.0217591
\(246\) 0 0
\(247\) −5.16653e17 −0.586100
\(248\) 0 0
\(249\) 5.29956e17 0.565906
\(250\) 0 0
\(251\) −4.05961e17 −0.408255 −0.204128 0.978944i \(-0.565436\pi\)
−0.204128 + 0.978944i \(0.565436\pi\)
\(252\) 0 0
\(253\) −8.44064e17 −0.799781
\(254\) 0 0
\(255\) 8.28807e17 0.740290
\(256\) 0 0
\(257\) −1.45212e18 −1.22322 −0.611611 0.791159i \(-0.709478\pi\)
−0.611611 + 0.791159i \(0.709478\pi\)
\(258\) 0 0
\(259\) −1.21506e18 −0.965717
\(260\) 0 0
\(261\) 3.76949e17 0.282799
\(262\) 0 0
\(263\) 1.88916e18 1.33845 0.669223 0.743061i \(-0.266627\pi\)
0.669223 + 0.743061i \(0.266627\pi\)
\(264\) 0 0
\(265\) 7.74727e17 0.518567
\(266\) 0 0
\(267\) 4.16069e18 2.63227
\(268\) 0 0
\(269\) −5.57791e17 −0.333679 −0.166840 0.985984i \(-0.553356\pi\)
−0.166840 + 0.985984i \(0.553356\pi\)
\(270\) 0 0
\(271\) 1.02398e18 0.579457 0.289728 0.957109i \(-0.406435\pi\)
0.289728 + 0.957109i \(0.406435\pi\)
\(272\) 0 0
\(273\) 4.87576e18 2.61110
\(274\) 0 0
\(275\) −2.17722e18 −1.10384
\(276\) 0 0
\(277\) 4.87253e17 0.233968 0.116984 0.993134i \(-0.462677\pi\)
0.116984 + 0.993134i \(0.462677\pi\)
\(278\) 0 0
\(279\) −1.04269e18 −0.474376
\(280\) 0 0
\(281\) −6.14307e16 −0.0264904 −0.0132452 0.999912i \(-0.504216\pi\)
−0.0132452 + 0.999912i \(0.504216\pi\)
\(282\) 0 0
\(283\) −9.04926e17 −0.370011 −0.185006 0.982737i \(-0.559230\pi\)
−0.185006 + 0.982737i \(0.559230\pi\)
\(284\) 0 0
\(285\) −5.42839e17 −0.210540
\(286\) 0 0
\(287\) 4.10347e18 1.51021
\(288\) 0 0
\(289\) 1.39928e18 0.488844
\(290\) 0 0
\(291\) 4.91761e18 1.63138
\(292\) 0 0
\(293\) −4.37736e18 −1.37945 −0.689723 0.724073i \(-0.742268\pi\)
−0.689723 + 0.724073i \(0.742268\pi\)
\(294\) 0 0
\(295\) 1.48846e18 0.445730
\(296\) 0 0
\(297\) 1.86565e18 0.531075
\(298\) 0 0
\(299\) 3.78695e18 1.02507
\(300\) 0 0
\(301\) −5.96599e18 −1.53615
\(302\) 0 0
\(303\) −4.73790e18 −1.16082
\(304\) 0 0
\(305\) −3.29494e18 −0.768421
\(306\) 0 0
\(307\) −1.73602e17 −0.0385494 −0.0192747 0.999814i \(-0.506136\pi\)
−0.0192747 + 0.999814i \(0.506136\pi\)
\(308\) 0 0
\(309\) −1.35336e17 −0.0286236
\(310\) 0 0
\(311\) −8.84130e18 −1.78161 −0.890806 0.454383i \(-0.849860\pi\)
−0.890806 + 0.454383i \(0.849860\pi\)
\(312\) 0 0
\(313\) −2.11332e18 −0.405866 −0.202933 0.979193i \(-0.565047\pi\)
−0.202933 + 0.979193i \(0.565047\pi\)
\(314\) 0 0
\(315\) 2.86375e18 0.524332
\(316\) 0 0
\(317\) −5.02926e17 −0.0878131 −0.0439066 0.999036i \(-0.513980\pi\)
−0.0439066 + 0.999036i \(0.513980\pi\)
\(318\) 0 0
\(319\) 1.76500e18 0.293979
\(320\) 0 0
\(321\) 2.00806e18 0.319146
\(322\) 0 0
\(323\) −2.79126e18 −0.423430
\(324\) 0 0
\(325\) 9.76824e18 1.41479
\(326\) 0 0
\(327\) −8.02753e18 −1.11038
\(328\) 0 0
\(329\) 1.08884e19 1.43878
\(330\) 0 0
\(331\) −1.44046e19 −1.81883 −0.909414 0.415891i \(-0.863470\pi\)
−0.909414 + 0.415891i \(0.863470\pi\)
\(332\) 0 0
\(333\) 9.87992e18 1.19240
\(334\) 0 0
\(335\) 6.22987e18 0.718858
\(336\) 0 0
\(337\) −1.03979e19 −1.14742 −0.573708 0.819060i \(-0.694495\pi\)
−0.573708 + 0.819060i \(0.694495\pi\)
\(338\) 0 0
\(339\) −6.67402e18 −0.704514
\(340\) 0 0
\(341\) −4.88222e18 −0.493128
\(342\) 0 0
\(343\) 1.00465e19 0.971202
\(344\) 0 0
\(345\) 3.97888e18 0.368229
\(346\) 0 0
\(347\) −1.80887e19 −1.60301 −0.801504 0.597989i \(-0.795966\pi\)
−0.801504 + 0.597989i \(0.795966\pi\)
\(348\) 0 0
\(349\) −1.29191e19 −1.09658 −0.548292 0.836287i \(-0.684722\pi\)
−0.548292 + 0.836287i \(0.684722\pi\)
\(350\) 0 0
\(351\) −8.37035e18 −0.680675
\(352\) 0 0
\(353\) −9.78419e18 −0.762455 −0.381228 0.924481i \(-0.624499\pi\)
−0.381228 + 0.924481i \(0.624499\pi\)
\(354\) 0 0
\(355\) −5.23519e18 −0.391039
\(356\) 0 0
\(357\) 2.63417e19 1.88640
\(358\) 0 0
\(359\) 1.42154e19 0.976228 0.488114 0.872780i \(-0.337685\pi\)
0.488114 + 0.872780i \(0.337685\pi\)
\(360\) 0 0
\(361\) −1.33529e19 −0.879576
\(362\) 0 0
\(363\) 1.75480e19 1.10899
\(364\) 0 0
\(365\) 1.68116e18 0.101956
\(366\) 0 0
\(367\) −2.92681e19 −1.70372 −0.851861 0.523768i \(-0.824526\pi\)
−0.851861 + 0.523768i \(0.824526\pi\)
\(368\) 0 0
\(369\) −3.33661e19 −1.86470
\(370\) 0 0
\(371\) 2.46229e19 1.32140
\(372\) 0 0
\(373\) 1.09345e19 0.563616 0.281808 0.959471i \(-0.409066\pi\)
0.281808 + 0.959471i \(0.409066\pi\)
\(374\) 0 0
\(375\) 2.25155e19 1.11493
\(376\) 0 0
\(377\) −7.91881e18 −0.376790
\(378\) 0 0
\(379\) −2.09513e19 −0.958114 −0.479057 0.877784i \(-0.659021\pi\)
−0.479057 + 0.877784i \(0.659021\pi\)
\(380\) 0 0
\(381\) −2.87613e19 −1.26436
\(382\) 0 0
\(383\) −3.05510e18 −0.129132 −0.0645660 0.997913i \(-0.520566\pi\)
−0.0645660 + 0.997913i \(0.520566\pi\)
\(384\) 0 0
\(385\) 1.34091e19 0.545059
\(386\) 0 0
\(387\) 4.85108e19 1.89673
\(388\) 0 0
\(389\) 2.40886e19 0.906126 0.453063 0.891478i \(-0.350331\pi\)
0.453063 + 0.891478i \(0.350331\pi\)
\(390\) 0 0
\(391\) 2.04593e19 0.740568
\(392\) 0 0
\(393\) 3.98662e19 1.38887
\(394\) 0 0
\(395\) 9.23434e18 0.309690
\(396\) 0 0
\(397\) 4.66337e19 1.50581 0.752906 0.658128i \(-0.228651\pi\)
0.752906 + 0.658128i \(0.228651\pi\)
\(398\) 0 0
\(399\) −1.72529e19 −0.536494
\(400\) 0 0
\(401\) −1.04599e19 −0.313289 −0.156645 0.987655i \(-0.550068\pi\)
−0.156645 + 0.987655i \(0.550068\pi\)
\(402\) 0 0
\(403\) 2.19044e19 0.632039
\(404\) 0 0
\(405\) 9.57490e18 0.266208
\(406\) 0 0
\(407\) 4.62612e19 1.23954
\(408\) 0 0
\(409\) 8.13448e16 0.00210090 0.00105045 0.999999i \(-0.499666\pi\)
0.00105045 + 0.999999i \(0.499666\pi\)
\(410\) 0 0
\(411\) 6.29089e19 1.56638
\(412\) 0 0
\(413\) 4.73073e19 1.13580
\(414\) 0 0
\(415\) −6.53897e18 −0.151408
\(416\) 0 0
\(417\) −1.14226e20 −2.55120
\(418\) 0 0
\(419\) −2.86495e19 −0.617322 −0.308661 0.951172i \(-0.599881\pi\)
−0.308661 + 0.951172i \(0.599881\pi\)
\(420\) 0 0
\(421\) −2.77675e19 −0.577326 −0.288663 0.957431i \(-0.593211\pi\)
−0.288663 + 0.957431i \(0.593211\pi\)
\(422\) 0 0
\(423\) −8.85359e19 −1.77651
\(424\) 0 0
\(425\) 5.27737e19 1.02212
\(426\) 0 0
\(427\) −1.04722e20 −1.95808
\(428\) 0 0
\(429\) −1.85636e20 −3.35144
\(430\) 0 0
\(431\) 6.05133e19 1.05505 0.527523 0.849541i \(-0.323121\pi\)
0.527523 + 0.849541i \(0.323121\pi\)
\(432\) 0 0
\(433\) 8.90996e19 1.50043 0.750217 0.661192i \(-0.229949\pi\)
0.750217 + 0.661192i \(0.229949\pi\)
\(434\) 0 0
\(435\) −8.32016e18 −0.135351
\(436\) 0 0
\(437\) −1.34001e19 −0.210619
\(438\) 0 0
\(439\) 1.71798e19 0.260936 0.130468 0.991453i \(-0.458352\pi\)
0.130468 + 0.991453i \(0.458352\pi\)
\(440\) 0 0
\(441\) 4.66372e18 0.0684610
\(442\) 0 0
\(443\) 1.18416e19 0.168028 0.0840141 0.996465i \(-0.473226\pi\)
0.0840141 + 0.996465i \(0.473226\pi\)
\(444\) 0 0
\(445\) −5.13376e19 −0.704264
\(446\) 0 0
\(447\) 6.70651e19 0.889591
\(448\) 0 0
\(449\) 9.46407e18 0.121403 0.0607016 0.998156i \(-0.480666\pi\)
0.0607016 + 0.998156i \(0.480666\pi\)
\(450\) 0 0
\(451\) −1.56232e20 −1.93841
\(452\) 0 0
\(453\) 1.40177e20 1.68245
\(454\) 0 0
\(455\) −6.01607e19 −0.698598
\(456\) 0 0
\(457\) 7.59975e19 0.853941 0.426971 0.904265i \(-0.359581\pi\)
0.426971 + 0.904265i \(0.359581\pi\)
\(458\) 0 0
\(459\) −4.52215e19 −0.491756
\(460\) 0 0
\(461\) −1.27777e20 −1.34492 −0.672458 0.740135i \(-0.734761\pi\)
−0.672458 + 0.740135i \(0.734761\pi\)
\(462\) 0 0
\(463\) −1.63571e20 −1.66666 −0.833332 0.552773i \(-0.813570\pi\)
−0.833332 + 0.552773i \(0.813570\pi\)
\(464\) 0 0
\(465\) 2.30146e19 0.227042
\(466\) 0 0
\(467\) −2.20439e19 −0.210577 −0.105289 0.994442i \(-0.533577\pi\)
−0.105289 + 0.994442i \(0.533577\pi\)
\(468\) 0 0
\(469\) 1.98002e20 1.83178
\(470\) 0 0
\(471\) −5.06639e19 −0.453985
\(472\) 0 0
\(473\) 2.27144e20 1.97171
\(474\) 0 0
\(475\) −3.45649e19 −0.290692
\(476\) 0 0
\(477\) −2.00214e20 −1.63158
\(478\) 0 0
\(479\) 2.27890e20 1.79974 0.899869 0.436161i \(-0.143662\pi\)
0.899869 + 0.436161i \(0.143662\pi\)
\(480\) 0 0
\(481\) −2.07554e20 −1.58870
\(482\) 0 0
\(483\) 1.26460e20 0.938315
\(484\) 0 0
\(485\) −6.06770e19 −0.436476
\(486\) 0 0
\(487\) −1.96991e20 −1.37398 −0.686988 0.726669i \(-0.741068\pi\)
−0.686988 + 0.726669i \(0.741068\pi\)
\(488\) 0 0
\(489\) 1.76041e20 1.19069
\(490\) 0 0
\(491\) 1.05068e20 0.689223 0.344612 0.938745i \(-0.388011\pi\)
0.344612 + 0.938745i \(0.388011\pi\)
\(492\) 0 0
\(493\) −4.27820e19 −0.272213
\(494\) 0 0
\(495\) −1.09032e20 −0.673000
\(496\) 0 0
\(497\) −1.66389e20 −0.996440
\(498\) 0 0
\(499\) −1.77775e19 −0.103304 −0.0516521 0.998665i \(-0.516449\pi\)
−0.0516521 + 0.998665i \(0.516449\pi\)
\(500\) 0 0
\(501\) −4.05572e19 −0.228710
\(502\) 0 0
\(503\) −6.45190e19 −0.353124 −0.176562 0.984289i \(-0.556498\pi\)
−0.176562 + 0.984289i \(0.556498\pi\)
\(504\) 0 0
\(505\) 5.84597e19 0.310578
\(506\) 0 0
\(507\) 5.40891e20 2.78965
\(508\) 0 0
\(509\) −2.76478e19 −0.138445 −0.0692224 0.997601i \(-0.522052\pi\)
−0.0692224 + 0.997601i \(0.522052\pi\)
\(510\) 0 0
\(511\) 5.34318e19 0.259802
\(512\) 0 0
\(513\) 2.96185e19 0.139856
\(514\) 0 0
\(515\) 1.66987e18 0.00765825
\(516\) 0 0
\(517\) −4.14556e20 −1.84673
\(518\) 0 0
\(519\) 3.67327e20 1.58963
\(520\) 0 0
\(521\) −2.68296e20 −1.12806 −0.564029 0.825755i \(-0.690749\pi\)
−0.564029 + 0.825755i \(0.690749\pi\)
\(522\) 0 0
\(523\) 1.11046e20 0.453672 0.226836 0.973933i \(-0.427162\pi\)
0.226836 + 0.973933i \(0.427162\pi\)
\(524\) 0 0
\(525\) 3.26196e20 1.29504
\(526\) 0 0
\(527\) 1.18340e20 0.456619
\(528\) 0 0
\(529\) −1.68416e20 −0.631633
\(530\) 0 0
\(531\) −3.84665e20 −1.40241
\(532\) 0 0
\(533\) 7.00944e20 2.48445
\(534\) 0 0
\(535\) −2.47769e19 −0.0853875
\(536\) 0 0
\(537\) 3.13968e20 1.05215
\(538\) 0 0
\(539\) 2.18372e19 0.0711674
\(540\) 0 0
\(541\) −1.13223e20 −0.358886 −0.179443 0.983768i \(-0.557430\pi\)
−0.179443 + 0.983768i \(0.557430\pi\)
\(542\) 0 0
\(543\) 9.14642e20 2.82002
\(544\) 0 0
\(545\) 9.90494e19 0.297083
\(546\) 0 0
\(547\) −3.98701e20 −1.16344 −0.581718 0.813390i \(-0.697619\pi\)
−0.581718 + 0.813390i \(0.697619\pi\)
\(548\) 0 0
\(549\) 8.51519e20 2.41770
\(550\) 0 0
\(551\) 2.80207e19 0.0774180
\(552\) 0 0
\(553\) 2.93492e20 0.789148
\(554\) 0 0
\(555\) −2.18074e20 −0.570697
\(556\) 0 0
\(557\) −6.08629e20 −1.55038 −0.775191 0.631727i \(-0.782347\pi\)
−0.775191 + 0.631727i \(0.782347\pi\)
\(558\) 0 0
\(559\) −1.01910e21 −2.52713
\(560\) 0 0
\(561\) −1.00291e21 −2.42126
\(562\) 0 0
\(563\) 7.42176e20 1.74459 0.872296 0.488977i \(-0.162630\pi\)
0.872296 + 0.488977i \(0.162630\pi\)
\(564\) 0 0
\(565\) 8.23488e19 0.188493
\(566\) 0 0
\(567\) 3.04316e20 0.678348
\(568\) 0 0
\(569\) −5.95158e20 −1.29208 −0.646041 0.763303i \(-0.723577\pi\)
−0.646041 + 0.763303i \(0.723577\pi\)
\(570\) 0 0
\(571\) −5.51613e20 −1.16644 −0.583222 0.812313i \(-0.698208\pi\)
−0.583222 + 0.812313i \(0.698208\pi\)
\(572\) 0 0
\(573\) 2.13368e20 0.439510
\(574\) 0 0
\(575\) 2.53353e20 0.508413
\(576\) 0 0
\(577\) −4.71991e20 −0.922815 −0.461408 0.887188i \(-0.652655\pi\)
−0.461408 + 0.887188i \(0.652655\pi\)
\(578\) 0 0
\(579\) 2.84975e19 0.0542897
\(580\) 0 0
\(581\) −2.07826e20 −0.385816
\(582\) 0 0
\(583\) −9.37473e20 −1.69607
\(584\) 0 0
\(585\) 4.89179e20 0.862579
\(586\) 0 0
\(587\) −1.39003e20 −0.238912 −0.119456 0.992840i \(-0.538115\pi\)
−0.119456 + 0.992840i \(0.538115\pi\)
\(588\) 0 0
\(589\) −7.75088e19 −0.129863
\(590\) 0 0
\(591\) −7.74192e20 −1.26457
\(592\) 0 0
\(593\) −1.40651e20 −0.223992 −0.111996 0.993709i \(-0.535724\pi\)
−0.111996 + 0.993709i \(0.535724\pi\)
\(594\) 0 0
\(595\) −3.25023e20 −0.504705
\(596\) 0 0
\(597\) 3.19441e20 0.483707
\(598\) 0 0
\(599\) 9.48542e18 0.0140073 0.00700366 0.999975i \(-0.497771\pi\)
0.00700366 + 0.999975i \(0.497771\pi\)
\(600\) 0 0
\(601\) −1.01702e20 −0.146477 −0.0732386 0.997314i \(-0.523333\pi\)
−0.0732386 + 0.997314i \(0.523333\pi\)
\(602\) 0 0
\(603\) −1.61000e21 −2.26175
\(604\) 0 0
\(605\) −2.16520e20 −0.296710
\(606\) 0 0
\(607\) −5.86605e20 −0.784207 −0.392104 0.919921i \(-0.628253\pi\)
−0.392104 + 0.919921i \(0.628253\pi\)
\(608\) 0 0
\(609\) −2.64437e20 −0.344900
\(610\) 0 0
\(611\) 1.85993e21 2.36694
\(612\) 0 0
\(613\) 1.49336e21 1.85443 0.927214 0.374532i \(-0.122197\pi\)
0.927214 + 0.374532i \(0.122197\pi\)
\(614\) 0 0
\(615\) 7.36471e20 0.892467
\(616\) 0 0
\(617\) 7.20003e20 0.851522 0.425761 0.904836i \(-0.360006\pi\)
0.425761 + 0.904836i \(0.360006\pi\)
\(618\) 0 0
\(619\) 2.51978e20 0.290859 0.145429 0.989369i \(-0.453544\pi\)
0.145429 + 0.989369i \(0.453544\pi\)
\(620\) 0 0
\(621\) −2.17096e20 −0.244605
\(622\) 0 0
\(623\) −1.63165e21 −1.79459
\(624\) 0 0
\(625\) 5.02335e20 0.539378
\(626\) 0 0
\(627\) 6.56872e20 0.688611
\(628\) 0 0
\(629\) −1.12133e21 −1.14777
\(630\) 0 0
\(631\) 7.35089e20 0.734717 0.367358 0.930079i \(-0.380262\pi\)
0.367358 + 0.930079i \(0.380262\pi\)
\(632\) 0 0
\(633\) 1.27131e21 1.24087
\(634\) 0 0
\(635\) 3.54878e20 0.338280
\(636\) 0 0
\(637\) −9.79739e19 −0.0912147
\(638\) 0 0
\(639\) 1.35294e21 1.23033
\(640\) 0 0
\(641\) 1.20788e21 1.07298 0.536488 0.843908i \(-0.319751\pi\)
0.536488 + 0.843908i \(0.319751\pi\)
\(642\) 0 0
\(643\) −1.01046e21 −0.876870 −0.438435 0.898763i \(-0.644467\pi\)
−0.438435 + 0.898763i \(0.644467\pi\)
\(644\) 0 0
\(645\) −1.07075e21 −0.907799
\(646\) 0 0
\(647\) −8.40486e20 −0.696223 −0.348111 0.937453i \(-0.613177\pi\)
−0.348111 + 0.937453i \(0.613177\pi\)
\(648\) 0 0
\(649\) −1.80114e21 −1.45785
\(650\) 0 0
\(651\) 7.31467e20 0.578545
\(652\) 0 0
\(653\) 1.22949e20 0.0950337 0.0475169 0.998870i \(-0.484869\pi\)
0.0475169 + 0.998870i \(0.484869\pi\)
\(654\) 0 0
\(655\) −4.91898e20 −0.371591
\(656\) 0 0
\(657\) −4.34465e20 −0.320786
\(658\) 0 0
\(659\) 3.33134e20 0.240425 0.120212 0.992748i \(-0.461642\pi\)
0.120212 + 0.992748i \(0.461642\pi\)
\(660\) 0 0
\(661\) −5.96923e20 −0.421121 −0.210561 0.977581i \(-0.567529\pi\)
−0.210561 + 0.977581i \(0.567529\pi\)
\(662\) 0 0
\(663\) 4.49963e21 3.10331
\(664\) 0 0
\(665\) 2.12879e20 0.143539
\(666\) 0 0
\(667\) −2.05385e20 −0.135402
\(668\) 0 0
\(669\) −2.01630e21 −1.29975
\(670\) 0 0
\(671\) 3.98711e21 2.51327
\(672\) 0 0
\(673\) −2.79848e20 −0.172508 −0.0862541 0.996273i \(-0.527490\pi\)
−0.0862541 + 0.996273i \(0.527490\pi\)
\(674\) 0 0
\(675\) −5.59989e20 −0.337599
\(676\) 0 0
\(677\) 8.44142e20 0.497738 0.248869 0.968537i \(-0.419941\pi\)
0.248869 + 0.968537i \(0.419941\pi\)
\(678\) 0 0
\(679\) −1.92848e21 −1.11222
\(680\) 0 0
\(681\) −1.48904e21 −0.840048
\(682\) 0 0
\(683\) −2.23988e20 −0.123615 −0.0618073 0.998088i \(-0.519686\pi\)
−0.0618073 + 0.998088i \(0.519686\pi\)
\(684\) 0 0
\(685\) −7.76215e20 −0.419086
\(686\) 0 0
\(687\) −1.74924e21 −0.924004
\(688\) 0 0
\(689\) 4.20603e21 2.17384
\(690\) 0 0
\(691\) −1.64756e21 −0.833211 −0.416606 0.909087i \(-0.636780\pi\)
−0.416606 + 0.909087i \(0.636780\pi\)
\(692\) 0 0
\(693\) −3.46533e21 −1.71493
\(694\) 0 0
\(695\) 1.40940e21 0.682572
\(696\) 0 0
\(697\) 3.78691e21 1.79490
\(698\) 0 0
\(699\) 2.47206e21 1.14678
\(700\) 0 0
\(701\) 1.22646e21 0.556890 0.278445 0.960452i \(-0.410181\pi\)
0.278445 + 0.960452i \(0.410181\pi\)
\(702\) 0 0
\(703\) 7.34430e20 0.326427
\(704\) 0 0
\(705\) 1.95420e21 0.850258
\(706\) 0 0
\(707\) 1.85801e21 0.791410
\(708\) 0 0
\(709\) 1.14964e21 0.479418 0.239709 0.970845i \(-0.422948\pi\)
0.239709 + 0.970845i \(0.422948\pi\)
\(710\) 0 0
\(711\) −2.38645e21 −0.974384
\(712\) 0 0
\(713\) 5.68121e20 0.227127
\(714\) 0 0
\(715\) 2.29051e21 0.896678
\(716\) 0 0
\(717\) 3.21044e21 1.23075
\(718\) 0 0
\(719\) −3.73156e21 −1.40095 −0.700477 0.713675i \(-0.747030\pi\)
−0.700477 + 0.713675i \(0.747030\pi\)
\(720\) 0 0
\(721\) 5.30731e19 0.0195146
\(722\) 0 0
\(723\) −2.17496e21 −0.783276
\(724\) 0 0
\(725\) −5.29781e20 −0.186879
\(726\) 0 0
\(727\) −3.93565e21 −1.35990 −0.679952 0.733256i \(-0.737999\pi\)
−0.679952 + 0.733256i \(0.737999\pi\)
\(728\) 0 0
\(729\) −4.26741e21 −1.44447
\(730\) 0 0
\(731\) −5.50576e21 −1.82573
\(732\) 0 0
\(733\) 1.28588e21 0.417753 0.208877 0.977942i \(-0.433019\pi\)
0.208877 + 0.977942i \(0.433019\pi\)
\(734\) 0 0
\(735\) −1.02940e20 −0.0327663
\(736\) 0 0
\(737\) −7.53857e21 −2.35116
\(738\) 0 0
\(739\) 1.84753e21 0.564621 0.282311 0.959323i \(-0.408899\pi\)
0.282311 + 0.959323i \(0.408899\pi\)
\(740\) 0 0
\(741\) −2.94710e21 −0.882588
\(742\) 0 0
\(743\) −3.46263e21 −1.01623 −0.508113 0.861291i \(-0.669657\pi\)
−0.508113 + 0.861291i \(0.669657\pi\)
\(744\) 0 0
\(745\) −8.27498e20 −0.238010
\(746\) 0 0
\(747\) 1.68988e21 0.476378
\(748\) 0 0
\(749\) −7.87479e20 −0.217583
\(750\) 0 0
\(751\) −1.55571e20 −0.0421336 −0.0210668 0.999778i \(-0.506706\pi\)
−0.0210668 + 0.999778i \(0.506706\pi\)
\(752\) 0 0
\(753\) −2.31569e21 −0.614778
\(754\) 0 0
\(755\) −1.72961e21 −0.450138
\(756\) 0 0
\(757\) 1.89778e21 0.484201 0.242101 0.970251i \(-0.422164\pi\)
0.242101 + 0.970251i \(0.422164\pi\)
\(758\) 0 0
\(759\) −4.81472e21 −1.20436
\(760\) 0 0
\(761\) 4.57291e21 1.12152 0.560760 0.827978i \(-0.310509\pi\)
0.560760 + 0.827978i \(0.310509\pi\)
\(762\) 0 0
\(763\) 3.14806e21 0.757023
\(764\) 0 0
\(765\) 2.64283e21 0.623173
\(766\) 0 0
\(767\) 8.08092e21 1.86851
\(768\) 0 0
\(769\) 5.26461e21 1.19376 0.596882 0.802329i \(-0.296406\pi\)
0.596882 + 0.802329i \(0.296406\pi\)
\(770\) 0 0
\(771\) −8.28322e21 −1.84201
\(772\) 0 0
\(773\) −6.89284e21 −1.50332 −0.751661 0.659550i \(-0.770747\pi\)
−0.751661 + 0.659550i \(0.770747\pi\)
\(774\) 0 0
\(775\) 1.46544e21 0.313477
\(776\) 0 0
\(777\) −6.93097e21 −1.45424
\(778\) 0 0
\(779\) −2.48029e21 −0.510472
\(780\) 0 0
\(781\) 6.33494e21 1.27897
\(782\) 0 0
\(783\) 4.53966e20 0.0899105
\(784\) 0 0
\(785\) 6.25127e20 0.121464
\(786\) 0 0
\(787\) −2.48699e21 −0.474093 −0.237047 0.971498i \(-0.576179\pi\)
−0.237047 + 0.971498i \(0.576179\pi\)
\(788\) 0 0
\(789\) 1.07762e22 2.01552
\(790\) 0 0
\(791\) 2.61727e21 0.480314
\(792\) 0 0
\(793\) −1.78884e22 −3.22124
\(794\) 0 0
\(795\) 4.41921e21 0.780892
\(796\) 0 0
\(797\) 5.50037e21 0.953793 0.476897 0.878959i \(-0.341762\pi\)
0.476897 + 0.878959i \(0.341762\pi\)
\(798\) 0 0
\(799\) 1.00484e22 1.71001
\(800\) 0 0
\(801\) 1.32673e22 2.21584
\(802\) 0 0
\(803\) −2.03432e21 −0.333467
\(804\) 0 0
\(805\) −1.56035e21 −0.251046
\(806\) 0 0
\(807\) −3.18176e21 −0.502476
\(808\) 0 0
\(809\) 4.82590e21 0.748109 0.374054 0.927407i \(-0.377967\pi\)
0.374054 + 0.927407i \(0.377967\pi\)
\(810\) 0 0
\(811\) −4.74535e21 −0.722124 −0.361062 0.932542i \(-0.617586\pi\)
−0.361062 + 0.932542i \(0.617586\pi\)
\(812\) 0 0
\(813\) 5.84099e21 0.872584
\(814\) 0 0
\(815\) −2.17212e21 −0.318568
\(816\) 0 0
\(817\) 3.60608e21 0.519242
\(818\) 0 0
\(819\) 1.55474e22 2.19801
\(820\) 0 0
\(821\) −6.64783e21 −0.922798 −0.461399 0.887193i \(-0.652652\pi\)
−0.461399 + 0.887193i \(0.652652\pi\)
\(822\) 0 0
\(823\) 7.74614e21 1.05581 0.527906 0.849303i \(-0.322977\pi\)
0.527906 + 0.849303i \(0.322977\pi\)
\(824\) 0 0
\(825\) −1.24193e22 −1.66224
\(826\) 0 0
\(827\) 1.25902e22 1.65478 0.827389 0.561629i \(-0.189825\pi\)
0.827389 + 0.561629i \(0.189825\pi\)
\(828\) 0 0
\(829\) 2.43881e20 0.0314789 0.0157395 0.999876i \(-0.494990\pi\)
0.0157395 + 0.999876i \(0.494990\pi\)
\(830\) 0 0
\(831\) 2.77939e21 0.352324
\(832\) 0 0
\(833\) −5.29313e20 −0.0658984
\(834\) 0 0
\(835\) 5.00424e20 0.0611913
\(836\) 0 0
\(837\) −1.25573e21 −0.150818
\(838\) 0 0
\(839\) 4.98445e21 0.588034 0.294017 0.955800i \(-0.405008\pi\)
0.294017 + 0.955800i \(0.405008\pi\)
\(840\) 0 0
\(841\) −8.19971e21 −0.950230
\(842\) 0 0
\(843\) −3.50414e20 −0.0398910
\(844\) 0 0
\(845\) −6.67391e21 −0.746371
\(846\) 0 0
\(847\) −6.88159e21 −0.756072
\(848\) 0 0
\(849\) −5.16189e21 −0.557187
\(850\) 0 0
\(851\) −5.38320e21 −0.570912
\(852\) 0 0
\(853\) −1.68031e22 −1.75094 −0.875472 0.483269i \(-0.839449\pi\)
−0.875472 + 0.483269i \(0.839449\pi\)
\(854\) 0 0
\(855\) −1.73096e21 −0.177232
\(856\) 0 0
\(857\) 5.85956e21 0.589534 0.294767 0.955569i \(-0.404758\pi\)
0.294767 + 0.955569i \(0.404758\pi\)
\(858\) 0 0
\(859\) −1.88515e20 −0.0186379 −0.00931895 0.999957i \(-0.502966\pi\)
−0.00931895 + 0.999957i \(0.502966\pi\)
\(860\) 0 0
\(861\) 2.34070e22 2.27417
\(862\) 0 0
\(863\) −1.84482e22 −1.76146 −0.880729 0.473620i \(-0.842947\pi\)
−0.880729 + 0.473620i \(0.842947\pi\)
\(864\) 0 0
\(865\) −4.53234e21 −0.425306
\(866\) 0 0
\(867\) 7.98179e21 0.736134
\(868\) 0 0
\(869\) −1.11742e22 −1.01290
\(870\) 0 0
\(871\) 3.38223e22 3.01347
\(872\) 0 0
\(873\) 1.56809e22 1.37329
\(874\) 0 0
\(875\) −8.82962e21 −0.760119
\(876\) 0 0
\(877\) −8.31583e21 −0.703734 −0.351867 0.936050i \(-0.614453\pi\)
−0.351867 + 0.936050i \(0.614453\pi\)
\(878\) 0 0
\(879\) −2.49694e22 −2.07726
\(880\) 0 0
\(881\) 1.02417e22 0.837630 0.418815 0.908071i \(-0.362445\pi\)
0.418815 + 0.908071i \(0.362445\pi\)
\(882\) 0 0
\(883\) 1.85637e22 1.49265 0.746327 0.665579i \(-0.231815\pi\)
0.746327 + 0.665579i \(0.231815\pi\)
\(884\) 0 0
\(885\) 8.49049e21 0.671209
\(886\) 0 0
\(887\) −1.74753e22 −1.35830 −0.679151 0.733999i \(-0.737652\pi\)
−0.679151 + 0.733999i \(0.737652\pi\)
\(888\) 0 0
\(889\) 1.12790e22 0.861999
\(890\) 0 0
\(891\) −1.15863e22 −0.870686
\(892\) 0 0
\(893\) −6.58137e21 −0.486329
\(894\) 0 0
\(895\) −3.87396e21 −0.281503
\(896\) 0 0
\(897\) 2.16015e22 1.54362
\(898\) 0 0
\(899\) −1.18799e21 −0.0834860
\(900\) 0 0
\(901\) 2.27235e22 1.57050
\(902\) 0 0
\(903\) −3.40313e22 −2.31324
\(904\) 0 0
\(905\) −1.12855e22 −0.754496
\(906\) 0 0
\(907\) −7.17927e21 −0.472091 −0.236045 0.971742i \(-0.575851\pi\)
−0.236045 + 0.971742i \(0.575851\pi\)
\(908\) 0 0
\(909\) −1.51078e22 −0.977177
\(910\) 0 0
\(911\) 1.70120e22 1.08235 0.541174 0.840911i \(-0.317980\pi\)
0.541174 + 0.840911i \(0.317980\pi\)
\(912\) 0 0
\(913\) 7.91261e21 0.495209
\(914\) 0 0
\(915\) −1.87951e22 −1.15714
\(916\) 0 0
\(917\) −1.56339e22 −0.946883
\(918\) 0 0
\(919\) 2.68367e22 1.59905 0.799526 0.600631i \(-0.205084\pi\)
0.799526 + 0.600631i \(0.205084\pi\)
\(920\) 0 0
\(921\) −9.90264e20 −0.0580502
\(922\) 0 0
\(923\) −2.84221e22 −1.63925
\(924\) 0 0
\(925\) −1.38857e22 −0.787961
\(926\) 0 0
\(927\) −4.31549e20 −0.0240953
\(928\) 0 0
\(929\) 6.54830e21 0.359758 0.179879 0.983689i \(-0.442429\pi\)
0.179879 + 0.983689i \(0.442429\pi\)
\(930\) 0 0
\(931\) 3.46681e20 0.0187416
\(932\) 0 0
\(933\) −5.04327e22 −2.68287
\(934\) 0 0
\(935\) 1.23747e22 0.647808
\(936\) 0 0
\(937\) −7.31180e21 −0.376684 −0.188342 0.982103i \(-0.560311\pi\)
−0.188342 + 0.982103i \(0.560311\pi\)
\(938\) 0 0
\(939\) −1.20548e22 −0.611180
\(940\) 0 0
\(941\) 1.09415e22 0.545952 0.272976 0.962021i \(-0.411992\pi\)
0.272976 + 0.962021i \(0.411992\pi\)
\(942\) 0 0
\(943\) 1.81800e22 0.892802
\(944\) 0 0
\(945\) 3.44887e21 0.166701
\(946\) 0 0
\(947\) −1.38913e22 −0.660871 −0.330436 0.943828i \(-0.607196\pi\)
−0.330436 + 0.943828i \(0.607196\pi\)
\(948\) 0 0
\(949\) 9.12710e21 0.427402
\(950\) 0 0
\(951\) −2.86880e21 −0.132235
\(952\) 0 0
\(953\) −2.78995e21 −0.126590 −0.0632951 0.997995i \(-0.520161\pi\)
−0.0632951 + 0.997995i \(0.520161\pi\)
\(954\) 0 0
\(955\) −2.63268e21 −0.117591
\(956\) 0 0
\(957\) 1.00680e22 0.442692
\(958\) 0 0
\(959\) −2.46702e22 −1.06791
\(960\) 0 0
\(961\) −2.01791e22 −0.859958
\(962\) 0 0
\(963\) 6.40315e21 0.268656
\(964\) 0 0
\(965\) −3.51623e20 −0.0145252
\(966\) 0 0
\(967\) −2.82118e22 −1.14745 −0.573723 0.819050i \(-0.694501\pi\)
−0.573723 + 0.819050i \(0.694501\pi\)
\(968\) 0 0
\(969\) −1.59220e22 −0.637629
\(970\) 0 0
\(971\) 2.34855e21 0.0926095 0.0463048 0.998927i \(-0.485255\pi\)
0.0463048 + 0.998927i \(0.485255\pi\)
\(972\) 0 0
\(973\) 4.47946e22 1.73932
\(974\) 0 0
\(975\) 5.57201e22 2.13048
\(976\) 0 0
\(977\) 5.06144e22 1.90575 0.952873 0.303370i \(-0.0981118\pi\)
0.952873 + 0.303370i \(0.0981118\pi\)
\(978\) 0 0
\(979\) 6.21220e22 2.30343
\(980\) 0 0
\(981\) −2.55975e22 −0.934718
\(982\) 0 0
\(983\) 1.05850e22 0.380663 0.190331 0.981720i \(-0.439044\pi\)
0.190331 + 0.981720i \(0.439044\pi\)
\(984\) 0 0
\(985\) 9.55254e21 0.338335
\(986\) 0 0
\(987\) 6.21098e22 2.16661
\(988\) 0 0
\(989\) −2.64317e22 −0.908140
\(990\) 0 0
\(991\) −2.21374e22 −0.749158 −0.374579 0.927195i \(-0.622213\pi\)
−0.374579 + 0.927195i \(0.622213\pi\)
\(992\) 0 0
\(993\) −8.21670e22 −2.73891
\(994\) 0 0
\(995\) −3.94149e21 −0.129416
\(996\) 0 0
\(997\) 5.95482e22 1.92600 0.962998 0.269510i \(-0.0868618\pi\)
0.962998 + 0.269510i \(0.0868618\pi\)
\(998\) 0 0
\(999\) 1.18986e22 0.379100
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 32.16.a.c.1.4 4
4.3 odd 2 32.16.a.e.1.1 yes 4
8.3 odd 2 64.16.a.o.1.4 4
8.5 even 2 64.16.a.q.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
32.16.a.c.1.4 4 1.1 even 1 trivial
32.16.a.e.1.1 yes 4 4.3 odd 2
64.16.a.o.1.4 4 8.3 odd 2
64.16.a.q.1.1 4 8.5 even 2