Properties

Label 32.16.a.c
Level $32$
Weight $16$
Character orbit 32.a
Self dual yes
Analytic conductor $45.662$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [32,16,Mod(1,32)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("32.1"); S:= CuspForms(chi, 16); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(32, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 16, names="a")
 
Level: \( N \) \(=\) \( 32 = 2^{5} \)
Weight: \( k \) \(=\) \( 16 \)
Character orbit: \([\chi]\) \(=\) 32.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-2912] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(45.6619216320\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 10174x^{2} - 369720x - 3191805 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{27}\cdot 3\cdot 5 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 - 728) q^{3} + (\beta_{2} + 6 \beta_1 - 24570) q^{5} + (\beta_{3} - 8 \beta_{2} + \cdots - 688944) q^{7} + ( - 8 \beta_{3} + 30 \beta_{2} + \cdots + 6614485) q^{9} + ( - 22 \beta_{3} - 336 \beta_{2} + \cdots + 27713464) q^{11}+ \cdots + ( - 59470664 \beta_{3} + \cdots + 657431294467096) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2912 q^{3} - 98280 q^{5} - 2755776 q^{7} + 26457940 q^{9} + 110853856 q^{11} - 187741448 q^{13} - 442991680 q^{15} + 2121294984 q^{17} + 419203872 q^{19} + 8397459968 q^{21} - 5330808384 q^{23} + 8564955740 q^{25}+ \cdots + 26\!\cdots\!84 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 10174x^{2} - 369720x - 3191805 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -32\nu^{3} - 688\nu^{2} + 394944\nu + 12373136 ) / 1169 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -6592\nu^{3} + 157536\nu^{2} + 64514176\nu + 1026510048 ) / 1503 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 113728\nu^{3} - 2343072\nu^{2} - 1010996608\nu - 19616429856 ) / 3507 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( 7\beta_{3} + 48\beta_{2} + 602\beta_1 ) / 245760 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 197\beta_{3} + 1968\beta_{2} - 81938\beta _1 + 625090560 ) / 122880 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 77923\beta_{3} + 507792\beta_{2} + 1975298\beta _1 + 68146790400 ) / 245760 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−13.7096
−26.0030
116.540
−76.8271
0 −6640.54 0 136415. 0 −3.99282e6 0 2.97478e7 0
1.2 0 −2610.67 0 −298458. 0 2.33016e6 0 −7.53332e6 0
1.3 0 634.991 0 134146. 0 1.14384e6 0 −1.39457e7 0
1.4 0 5704.21 0 −70382.7 0 −2.23695e6 0 1.81891e7 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 32.16.a.c 4
4.b odd 2 1 32.16.a.e yes 4
8.b even 2 1 64.16.a.q 4
8.d odd 2 1 64.16.a.o 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
32.16.a.c 4 1.a even 1 1 trivial
32.16.a.e yes 4 4.b odd 2 1
64.16.a.o 4 8.d odd 2 1
64.16.a.q 4 8.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} + 2912T_{3}^{3} - 37686912T_{3}^{2} - 76388935680T_{3} + 62793980448768 \) acting on \(S_{16}^{\mathrm{new}}(\Gamma_0(32))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} + \cdots + 62793980448768 \) Copy content Toggle raw display
$5$ \( T^{4} + \cdots + 38\!\cdots\!00 \) Copy content Toggle raw display
$7$ \( T^{4} + \cdots + 23\!\cdots\!16 \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots - 14\!\cdots\!00 \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots + 31\!\cdots\!00 \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 15\!\cdots\!00 \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots - 44\!\cdots\!00 \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 11\!\cdots\!44 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots + 76\!\cdots\!52 \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots + 11\!\cdots\!00 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 19\!\cdots\!00 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots - 55\!\cdots\!00 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots - 22\!\cdots\!48 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots - 41\!\cdots\!76 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots - 32\!\cdots\!00 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots - 20\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 40\!\cdots\!00 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots - 10\!\cdots\!92 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots - 39\!\cdots\!00 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots - 30\!\cdots\!00 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 66\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots - 27\!\cdots\!40 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 15\!\cdots\!24 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 76\!\cdots\!00 \) Copy content Toggle raw display
show more
show less