Properties

Label 3168.2.h.e
Level $3168$
Weight $2$
Character orbit 3168.h
Analytic conductor $25.297$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3168,2,Mod(2287,3168)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3168, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3168.2287"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3168 = 2^{5} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3168.h (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,0,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.2966073603\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 264)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{2} q^{7} + (\beta_1 + 3) q^{11} - 2 \beta_{2} q^{13} - 5 \beta_1 q^{17} + 3 \beta_1 q^{19} - 2 \beta_{3} q^{23} + 5 q^{25} + \beta_{2} q^{29} + 3 \beta_{3} q^{31} - \beta_{3} q^{37} + 5 \beta_1 q^{41}+ \cdots - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 12 q^{11} + 20 q^{25} - 4 q^{49} - 24 q^{59} - 32 q^{67} - 24 q^{89} + 48 q^{91} - 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{2} + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} ) / 2 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{3} + 4\nu ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 2\nu^{2} - 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} + 2 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3168\mathbb{Z}\right)^\times\).

\(n\) \(353\) \(991\) \(1189\) \(1729\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2287.1
1.22474 0.707107i
1.22474 + 0.707107i
−1.22474 0.707107i
−1.22474 + 0.707107i
0 0 0 0 0 −2.44949 0 0 0
2287.2 0 0 0 0 0 −2.44949 0 0 0
2287.3 0 0 0 0 0 2.44949 0 0 0
2287.4 0 0 0 0 0 2.44949 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 inner
11.b odd 2 1 inner
88.g even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3168.2.h.e 4
3.b odd 2 1 1056.2.h.c 4
4.b odd 2 1 792.2.h.d 4
8.b even 2 1 792.2.h.d 4
8.d odd 2 1 inner 3168.2.h.e 4
11.b odd 2 1 inner 3168.2.h.e 4
12.b even 2 1 264.2.h.c 4
24.f even 2 1 1056.2.h.c 4
24.h odd 2 1 264.2.h.c 4
33.d even 2 1 1056.2.h.c 4
44.c even 2 1 792.2.h.d 4
88.b odd 2 1 792.2.h.d 4
88.g even 2 1 inner 3168.2.h.e 4
132.d odd 2 1 264.2.h.c 4
264.m even 2 1 264.2.h.c 4
264.p odd 2 1 1056.2.h.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
264.2.h.c 4 12.b even 2 1
264.2.h.c 4 24.h odd 2 1
264.2.h.c 4 132.d odd 2 1
264.2.h.c 4 264.m even 2 1
792.2.h.d 4 4.b odd 2 1
792.2.h.d 4 8.b even 2 1
792.2.h.d 4 44.c even 2 1
792.2.h.d 4 88.b odd 2 1
1056.2.h.c 4 3.b odd 2 1
1056.2.h.c 4 24.f even 2 1
1056.2.h.c 4 33.d even 2 1
1056.2.h.c 4 264.p odd 2 1
3168.2.h.e 4 1.a even 1 1 trivial
3168.2.h.e 4 8.d odd 2 1 inner
3168.2.h.e 4 11.b odd 2 1 inner
3168.2.h.e 4 88.g even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(3168, [\chi])\):

\( T_{5} \) Copy content Toggle raw display
\( T_{7}^{2} - 6 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( (T^{2} - 6)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} - 6 T + 11)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} - 24)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} + 50)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} + 18)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} + 48)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} - 6)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 108)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} + 12)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} + 50)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} + 18)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} + 108)^{2} \) Copy content Toggle raw display
$53$ \( T^{4} \) Copy content Toggle raw display
$59$ \( (T + 6)^{4} \) Copy content Toggle raw display
$61$ \( (T^{2} - 96)^{2} \) Copy content Toggle raw display
$67$ \( (T + 8)^{4} \) Copy content Toggle raw display
$71$ \( (T^{2} + 12)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} \) Copy content Toggle raw display
$79$ \( (T^{2} - 6)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} + 32)^{2} \) Copy content Toggle raw display
$89$ \( (T + 6)^{4} \) Copy content Toggle raw display
$97$ \( (T + 8)^{4} \) Copy content Toggle raw display
show more
show less