Properties

Label 8-3168e4-1.1-c1e4-0-6
Degree $8$
Conductor $1.007\times 10^{14}$
Sign $1$
Analytic cond. $409495.$
Root an. cond. $5.02957$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 12·11-s + 20·25-s − 16·49-s − 24·59-s − 32·67-s − 24·89-s − 32·97-s + 24·113-s + 86·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 4·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + ⋯
L(s)  = 1  + 3.61·11-s + 4·25-s − 2.28·49-s − 3.12·59-s − 3.90·67-s − 2.54·89-s − 3.24·97-s + 2.25·113-s + 7.81·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 0.307·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 3^{8} \cdot 11^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 3^{8} \cdot 11^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{20} \cdot 3^{8} \cdot 11^{4}\)
Sign: $1$
Analytic conductor: \(409495.\)
Root analytic conductor: \(5.02957\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{20} \cdot 3^{8} \cdot 11^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(2.741173703\)
\(L(\frac12)\) \(\approx\) \(2.741173703\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
11$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
good5$C_2$ \( ( 1 - p T^{2} )^{4} \) 4.5.a_au_a_fu
7$C_2^2$ \( ( 1 + 8 T^{2} + p^{2} T^{4} )^{2} \) 4.7.a_q_a_gg
13$C_2^2$ \( ( 1 + 2 T^{2} + p^{2} T^{4} )^{2} \) 4.13.a_e_a_ne
17$C_2^2$ \( ( 1 + 16 T^{2} + p^{2} T^{4} )^{2} \) 4.17.a_bg_a_bgc
19$C_2^2$ \( ( 1 - 20 T^{2} + p^{2} T^{4} )^{2} \) 4.19.a_abo_a_bre
23$C_2^2$ \( ( 1 + 2 T^{2} + p^{2} T^{4} )^{2} \) 4.23.a_e_a_bow
29$C_2^2$ \( ( 1 + 52 T^{2} + p^{2} T^{4} )^{2} \) 4.29.a_ea_a_gms
31$C_2$ \( ( 1 - 4 T + p T^{2} )^{2}( 1 + 4 T + p T^{2} )^{2} \) 4.31.a_do_a_fzi
37$C_2^2$ \( ( 1 - 62 T^{2} + p^{2} T^{4} )^{2} \) 4.37.a_aeu_a_jte
41$C_2^2$ \( ( 1 - 32 T^{2} + p^{2} T^{4} )^{2} \) 4.41.a_acm_a_gms
43$C_2^2$ \( ( 1 - 68 T^{2} + p^{2} T^{4} )^{2} \) 4.43.a_afg_a_mic
47$C_2^2$ \( ( 1 + 14 T^{2} + p^{2} T^{4} )^{2} \) 4.47.a_bc_a_gvm
53$C_2$ \( ( 1 - p T^{2} )^{4} \) 4.53.a_aie_a_yyg
59$C_2$ \( ( 1 + 6 T + p T^{2} )^{4} \) 4.59.y_rk_hoq_csnm
61$C_2^2$ \( ( 1 + 26 T^{2} + p^{2} T^{4} )^{2} \) 4.61.a_ca_a_mag
67$C_2$ \( ( 1 + 8 T + p T^{2} )^{4} \) 4.67.bg_zc_moe_esao
71$C_2^2$ \( ( 1 - 130 T^{2} + p^{2} T^{4} )^{2} \) 4.71.a_aka_a_bnxu
73$C_2$ \( ( 1 - p T^{2} )^{4} \) 4.73.a_alg_a_bvhu
79$C_2^2$ \( ( 1 + 152 T^{2} + p^{2} T^{4} )^{2} \) 4.79.a_ls_a_caqs
83$C_2^2$ \( ( 1 - 134 T^{2} + p^{2} T^{4} )^{2} \) 4.83.a_aki_a_buyo
89$C_2$ \( ( 1 + 6 T + p T^{2} )^{4} \) 4.89.y_wa_kts_ezco
97$C_2$ \( ( 1 + 8 T + p T^{2} )^{4} \) 4.97.bg_bds_quy_hruc
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.20830582254612343383157933785, −6.08130260710433938326395289865, −5.71848071561613727451902823187, −5.63226615351068712772797279640, −5.47449020959184570641406874895, −4.86404271279439900342699138001, −4.81876499274502794905529308995, −4.70571902775812438424484987148, −4.50766302391888223956339675707, −4.42806329099519539513142770787, −4.01365294742535125480792458361, −4.00725900276259756110602620704, −3.64372696628676620261023708599, −3.17758220875247705377730357964, −3.15848068301747871904406934433, −3.14001047906165637850980433751, −2.81462260756927745507567055073, −2.67192848873848027663646687910, −1.86291904828081536791279261673, −1.83228422071514076277895722157, −1.68039122167709311181748731305, −1.21226423789033671233287779348, −1.06515969058692050244643648720, −1.02357803281580801932460598546, −0.21640058606759765525414326375, 0.21640058606759765525414326375, 1.02357803281580801932460598546, 1.06515969058692050244643648720, 1.21226423789033671233287779348, 1.68039122167709311181748731305, 1.83228422071514076277895722157, 1.86291904828081536791279261673, 2.67192848873848027663646687910, 2.81462260756927745507567055073, 3.14001047906165637850980433751, 3.15848068301747871904406934433, 3.17758220875247705377730357964, 3.64372696628676620261023708599, 4.00725900276259756110602620704, 4.01365294742535125480792458361, 4.42806329099519539513142770787, 4.50766302391888223956339675707, 4.70571902775812438424484987148, 4.81876499274502794905529308995, 4.86404271279439900342699138001, 5.47449020959184570641406874895, 5.63226615351068712772797279640, 5.71848071561613727451902823187, 6.08130260710433938326395289865, 6.20830582254612343383157933785

Graph of the $Z$-function along the critical line