L(s) = 1 | + 2.44·7-s + (3 − 1.41i)11-s + 4.89·13-s + 7.07i·17-s − 4.24i·19-s − 6.92i·23-s + 5·25-s − 2.44·29-s + 10.3i·31-s − 3.46i·37-s − 7.07i·41-s − 4.24i·43-s + 10.3i·47-s − 1.00·49-s − 6·59-s + ⋯ |
L(s) = 1 | + 0.925·7-s + (0.904 − 0.426i)11-s + 1.35·13-s + 1.71i·17-s − 0.973i·19-s − 1.44i·23-s + 25-s − 0.454·29-s + 1.86i·31-s − 0.569i·37-s − 1.10i·41-s − 0.646i·43-s + 1.51i·47-s − 0.142·49-s − 0.781·59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3168 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.996 + 0.0829i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3168 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.996 + 0.0829i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.462514284\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.462514284\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 11 | \( 1 + (-3 + 1.41i)T \) |
good | 5 | \( 1 - 5T^{2} \) |
| 7 | \( 1 - 2.44T + 7T^{2} \) |
| 13 | \( 1 - 4.89T + 13T^{2} \) |
| 17 | \( 1 - 7.07iT - 17T^{2} \) |
| 19 | \( 1 + 4.24iT - 19T^{2} \) |
| 23 | \( 1 + 6.92iT - 23T^{2} \) |
| 29 | \( 1 + 2.44T + 29T^{2} \) |
| 31 | \( 1 - 10.3iT - 31T^{2} \) |
| 37 | \( 1 + 3.46iT - 37T^{2} \) |
| 41 | \( 1 + 7.07iT - 41T^{2} \) |
| 43 | \( 1 + 4.24iT - 43T^{2} \) |
| 47 | \( 1 - 10.3iT - 47T^{2} \) |
| 53 | \( 1 - 53T^{2} \) |
| 59 | \( 1 + 6T + 59T^{2} \) |
| 61 | \( 1 - 9.79T + 61T^{2} \) |
| 67 | \( 1 + 8T + 67T^{2} \) |
| 71 | \( 1 - 3.46iT - 71T^{2} \) |
| 73 | \( 1 - 73T^{2} \) |
| 79 | \( 1 - 2.44T + 79T^{2} \) |
| 83 | \( 1 + 5.65iT - 83T^{2} \) |
| 89 | \( 1 + 6T + 89T^{2} \) |
| 97 | \( 1 + 8T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.724912914627862228991610483137, −8.185409790056709939892369437858, −7.05085132150502945904957714745, −6.41845795277355787100499400798, −5.71848071561613727451902823187, −4.70571902775812438424484987148, −4.01365294742535125480792458361, −3.15848068301747871904406934433, −1.83228422071514076277895722157, −1.02357803281580801932460598546,
1.06515969058692050244643648720, 1.86291904828081536791279261673, 3.17758220875247705377730357964, 4.00725900276259756110602620704, 4.81876499274502794905529308995, 5.63226615351068712772797279640, 6.41959657282865727743784929368, 7.28950343394420670626352785488, 7.922009955455695563278560499934, 8.663933081965159234833987828899