Properties

Label 3168.2.f.h.1585.6
Level $3168$
Weight $2$
Character 3168.1585
Analytic conductor $25.297$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3168,2,Mod(1585,3168)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3168.1585"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3168, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3168 = 2^{5} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3168.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.2966073603\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: 20.0.74831334220841134637329678336.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 2x^{18} + 5x^{16} - 8x^{14} + 28x^{12} - 64x^{10} + 112x^{8} - 128x^{6} + 320x^{4} - 512x^{2} + 1024 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{29} \)
Twist minimal: no (minimal twist has level 792)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1585.6
Root \(-0.484785 + 1.32853i\) of defining polynomial
Character \(\chi\) \(=\) 3168.1585
Dual form 3168.2.f.h.1585.15

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.21156i q^{5} -1.26179 q^{7} -1.00000i q^{11} +0.807008i q^{13} +5.69004 q^{17} -5.87553i q^{19} -7.89855 q^{23} +0.109010 q^{25} -7.17010i q^{29} -7.31411 q^{31} +2.79052i q^{35} +9.62643i q^{37} +2.83003 q^{41} +2.83003i q^{43} +7.22017 q^{47} -5.40788 q^{49} -3.01732i q^{53} -2.21156 q^{55} +3.32934i q^{59} -8.97382i q^{61} +1.78474 q^{65} -12.3983i q^{67} +2.56065 q^{71} -9.01085 q^{73} +1.26179i q^{77} -2.35557 q^{79} +2.50251i q^{83} -12.5838i q^{85} -0.832776 q^{89} -1.01828i q^{91} -12.9941 q^{95} -15.0666 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 12 q^{25} - 40 q^{31} + 36 q^{49} + 16 q^{55} - 56 q^{73} + 16 q^{79} + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3168\mathbb{Z}\right)^\times\).

\(n\) \(353\) \(991\) \(1189\) \(1729\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) − 2.21156i − 0.989039i −0.869167 0.494519i \(-0.835344\pi\)
0.869167 0.494519i \(-0.164656\pi\)
\(6\) 0 0
\(7\) −1.26179 −0.476912 −0.238456 0.971153i \(-0.576641\pi\)
−0.238456 + 0.971153i \(0.576641\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) − 1.00000i − 0.301511i
\(12\) 0 0
\(13\) 0.807008i 0.223824i 0.993718 + 0.111912i \(0.0356974\pi\)
−0.993718 + 0.111912i \(0.964303\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 5.69004 1.38004 0.690018 0.723792i \(-0.257603\pi\)
0.690018 + 0.723792i \(0.257603\pi\)
\(18\) 0 0
\(19\) − 5.87553i − 1.34794i −0.738759 0.673970i \(-0.764588\pi\)
0.738759 0.673970i \(-0.235412\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −7.89855 −1.64696 −0.823481 0.567344i \(-0.807971\pi\)
−0.823481 + 0.567344i \(0.807971\pi\)
\(24\) 0 0
\(25\) 0.109010 0.0218020
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 7.17010i − 1.33145i −0.746196 0.665727i \(-0.768122\pi\)
0.746196 0.665727i \(-0.231878\pi\)
\(30\) 0 0
\(31\) −7.31411 −1.31365 −0.656826 0.754042i \(-0.728101\pi\)
−0.656826 + 0.754042i \(0.728101\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 2.79052i 0.471685i
\(36\) 0 0
\(37\) 9.62643i 1.58257i 0.611444 + 0.791287i \(0.290589\pi\)
−0.611444 + 0.791287i \(0.709411\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 2.83003 0.441976 0.220988 0.975277i \(-0.429072\pi\)
0.220988 + 0.975277i \(0.429072\pi\)
\(42\) 0 0
\(43\) 2.83003i 0.431575i 0.976440 + 0.215788i \(0.0692319\pi\)
−0.976440 + 0.215788i \(0.930768\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 7.22017 1.05317 0.526585 0.850122i \(-0.323472\pi\)
0.526585 + 0.850122i \(0.323472\pi\)
\(48\) 0 0
\(49\) −5.40788 −0.772555
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 3.01732i − 0.414460i −0.978292 0.207230i \(-0.933555\pi\)
0.978292 0.207230i \(-0.0664449\pi\)
\(54\) 0 0
\(55\) −2.21156 −0.298206
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 3.32934i 0.433443i 0.976233 + 0.216722i \(0.0695364\pi\)
−0.976233 + 0.216722i \(0.930464\pi\)
\(60\) 0 0
\(61\) − 8.97382i − 1.14898i −0.818512 0.574490i \(-0.805201\pi\)
0.818512 0.574490i \(-0.194799\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.78474 0.221370
\(66\) 0 0
\(67\) − 12.3983i − 1.51470i −0.653010 0.757350i \(-0.726494\pi\)
0.653010 0.757350i \(-0.273506\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 2.56065 0.303893 0.151947 0.988389i \(-0.451446\pi\)
0.151947 + 0.988389i \(0.451446\pi\)
\(72\) 0 0
\(73\) −9.01085 −1.05464 −0.527320 0.849667i \(-0.676803\pi\)
−0.527320 + 0.849667i \(0.676803\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1.26179i 0.143794i
\(78\) 0 0
\(79\) −2.35557 −0.265022 −0.132511 0.991182i \(-0.542304\pi\)
−0.132511 + 0.991182i \(0.542304\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 2.50251i 0.274686i 0.990524 + 0.137343i \(0.0438562\pi\)
−0.990524 + 0.137343i \(0.956144\pi\)
\(84\) 0 0
\(85\) − 12.5838i − 1.36491i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −0.832776 −0.0882741 −0.0441371 0.999025i \(-0.514054\pi\)
−0.0441371 + 0.999025i \(0.514054\pi\)
\(90\) 0 0
\(91\) − 1.01828i − 0.106744i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −12.9941 −1.33317
\(96\) 0 0
\(97\) −15.0666 −1.52978 −0.764889 0.644162i \(-0.777206\pi\)
−0.764889 + 0.644162i \(0.777206\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 5.25302i 0.522695i 0.965245 + 0.261347i \(0.0841668\pi\)
−0.965245 + 0.261347i \(0.915833\pi\)
\(102\) 0 0
\(103\) −11.4187 −1.12512 −0.562561 0.826756i \(-0.690184\pi\)
−0.562561 + 0.826756i \(0.690184\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 8.72868i 0.843833i 0.906635 + 0.421917i \(0.138643\pi\)
−0.906635 + 0.421917i \(0.861357\pi\)
\(108\) 0 0
\(109\) − 8.73133i − 0.836310i −0.908376 0.418155i \(-0.862677\pi\)
0.908376 0.418155i \(-0.137323\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −17.6536 −1.66071 −0.830356 0.557233i \(-0.811863\pi\)
−0.830356 + 0.557233i \(0.811863\pi\)
\(114\) 0 0
\(115\) 17.4681i 1.62891i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −7.17964 −0.658156
\(120\) 0 0
\(121\) −1.00000 −0.0909091
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) − 11.2989i − 1.01060i
\(126\) 0 0
\(127\) −16.4077 −1.45595 −0.727976 0.685603i \(-0.759539\pi\)
−0.727976 + 0.685603i \(0.759539\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 5.00854i 0.437599i 0.975770 + 0.218799i \(0.0702140\pi\)
−0.975770 + 0.218799i \(0.929786\pi\)
\(132\) 0 0
\(133\) 7.41370i 0.642849i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 8.70556 0.743766 0.371883 0.928280i \(-0.378712\pi\)
0.371883 + 0.928280i \(0.378712\pi\)
\(138\) 0 0
\(139\) − 7.78357i − 0.660194i −0.943947 0.330097i \(-0.892919\pi\)
0.943947 0.330097i \(-0.107081\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0.807008 0.0674854
\(144\) 0 0
\(145\) −15.8571 −1.31686
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 7.48858i 0.613489i 0.951792 + 0.306744i \(0.0992396\pi\)
−0.951792 + 0.306744i \(0.900760\pi\)
\(150\) 0 0
\(151\) 3.47981 0.283183 0.141592 0.989925i \(-0.454778\pi\)
0.141592 + 0.989925i \(0.454778\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 16.1756i 1.29925i
\(156\) 0 0
\(157\) 1.24302i 0.0992036i 0.998769 + 0.0496018i \(0.0157952\pi\)
−0.998769 + 0.0496018i \(0.984205\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 9.96632 0.785456
\(162\) 0 0
\(163\) − 1.07526i − 0.0842212i −0.999113 0.0421106i \(-0.986592\pi\)
0.999113 0.0421106i \(-0.0134082\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1.13747 0.0880199 0.0440099 0.999031i \(-0.485987\pi\)
0.0440099 + 0.999031i \(0.485987\pi\)
\(168\) 0 0
\(169\) 12.3487 0.949903
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 2.44142i − 0.185618i −0.995684 0.0928088i \(-0.970415\pi\)
0.995684 0.0928088i \(-0.0295845\pi\)
\(174\) 0 0
\(175\) −0.137548 −0.0103976
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) − 25.2869i − 1.89003i −0.327025 0.945016i \(-0.606046\pi\)
0.327025 0.945016i \(-0.393954\pi\)
\(180\) 0 0
\(181\) − 3.87828i − 0.288271i −0.989558 0.144135i \(-0.953960\pi\)
0.989558 0.144135i \(-0.0460400\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 21.2894 1.56523
\(186\) 0 0
\(187\) − 5.69004i − 0.416097i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 3.99214 0.288861 0.144431 0.989515i \(-0.453865\pi\)
0.144431 + 0.989515i \(0.453865\pi\)
\(192\) 0 0
\(193\) −23.5108 −1.69234 −0.846171 0.532912i \(-0.821098\pi\)
−0.846171 + 0.532912i \(0.821098\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 14.2276i 1.01367i 0.862043 + 0.506836i \(0.169185\pi\)
−0.862043 + 0.506836i \(0.830815\pi\)
\(198\) 0 0
\(199\) −16.1603 −1.14558 −0.572788 0.819704i \(-0.694138\pi\)
−0.572788 + 0.819704i \(0.694138\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 9.04716i 0.634986i
\(204\) 0 0
\(205\) − 6.25877i − 0.437131i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −5.87553 −0.406419
\(210\) 0 0
\(211\) 12.3021i 0.846909i 0.905917 + 0.423454i \(0.139183\pi\)
−0.905917 + 0.423454i \(0.860817\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 6.25877 0.426845
\(216\) 0 0
\(217\) 9.22887 0.626497
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 4.59190i 0.308885i
\(222\) 0 0
\(223\) 13.6672 0.915225 0.457613 0.889152i \(-0.348705\pi\)
0.457613 + 0.889152i \(0.348705\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 4.00000i 0.265489i 0.991150 + 0.132745i \(0.0423790\pi\)
−0.991150 + 0.132745i \(0.957621\pi\)
\(228\) 0 0
\(229\) − 13.1337i − 0.867900i −0.900937 0.433950i \(-0.857119\pi\)
0.900937 0.433950i \(-0.142881\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −26.3322 −1.72508 −0.862539 0.505991i \(-0.831127\pi\)
−0.862539 + 0.505991i \(0.831127\pi\)
\(234\) 0 0
\(235\) − 15.9678i − 1.04163i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 1.78177 0.115253 0.0576265 0.998338i \(-0.481647\pi\)
0.0576265 + 0.998338i \(0.481647\pi\)
\(240\) 0 0
\(241\) −17.8571 −1.15028 −0.575138 0.818056i \(-0.695052\pi\)
−0.575138 + 0.818056i \(0.695052\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 11.9598i 0.764087i
\(246\) 0 0
\(247\) 4.74160 0.301701
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) − 25.1501i − 1.58746i −0.608269 0.793731i \(-0.708136\pi\)
0.608269 0.793731i \(-0.291864\pi\)
\(252\) 0 0
\(253\) 7.89855i 0.496578i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 13.6591 0.852032 0.426016 0.904716i \(-0.359917\pi\)
0.426016 + 0.904716i \(0.359917\pi\)
\(258\) 0 0
\(259\) − 12.1465i − 0.754749i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −4.41704 −0.272366 −0.136183 0.990684i \(-0.543484\pi\)
−0.136183 + 0.990684i \(0.543484\pi\)
\(264\) 0 0
\(265\) −6.67297 −0.409917
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 6.10693i − 0.372346i −0.982517 0.186173i \(-0.940392\pi\)
0.982517 0.186173i \(-0.0596085\pi\)
\(270\) 0 0
\(271\) −8.19095 −0.497565 −0.248782 0.968559i \(-0.580030\pi\)
−0.248782 + 0.968559i \(0.580030\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 0.109010i − 0.00657355i
\(276\) 0 0
\(277\) − 19.8174i − 1.19071i −0.803463 0.595355i \(-0.797011\pi\)
0.803463 0.595355i \(-0.202989\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −23.1012 −1.37810 −0.689050 0.724714i \(-0.741972\pi\)
−0.689050 + 0.724714i \(0.741972\pi\)
\(282\) 0 0
\(283\) 31.8637i 1.89410i 0.321085 + 0.947050i \(0.395953\pi\)
−0.321085 + 0.947050i \(0.604047\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −3.57090 −0.210784
\(288\) 0 0
\(289\) 15.3765 0.904500
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 1.98170i − 0.115772i −0.998323 0.0578860i \(-0.981564\pi\)
0.998323 0.0578860i \(-0.0184360\pi\)
\(294\) 0 0
\(295\) 7.36303 0.428692
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) − 6.37419i − 0.368629i
\(300\) 0 0
\(301\) − 3.57090i − 0.205823i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −19.8461 −1.13639
\(306\) 0 0
\(307\) 10.9821i 0.626780i 0.949625 + 0.313390i \(0.101465\pi\)
−0.949625 + 0.313390i \(0.898535\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 28.3552 1.60787 0.803937 0.594714i \(-0.202735\pi\)
0.803937 + 0.594714i \(0.202735\pi\)
\(312\) 0 0
\(313\) 23.7566 1.34280 0.671402 0.741094i \(-0.265692\pi\)
0.671402 + 0.741094i \(0.265692\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 27.0578i − 1.51972i −0.650089 0.759858i \(-0.725268\pi\)
0.650089 0.759858i \(-0.274732\pi\)
\(318\) 0 0
\(319\) −7.17010 −0.401448
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 33.4320i − 1.86021i
\(324\) 0 0
\(325\) 0.0879719i 0.00487980i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −9.11035 −0.502270
\(330\) 0 0
\(331\) − 5.66005i − 0.311105i −0.987828 0.155552i \(-0.950284\pi\)
0.987828 0.155552i \(-0.0497157\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −27.4197 −1.49810
\(336\) 0 0
\(337\) −9.88755 −0.538609 −0.269305 0.963055i \(-0.586794\pi\)
−0.269305 + 0.963055i \(0.586794\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 7.31411i 0.396081i
\(342\) 0 0
\(343\) 15.6562 0.845353
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 18.9432i − 1.01692i −0.861085 0.508461i \(-0.830215\pi\)
0.861085 0.508461i \(-0.169785\pi\)
\(348\) 0 0
\(349\) 35.6892i 1.91040i 0.295961 + 0.955200i \(0.404360\pi\)
−0.295961 + 0.955200i \(0.595640\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 26.0504 1.38652 0.693261 0.720687i \(-0.256173\pi\)
0.693261 + 0.720687i \(0.256173\pi\)
\(354\) 0 0
\(355\) − 5.66303i − 0.300562i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 30.6845 1.61946 0.809732 0.586800i \(-0.199612\pi\)
0.809732 + 0.586800i \(0.199612\pi\)
\(360\) 0 0
\(361\) −15.5219 −0.816942
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 19.9280i 1.04308i
\(366\) 0 0
\(367\) 1.56749 0.0818225 0.0409113 0.999163i \(-0.486974\pi\)
0.0409113 + 0.999163i \(0.486974\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 3.80722i 0.197661i
\(372\) 0 0
\(373\) − 5.45176i − 0.282282i −0.989990 0.141141i \(-0.954923\pi\)
0.989990 0.141141i \(-0.0450770\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 5.78632 0.298011
\(378\) 0 0
\(379\) − 34.2320i − 1.75838i −0.476474 0.879189i \(-0.658085\pi\)
0.476474 0.879189i \(-0.341915\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 19.5726 1.00012 0.500058 0.865992i \(-0.333312\pi\)
0.500058 + 0.865992i \(0.333312\pi\)
\(384\) 0 0
\(385\) 2.79052 0.142218
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 4.79316i − 0.243023i −0.992590 0.121511i \(-0.961226\pi\)
0.992590 0.121511i \(-0.0387741\pi\)
\(390\) 0 0
\(391\) −44.9430 −2.27287
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 5.20948i 0.262117i
\(396\) 0 0
\(397\) 31.5145i 1.58167i 0.612029 + 0.790835i \(0.290353\pi\)
−0.612029 + 0.790835i \(0.709647\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −2.43202 −0.121449 −0.0607247 0.998155i \(-0.519341\pi\)
−0.0607247 + 0.998155i \(0.519341\pi\)
\(402\) 0 0
\(403\) − 5.90254i − 0.294027i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 9.62643 0.477164
\(408\) 0 0
\(409\) −17.6332 −0.871907 −0.435953 0.899969i \(-0.643589\pi\)
−0.435953 + 0.899969i \(0.643589\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) − 4.20093i − 0.206714i
\(414\) 0 0
\(415\) 5.53444 0.271675
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 24.3460i 1.18938i 0.803954 + 0.594691i \(0.202726\pi\)
−0.803954 + 0.594691i \(0.797274\pi\)
\(420\) 0 0
\(421\) 20.1604i 0.982556i 0.871003 + 0.491278i \(0.163470\pi\)
−0.871003 + 0.491278i \(0.836530\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0.620271 0.0300876
\(426\) 0 0
\(427\) 11.3231i 0.547962i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 40.1197 1.93250 0.966250 0.257608i \(-0.0829342\pi\)
0.966250 + 0.257608i \(0.0829342\pi\)
\(432\) 0 0
\(433\) 38.8560 1.86730 0.933649 0.358189i \(-0.116606\pi\)
0.933649 + 0.358189i \(0.116606\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 46.4082i 2.22001i
\(438\) 0 0
\(439\) 15.0055 0.716173 0.358086 0.933688i \(-0.383429\pi\)
0.358086 + 0.933688i \(0.383429\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) − 7.84122i − 0.372548i −0.982498 0.186274i \(-0.940359\pi\)
0.982498 0.186274i \(-0.0596412\pi\)
\(444\) 0 0
\(445\) 1.84173i 0.0873065i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −30.3904 −1.43421 −0.717107 0.696963i \(-0.754534\pi\)
−0.717107 + 0.696963i \(0.754534\pi\)
\(450\) 0 0
\(451\) − 2.83003i − 0.133261i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −2.25198 −0.105574
\(456\) 0 0
\(457\) 38.3253 1.79278 0.896391 0.443264i \(-0.146180\pi\)
0.896391 + 0.443264i \(0.146180\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 20.9345i − 0.975018i −0.873118 0.487509i \(-0.837906\pi\)
0.873118 0.487509i \(-0.162094\pi\)
\(462\) 0 0
\(463\) −3.44920 −0.160298 −0.0801491 0.996783i \(-0.525540\pi\)
−0.0801491 + 0.996783i \(0.525540\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 18.0217i − 0.833945i −0.908919 0.416973i \(-0.863091\pi\)
0.908919 0.416973i \(-0.136909\pi\)
\(468\) 0 0
\(469\) 15.6441i 0.722378i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 2.83003 0.130125
\(474\) 0 0
\(475\) − 0.640492i − 0.0293878i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 7.70503 0.352052 0.176026 0.984386i \(-0.443676\pi\)
0.176026 + 0.984386i \(0.443676\pi\)
\(480\) 0 0
\(481\) −7.76860 −0.354218
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 33.3206i 1.51301i
\(486\) 0 0
\(487\) 17.5367 0.794666 0.397333 0.917675i \(-0.369936\pi\)
0.397333 + 0.917675i \(0.369936\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 33.7842i − 1.52466i −0.647189 0.762329i \(-0.724056\pi\)
0.647189 0.762329i \(-0.275944\pi\)
\(492\) 0 0
\(493\) − 40.7981i − 1.83745i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −3.23101 −0.144930
\(498\) 0 0
\(499\) − 21.9959i − 0.984672i −0.870405 0.492336i \(-0.836143\pi\)
0.870405 0.492336i \(-0.163857\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −28.6750 −1.27855 −0.639277 0.768977i \(-0.720766\pi\)
−0.639277 + 0.768977i \(0.720766\pi\)
\(504\) 0 0
\(505\) 11.6174 0.516966
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 19.0044i − 0.842355i −0.906978 0.421177i \(-0.861617\pi\)
0.906978 0.421177i \(-0.138383\pi\)
\(510\) 0 0
\(511\) 11.3698 0.502971
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 25.2532i 1.11279i
\(516\) 0 0
\(517\) − 7.22017i − 0.317543i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −6.85153 −0.300171 −0.150086 0.988673i \(-0.547955\pi\)
−0.150086 + 0.988673i \(0.547955\pi\)
\(522\) 0 0
\(523\) − 6.45353i − 0.282193i −0.989996 0.141097i \(-0.954937\pi\)
0.989996 0.141097i \(-0.0450628\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −41.6175 −1.81289
\(528\) 0 0
\(529\) 39.3871 1.71248
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 2.28385i 0.0989247i
\(534\) 0 0
\(535\) 19.3040 0.834584
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 5.40788i 0.232934i
\(540\) 0 0
\(541\) − 16.9996i − 0.730869i −0.930837 0.365435i \(-0.880920\pi\)
0.930837 0.365435i \(-0.119080\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −19.3098 −0.827143
\(546\) 0 0
\(547\) − 3.77902i − 0.161579i −0.996731 0.0807896i \(-0.974256\pi\)
0.996731 0.0807896i \(-0.0257442\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −42.1282 −1.79472
\(552\) 0 0
\(553\) 2.97223 0.126392
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 28.1693i − 1.19357i −0.802401 0.596785i \(-0.796445\pi\)
0.802401 0.596785i \(-0.203555\pi\)
\(558\) 0 0
\(559\) −2.28385 −0.0965967
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 19.7142i 0.830853i 0.909627 + 0.415427i \(0.136368\pi\)
−0.909627 + 0.415427i \(0.863632\pi\)
\(564\) 0 0
\(565\) 39.0420i 1.64251i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 7.16301 0.300289 0.150145 0.988664i \(-0.452026\pi\)
0.150145 + 0.988664i \(0.452026\pi\)
\(570\) 0 0
\(571\) 16.1436i 0.675588i 0.941220 + 0.337794i \(0.109681\pi\)
−0.941220 + 0.337794i \(0.890319\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −0.861021 −0.0359071
\(576\) 0 0
\(577\) 21.6002 0.899226 0.449613 0.893223i \(-0.351562\pi\)
0.449613 + 0.893223i \(0.351562\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) − 3.15764i − 0.131001i
\(582\) 0 0
\(583\) −3.01732 −0.124964
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 4.90577i 0.202483i 0.994862 + 0.101241i \(0.0322814\pi\)
−0.994862 + 0.101241i \(0.967719\pi\)
\(588\) 0 0
\(589\) 42.9743i 1.77072i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 40.5123 1.66364 0.831820 0.555046i \(-0.187299\pi\)
0.831820 + 0.555046i \(0.187299\pi\)
\(594\) 0 0
\(595\) 15.8782i 0.650942i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 10.2021 0.416845 0.208423 0.978039i \(-0.433167\pi\)
0.208423 + 0.978039i \(0.433167\pi\)
\(600\) 0 0
\(601\) −15.0279 −0.613003 −0.306501 0.951870i \(-0.599158\pi\)
−0.306501 + 0.951870i \(0.599158\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 2.21156i 0.0899126i
\(606\) 0 0
\(607\) 43.6279 1.77080 0.885400 0.464830i \(-0.153884\pi\)
0.885400 + 0.464830i \(0.153884\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 5.82674i 0.235725i
\(612\) 0 0
\(613\) − 12.8628i − 0.519522i −0.965673 0.259761i \(-0.916356\pi\)
0.965673 0.259761i \(-0.0836438\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −13.2341 −0.532785 −0.266392 0.963865i \(-0.585832\pi\)
−0.266392 + 0.963865i \(0.585832\pi\)
\(618\) 0 0
\(619\) 41.8398i 1.68168i 0.541281 + 0.840842i \(0.317939\pi\)
−0.541281 + 0.840842i \(0.682061\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 1.05079 0.0420990
\(624\) 0 0
\(625\) −24.4431 −0.977723
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 54.7747i 2.18401i
\(630\) 0 0
\(631\) 0.527116 0.0209842 0.0104921 0.999945i \(-0.496660\pi\)
0.0104921 + 0.999945i \(0.496660\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 36.2867i 1.43999i
\(636\) 0 0
\(637\) − 4.36420i − 0.172916i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 23.0689 0.911168 0.455584 0.890193i \(-0.349430\pi\)
0.455584 + 0.890193i \(0.349430\pi\)
\(642\) 0 0
\(643\) 0.368023i 0.0145134i 0.999974 + 0.00725670i \(0.00230990\pi\)
−0.999974 + 0.00725670i \(0.997690\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −29.2272 −1.14904 −0.574520 0.818491i \(-0.694811\pi\)
−0.574520 + 0.818491i \(0.694811\pi\)
\(648\) 0 0
\(649\) 3.32934 0.130688
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) − 42.3725i − 1.65817i −0.559126 0.829083i \(-0.688863\pi\)
0.559126 0.829083i \(-0.311137\pi\)
\(654\) 0 0
\(655\) 11.0767 0.432802
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 21.2808i 0.828981i 0.910054 + 0.414490i \(0.136040\pi\)
−0.910054 + 0.414490i \(0.863960\pi\)
\(660\) 0 0
\(661\) − 35.7298i − 1.38973i −0.719142 0.694863i \(-0.755465\pi\)
0.719142 0.694863i \(-0.244535\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 16.3958 0.635803
\(666\) 0 0
\(667\) 56.6334i 2.19285i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −8.97382 −0.346430
\(672\) 0 0
\(673\) 9.20425 0.354798 0.177399 0.984139i \(-0.443232\pi\)
0.177399 + 0.984139i \(0.443232\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 1.93341i − 0.0743069i −0.999310 0.0371534i \(-0.988171\pi\)
0.999310 0.0371534i \(-0.0118290\pi\)
\(678\) 0 0
\(679\) 19.0109 0.729570
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 41.4015i 1.58419i 0.610401 + 0.792093i \(0.291008\pi\)
−0.610401 + 0.792093i \(0.708992\pi\)
\(684\) 0 0
\(685\) − 19.2529i − 0.735614i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 2.43500 0.0927660
\(690\) 0 0
\(691\) 17.0431i 0.648350i 0.945997 + 0.324175i \(0.105087\pi\)
−0.945997 + 0.324175i \(0.894913\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −17.2138 −0.652958
\(696\) 0 0
\(697\) 16.1030 0.609943
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 25.6959i 0.970520i 0.874370 + 0.485260i \(0.161275\pi\)
−0.874370 + 0.485260i \(0.838725\pi\)
\(702\) 0 0
\(703\) 56.5604 2.13322
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 6.62821i − 0.249280i
\(708\) 0 0
\(709\) 20.8903i 0.784551i 0.919848 + 0.392276i \(0.128312\pi\)
−0.919848 + 0.392276i \(0.871688\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 57.7709 2.16354
\(714\) 0 0
\(715\) − 1.78474i − 0.0667457i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 38.9407 1.45224 0.726121 0.687567i \(-0.241321\pi\)
0.726121 + 0.687567i \(0.241321\pi\)
\(720\) 0 0
\(721\) 14.4081 0.536584
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) − 0.781612i − 0.0290284i
\(726\) 0 0
\(727\) 20.4422 0.758160 0.379080 0.925364i \(-0.376241\pi\)
0.379080 + 0.925364i \(0.376241\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 16.1030i 0.595589i
\(732\) 0 0
\(733\) − 45.3953i − 1.67671i −0.545122 0.838357i \(-0.683517\pi\)
0.545122 0.838357i \(-0.316483\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −12.3983 −0.456699
\(738\) 0 0
\(739\) 31.4387i 1.15649i 0.815863 + 0.578246i \(0.196262\pi\)
−0.815863 + 0.578246i \(0.803738\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 16.1059 0.590868 0.295434 0.955363i \(-0.404536\pi\)
0.295434 + 0.955363i \(0.404536\pi\)
\(744\) 0 0
\(745\) 16.5614 0.606764
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) − 11.0138i − 0.402434i
\(750\) 0 0
\(751\) −12.4896 −0.455751 −0.227876 0.973690i \(-0.573178\pi\)
−0.227876 + 0.973690i \(0.573178\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) − 7.69580i − 0.280079i
\(756\) 0 0
\(757\) 48.8353i 1.77495i 0.460855 + 0.887475i \(0.347543\pi\)
−0.460855 + 0.887475i \(0.652457\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −30.8577 −1.11859 −0.559296 0.828968i \(-0.688928\pi\)
−0.559296 + 0.828968i \(0.688928\pi\)
\(762\) 0 0
\(763\) 11.0171i 0.398846i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −2.68680 −0.0970148
\(768\) 0 0
\(769\) 0.0363100 0.00130937 0.000654686 1.00000i \(-0.499792\pi\)
0.000654686 1.00000i \(0.499792\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 40.8771i − 1.47025i −0.677934 0.735123i \(-0.737125\pi\)
0.677934 0.735123i \(-0.262875\pi\)
\(774\) 0 0
\(775\) −0.797311 −0.0286402
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) − 16.6279i − 0.595757i
\(780\) 0 0
\(781\) − 2.56065i − 0.0916273i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 2.74901 0.0981163
\(786\) 0 0
\(787\) − 30.8252i − 1.09880i −0.835559 0.549400i \(-0.814856\pi\)
0.835559 0.549400i \(-0.185144\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 22.2752 0.792014
\(792\) 0 0
\(793\) 7.24194 0.257169
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 19.1946i − 0.679906i −0.940442 0.339953i \(-0.889589\pi\)
0.940442 0.339953i \(-0.110411\pi\)
\(798\) 0 0
\(799\) 41.0830 1.45341
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 9.01085i 0.317986i
\(804\) 0 0
\(805\) − 22.0411i − 0.776847i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 20.9454 0.736402 0.368201 0.929746i \(-0.379974\pi\)
0.368201 + 0.929746i \(0.379974\pi\)
\(810\) 0 0
\(811\) − 50.7579i − 1.78235i −0.453660 0.891175i \(-0.649882\pi\)
0.453660 0.891175i \(-0.350118\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −2.37801 −0.0832980
\(816\) 0 0
\(817\) 16.6279 0.581737
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 3.43224i 0.119786i 0.998205 + 0.0598930i \(0.0190760\pi\)
−0.998205 + 0.0598930i \(0.980924\pi\)
\(822\) 0 0
\(823\) 26.7144 0.931205 0.465603 0.884994i \(-0.345838\pi\)
0.465603 + 0.884994i \(0.345838\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 30.7010i − 1.06758i −0.845617 0.533789i \(-0.820768\pi\)
0.845617 0.533789i \(-0.179232\pi\)
\(828\) 0 0
\(829\) 16.1045i 0.559332i 0.960097 + 0.279666i \(0.0902237\pi\)
−0.960097 + 0.279666i \(0.909776\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −30.7710 −1.06615
\(834\) 0 0
\(835\) − 2.51558i − 0.0870551i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −33.3502 −1.15138 −0.575689 0.817669i \(-0.695266\pi\)
−0.575689 + 0.817669i \(0.695266\pi\)
\(840\) 0 0
\(841\) −22.4103 −0.772769
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 27.3100i − 0.939491i
\(846\) 0 0
\(847\) 1.26179 0.0433557
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) − 76.0349i − 2.60644i
\(852\) 0 0
\(853\) 41.2723i 1.41314i 0.707645 + 0.706568i \(0.249758\pi\)
−0.707645 + 0.706568i \(0.750242\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −7.90574 −0.270055 −0.135027 0.990842i \(-0.543112\pi\)
−0.135027 + 0.990842i \(0.543112\pi\)
\(858\) 0 0
\(859\) − 27.4966i − 0.938173i −0.883152 0.469087i \(-0.844583\pi\)
0.883152 0.469087i \(-0.155417\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −11.0970 −0.377748 −0.188874 0.982001i \(-0.560484\pi\)
−0.188874 + 0.982001i \(0.560484\pi\)
\(864\) 0 0
\(865\) −5.39934 −0.183583
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 2.35557i 0.0799072i
\(870\) 0 0
\(871\) 10.0056 0.339026
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 14.2568i 0.481968i
\(876\) 0 0
\(877\) − 20.5216i − 0.692967i −0.938056 0.346483i \(-0.887376\pi\)
0.938056 0.346483i \(-0.112624\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −12.4013 −0.417811 −0.208906 0.977936i \(-0.566990\pi\)
−0.208906 + 0.977936i \(0.566990\pi\)
\(882\) 0 0
\(883\) 12.7693i 0.429723i 0.976645 + 0.214861i \(0.0689300\pi\)
−0.976645 + 0.214861i \(0.931070\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 13.3628 0.448680 0.224340 0.974511i \(-0.427977\pi\)
0.224340 + 0.974511i \(0.427977\pi\)
\(888\) 0 0
\(889\) 20.7031 0.694361
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) − 42.4224i − 1.41961i
\(894\) 0 0
\(895\) −55.9234 −1.86931
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 52.4429i 1.74907i
\(900\) 0 0
\(901\) − 17.1686i − 0.571970i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −8.57705 −0.285111
\(906\) 0 0
\(907\) 35.9604i 1.19405i 0.802224 + 0.597024i \(0.203650\pi\)
−0.802224 + 0.597024i \(0.796350\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 5.88541 0.194992 0.0974962 0.995236i \(-0.468917\pi\)
0.0974962 + 0.995236i \(0.468917\pi\)
\(912\) 0 0
\(913\) 2.50251 0.0828208
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 6.31974i − 0.208696i
\(918\) 0 0
\(919\) 0.160480 0.00529376 0.00264688 0.999996i \(-0.499157\pi\)
0.00264688 + 0.999996i \(0.499157\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 2.06647i 0.0680185i
\(924\) 0 0
\(925\) 1.04938i 0.0345033i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 1.22825 0.0402975 0.0201488 0.999797i \(-0.493586\pi\)
0.0201488 + 0.999797i \(0.493586\pi\)
\(930\) 0 0
\(931\) 31.7742i 1.04136i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −12.5838 −0.411536
\(936\) 0 0
\(937\) −15.4915 −0.506086 −0.253043 0.967455i \(-0.581431\pi\)
−0.253043 + 0.967455i \(0.581431\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 35.1914i − 1.14721i −0.819134 0.573603i \(-0.805545\pi\)
0.819134 0.573603i \(-0.194455\pi\)
\(942\) 0 0
\(943\) −22.3531 −0.727918
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 13.6971i 0.445095i 0.974922 + 0.222548i \(0.0714373\pi\)
−0.974922 + 0.222548i \(0.928563\pi\)
\(948\) 0 0
\(949\) − 7.27183i − 0.236054i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 10.3673 0.335830 0.167915 0.985801i \(-0.446297\pi\)
0.167915 + 0.985801i \(0.446297\pi\)
\(954\) 0 0
\(955\) − 8.82886i − 0.285695i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −10.9846 −0.354711
\(960\) 0 0
\(961\) 22.4962 0.725682
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 51.9954i 1.67379i
\(966\) 0 0
\(967\) −31.1781 −1.00262 −0.501310 0.865268i \(-0.667149\pi\)
−0.501310 + 0.865268i \(0.667149\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) − 10.8679i − 0.348769i −0.984678 0.174384i \(-0.944206\pi\)
0.984678 0.174384i \(-0.0557935\pi\)
\(972\) 0 0
\(973\) 9.82124i 0.314855i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 26.6984 0.854157 0.427079 0.904215i \(-0.359543\pi\)
0.427079 + 0.904215i \(0.359543\pi\)
\(978\) 0 0
\(979\) 0.832776i 0.0266156i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −19.3201 −0.616216 −0.308108 0.951351i \(-0.599696\pi\)
−0.308108 + 0.951351i \(0.599696\pi\)
\(984\) 0 0
\(985\) 31.4651 1.00256
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) − 22.3531i − 0.710788i
\(990\) 0 0
\(991\) −8.28865 −0.263298 −0.131649 0.991296i \(-0.542027\pi\)
−0.131649 + 0.991296i \(0.542027\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 35.7395i 1.13302i
\(996\) 0 0
\(997\) − 34.9020i − 1.10536i −0.833394 0.552679i \(-0.813606\pi\)
0.833394 0.552679i \(-0.186394\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3168.2.f.h.1585.6 20
3.2 odd 2 inner 3168.2.f.h.1585.16 20
4.3 odd 2 792.2.f.h.397.12 yes 20
8.3 odd 2 792.2.f.h.397.11 yes 20
8.5 even 2 inner 3168.2.f.h.1585.15 20
12.11 even 2 792.2.f.h.397.9 20
24.5 odd 2 inner 3168.2.f.h.1585.5 20
24.11 even 2 792.2.f.h.397.10 yes 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
792.2.f.h.397.9 20 12.11 even 2
792.2.f.h.397.10 yes 20 24.11 even 2
792.2.f.h.397.11 yes 20 8.3 odd 2
792.2.f.h.397.12 yes 20 4.3 odd 2
3168.2.f.h.1585.5 20 24.5 odd 2 inner
3168.2.f.h.1585.6 20 1.1 even 1 trivial
3168.2.f.h.1585.15 20 8.5 even 2 inner
3168.2.f.h.1585.16 20 3.2 odd 2 inner