L(s) = 1 | − 2.21i·5-s − 1.26·7-s − i·11-s + 0.807i·13-s + 5.69·17-s − 5.87i·19-s − 7.89·23-s + 0.109·25-s − 7.17i·29-s − 7.31·31-s + 2.79i·35-s + 9.62i·37-s + 2.83·41-s + 2.83i·43-s + 7.22·47-s + ⋯ |
L(s) = 1 | − 0.989i·5-s − 0.476·7-s − 0.301i·11-s + 0.223i·13-s + 1.38·17-s − 1.34i·19-s − 1.64·23-s + 0.0218·25-s − 1.33i·29-s − 1.31·31-s + 0.471i·35-s + 1.58i·37-s + 0.441·41-s + 0.431i·43-s + 1.05·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3168 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.939 + 0.342i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3168 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.939 + 0.342i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.8914353113\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8914353113\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 11 | \( 1 + iT \) |
good | 5 | \( 1 + 2.21iT - 5T^{2} \) |
| 7 | \( 1 + 1.26T + 7T^{2} \) |
| 13 | \( 1 - 0.807iT - 13T^{2} \) |
| 17 | \( 1 - 5.69T + 17T^{2} \) |
| 19 | \( 1 + 5.87iT - 19T^{2} \) |
| 23 | \( 1 + 7.89T + 23T^{2} \) |
| 29 | \( 1 + 7.17iT - 29T^{2} \) |
| 31 | \( 1 + 7.31T + 31T^{2} \) |
| 37 | \( 1 - 9.62iT - 37T^{2} \) |
| 41 | \( 1 - 2.83T + 41T^{2} \) |
| 43 | \( 1 - 2.83iT - 43T^{2} \) |
| 47 | \( 1 - 7.22T + 47T^{2} \) |
| 53 | \( 1 + 3.01iT - 53T^{2} \) |
| 59 | \( 1 - 3.32iT - 59T^{2} \) |
| 61 | \( 1 + 8.97iT - 61T^{2} \) |
| 67 | \( 1 + 12.3iT - 67T^{2} \) |
| 71 | \( 1 - 2.56T + 71T^{2} \) |
| 73 | \( 1 + 9.01T + 73T^{2} \) |
| 79 | \( 1 + 2.35T + 79T^{2} \) |
| 83 | \( 1 - 2.50iT - 83T^{2} \) |
| 89 | \( 1 + 0.832T + 89T^{2} \) |
| 97 | \( 1 + 15.0T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.240026039546206473381226544178, −7.83147470522383643314036490193, −6.78555989283951847813036582851, −6.00240240222987665640692791468, −5.29362935405304286827297673307, −4.47958969458961455297630488038, −3.64619227781912938538097978178, −2.64681204703493806406321575286, −1.41864145836190885568084068143, −0.27652975110918122732431732305,
1.51296397377198029706681033901, 2.61455137008931318729721357871, 3.52018290394455882130532430761, 4.04294255975184050014504147862, 5.60112805292028428340225545106, 5.78419411819108883078189661139, 6.90146773429164425851859655839, 7.43728729206927333751997635490, 8.097306340500195875957524200326, 9.092671731160339041051301415394