Properties

Label 3168.2.f.h
Level $3168$
Weight $2$
Character orbit 3168.f
Analytic conductor $25.297$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3168,2,Mod(1585,3168)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3168, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3168.1585"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3168 = 2^{5} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3168.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.2966073603\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: 20.0.74831334220841134637329678336.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 2x^{18} + 5x^{16} - 8x^{14} + 28x^{12} - 64x^{10} + 112x^{8} - 128x^{6} + 320x^{4} - 512x^{2} + 1024 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{29} \)
Twist minimal: no (minimal twist has level 792)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{19}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{3} + \beta_1) q^{5} + \beta_{14} q^{7} - \beta_1 q^{11} + \beta_{15} q^{13} - \beta_{19} q^{17} + ( - \beta_{5} + \beta_{4}) q^{19} - \beta_{10} q^{23} + ( - \beta_{13} - 2 \beta_{2} - 1) q^{25}+ \cdots + (\beta_{14} + \beta_{11} + 3 \beta_{2} + 1) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 12 q^{25} - 40 q^{31} + 36 q^{49} + 16 q^{55} - 56 q^{73} + 16 q^{79} + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{20} - 2x^{18} + 5x^{16} - 8x^{14} + 28x^{12} - 64x^{10} + 112x^{8} - 128x^{6} + 320x^{4} - 512x^{2} + 1024 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -\nu^{17} - 5\nu^{13} + 14\nu^{11} - 32\nu^{9} + 16\nu^{7} - 80\nu^{5} + 96\nu^{3} - 384\nu ) / 512 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{18} + 2\nu^{16} - 3\nu^{14} + 12\nu^{12} - 4\nu^{10} + 48\nu^{8} - 144\nu^{6} + 64\nu^{4} + 64\nu^{2} + 256 ) / 512 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{19} - 4 \nu^{17} - 3 \nu^{15} + 14 \nu^{13} + 16 \nu^{11} + 16 \nu^{9} - 48 \nu^{7} + \cdots - 512 \nu ) / 1024 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{16} - \nu^{14} + 3\nu^{12} + \nu^{10} + 12\nu^{8} + 48\nu^{4} + 48\nu^{2} + 64 ) / 64 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( \nu^{18} + 2\nu^{16} + 5\nu^{14} - 4\nu^{12} + 4\nu^{10} + 48\nu^{8} + 48\nu^{6} + 64\nu^{4} + 192\nu^{2} + 768 ) / 256 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -\nu^{18} - 2\nu^{16} - \nu^{14} + 12\nu^{12} + 32\nu^{8} - 48\nu^{6} + 192\nu^{4} - 512\nu^{2} ) / 256 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( \nu^{18} + 6\nu^{16} - 3\nu^{14} - 60\nu^{10} + 144\nu^{8} - 272\nu^{6} + 512\nu^{4} - 1088\nu^{2} + 2304 ) / 512 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( -\nu^{19} + 3\nu^{15} - 2\nu^{13} + 40\nu^{11} + 16\nu^{9} + 176\nu^{7} - 32\nu^{5} + 256\nu^{3} ) / 512 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( -\nu^{19} - 6\nu^{17} + 3\nu^{15} - 4\nu^{11} - 16\nu^{9} + 208\nu^{7} - 256\nu^{5} - 704\nu^{3} - 256\nu ) / 1024 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - 3 \nu^{19} + 2 \nu^{17} - 23 \nu^{15} + 36 \nu^{13} - 68 \nu^{11} - 48 \nu^{9} + 48 \nu^{7} + \cdots - 2304 \nu ) / 1024 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( -\nu^{18} - 9\nu^{14} + 6\nu^{12} - 36\nu^{10} + 64\nu^{8} - 80\nu^{6} + 224\nu^{4} - 64\nu^{2} + 256 ) / 256 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( 3 \nu^{19} - 2 \nu^{17} - 9 \nu^{15} - 36 \nu^{13} + 36 \nu^{11} - 16 \nu^{9} + 80 \nu^{7} + \cdots + 256 \nu ) / 1024 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( \nu^{18} - 2 \nu^{16} + 5 \nu^{14} - 24 \nu^{12} + 60 \nu^{10} - 80 \nu^{8} + 112 \nu^{6} - 256 \nu^{4} + \cdots - 768 ) / 256 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( 3\nu^{18} - 6\nu^{16} - \nu^{14} - 8\nu^{12} + 36\nu^{10} - 80\nu^{8} + 144\nu^{6} + 192\nu^{2} - 768 ) / 512 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( 3 \nu^{18} - 6 \nu^{16} + 7 \nu^{14} - 24 \nu^{12} + 44 \nu^{10} - 208 \nu^{8} + 80 \nu^{6} + \cdots - 1280 ) / 512 \) Copy content Toggle raw display
\(\beta_{16}\)\(=\) \( ( \nu^{19} - 2 \nu^{17} + 5 \nu^{15} - 8 \nu^{13} + 28 \nu^{11} - 64 \nu^{9} + 112 \nu^{7} + \cdots - 1024 \nu ) / 256 \) Copy content Toggle raw display
\(\beta_{17}\)\(=\) \( ( \nu^{19} - 2\nu^{17} + 5\nu^{15} - 8\nu^{13} + 28\nu^{11} - 64\nu^{9} + 112\nu^{7} - 128\nu^{5} + 320\nu^{3} ) / 256 \) Copy content Toggle raw display
\(\beta_{18}\)\(=\) \( ( - 3 \nu^{19} + 2 \nu^{17} - 7 \nu^{15} + 4 \nu^{13} - 52 \nu^{11} + 80 \nu^{9} - 80 \nu^{7} + \cdots + 768 \nu ) / 512 \) Copy content Toggle raw display
\(\beta_{19}\)\(=\) \( ( \nu^{19} - 4 \nu^{17} + 5 \nu^{15} - 18 \nu^{13} + 24 \nu^{11} - 64 \nu^{9} + 112 \nu^{7} + \cdots - 512 \nu ) / 256 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{17} - \beta_{16} ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{15} - \beta_{14} + \beta_{11} - \beta_{7} + \beta_{5} + \beta_{2} + 1 ) / 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 2\beta_{18} + \beta_{17} + \beta_{16} - 2\beta_{9} + 2\beta_{3} - 2\beta_1 ) / 4 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 3\beta_{15} - \beta_{14} + \beta_{11} + \beta_{7} + 2\beta_{6} + \beta_{5} + 2\beta_{4} - 3\beta_{2} - 3 ) / 4 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 4 \beta_{19} - 2 \beta_{18} - \beta_{17} - 3 \beta_{16} - 2 \beta_{12} + 2 \beta_{10} - 4 \beta_{9} + \cdots - 4 \beta_1 ) / 4 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( - 3 \beta_{15} + 5 \beta_{14} - 2 \beta_{13} - \beta_{11} - \beta_{7} - 2 \beta_{6} + \beta_{5} + \cdots - 1 ) / 4 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( -2\beta_{18} + \beta_{17} + \beta_{16} + 4\beta_{12} + 4\beta_{10} + 6\beta_{9} + 4\beta_{8} - 6\beta_{3} - 18\beta_1 ) / 4 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( ( - 9 \beta_{15} + 3 \beta_{14} + 4 \beta_{13} + 5 \beta_{11} - 3 \beta_{7} + 2 \beta_{6} + 9 \beta_{5} + \cdots - 23 ) / 4 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( - 4 \beta_{19} + 6 \beta_{18} - 13 \beta_{17} + 13 \beta_{16} + 10 \beta_{12} - 10 \beta_{10} + \cdots - 24 \beta_1 ) / 4 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( ( - 7 \beta_{15} + \beta_{14} + 18 \beta_{13} - 5 \beta_{11} + 3 \beta_{7} + 14 \beta_{6} - 7 \beta_{5} + \cdots + 35 ) / 4 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( - 8 \beta_{19} - 18 \beta_{18} - 3 \beta_{17} - 15 \beta_{16} - 8 \beta_{10} - 6 \beta_{9} + \cdots + 82 \beta_1 ) / 4 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( ( 3 \beta_{15} + 7 \beta_{14} - 32 \beta_{13} - 23 \beta_{11} - 31 \beta_{7} + 10 \beta_{6} + \beta_{5} + \cdots + 53 ) / 4 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( ( - 44 \beta_{19} + 6 \beta_{18} + 47 \beta_{17} + 13 \beta_{16} - 26 \beta_{12} + 10 \beta_{10} + \cdots - 36 \beta_1 ) / 4 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( ( 69 \beta_{15} - 91 \beta_{14} - 34 \beta_{13} - 33 \beta_{11} - 25 \beta_{7} + 54 \beta_{6} + 97 \beta_{5} + \cdots - 177 ) / 4 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( ( 48 \beta_{19} + 46 \beta_{18} - 7 \beta_{17} + 65 \beta_{16} - 148 \beta_{12} - 68 \beta_{10} + \cdots - 202 \beta_1 ) / 4 \) Copy content Toggle raw display
\(\nu^{16}\)\(=\) \( ( - 17 \beta_{15} - 53 \beta_{14} - 4 \beta_{13} - 115 \beta_{11} + 101 \beta_{7} - 110 \beta_{6} + \cdots - 255 ) / 4 \) Copy content Toggle raw display
\(\nu^{17}\)\(=\) \( ( - 84 \beta_{19} - 154 \beta_{18} - 53 \beta_{17} + 45 \beta_{16} + 34 \beta_{12} + 62 \beta_{10} + \cdots - 112 \beta_1 ) / 4 \) Copy content Toggle raw display
\(\nu^{18}\)\(=\) \( ( - 79 \beta_{15} + 457 \beta_{14} - 118 \beta_{13} - 125 \beta_{11} + 107 \beta_{7} - 194 \beta_{6} + \cdots - 453 ) / 4 \) Copy content Toggle raw display
\(\nu^{19}\)\(=\) \( ( - 280 \beta_{19} - 274 \beta_{18} + 21 \beta_{17} + 305 \beta_{16} + 536 \beta_{12} - 64 \beta_{10} + \cdots - 1190 \beta_1 ) / 4 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3168\mathbb{Z}\right)^\times\).

\(n\) \(353\) \(991\) \(1189\) \(1729\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1585.1
1.13849 0.838954i
−1.13849 0.838954i
−1.25295 + 0.655834i
1.25295 + 0.655834i
0.484785 + 1.32853i
−0.484785 + 1.32853i
−1.38682 0.277013i
1.38682 0.277013i
−0.689696 + 1.23463i
0.689696 + 1.23463i
0.689696 1.23463i
−0.689696 1.23463i
1.38682 + 0.277013i
−1.38682 + 0.277013i
−0.484785 1.32853i
0.484785 1.32853i
1.25295 0.655834i
−1.25295 0.655834i
−1.13849 + 0.838954i
1.13849 + 0.838954i
0 0 0 3.89064i 0 1.77496 0 0 0
1585.2 0 0 0 3.89064i 0 1.77496 0 0 0
1585.3 0 0 0 2.54164i 0 −4.84329 0 0 0
1585.4 0 0 0 2.54164i 0 −4.84329 0 0 0
1585.5 0 0 0 2.21156i 0 −1.26179 0 0 0
1585.6 0 0 0 2.21156i 0 −1.26179 0 0 0
1585.7 0 0 0 0.972802i 0 0.372730 0 0 0
1585.8 0 0 0 0.972802i 0 0.372730 0 0 0
1585.9 0 0 0 0.752075i 0 3.95740 0 0 0
1585.10 0 0 0 0.752075i 0 3.95740 0 0 0
1585.11 0 0 0 0.752075i 0 3.95740 0 0 0
1585.12 0 0 0 0.752075i 0 3.95740 0 0 0
1585.13 0 0 0 0.972802i 0 0.372730 0 0 0
1585.14 0 0 0 0.972802i 0 0.372730 0 0 0
1585.15 0 0 0 2.21156i 0 −1.26179 0 0 0
1585.16 0 0 0 2.21156i 0 −1.26179 0 0 0
1585.17 0 0 0 2.54164i 0 −4.84329 0 0 0
1585.18 0 0 0 2.54164i 0 −4.84329 0 0 0
1585.19 0 0 0 3.89064i 0 1.77496 0 0 0
1585.20 0 0 0 3.89064i 0 1.77496 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1585.20
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
8.b even 2 1 inner
24.h odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3168.2.f.h 20
3.b odd 2 1 inner 3168.2.f.h 20
4.b odd 2 1 792.2.f.h 20
8.b even 2 1 inner 3168.2.f.h 20
8.d odd 2 1 792.2.f.h 20
12.b even 2 1 792.2.f.h 20
24.f even 2 1 792.2.f.h 20
24.h odd 2 1 inner 3168.2.f.h 20
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
792.2.f.h 20 4.b odd 2 1
792.2.f.h 20 8.d odd 2 1
792.2.f.h 20 12.b even 2 1
792.2.f.h 20 24.f even 2 1
3168.2.f.h 20 1.a even 1 1 trivial
3168.2.f.h 20 3.b odd 2 1 inner
3168.2.f.h 20 8.b even 2 1 inner
3168.2.f.h 20 24.h odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(3168, [\chi])\):

\( T_{5}^{10} + 28T_{5}^{8} + 244T_{5}^{6} + 800T_{5}^{4} + 832T_{5}^{2} + 256 \) Copy content Toggle raw display
\( T_{7}^{5} - 22T_{7}^{3} + 16T_{7}^{2} + 40T_{7} - 16 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{20} \) Copy content Toggle raw display
$3$ \( T^{20} \) Copy content Toggle raw display
$5$ \( (T^{10} + 28 T^{8} + \cdots + 256)^{2} \) Copy content Toggle raw display
$7$ \( (T^{5} - 22 T^{3} + \cdots - 16)^{4} \) Copy content Toggle raw display
$11$ \( (T^{2} + 1)^{10} \) Copy content Toggle raw display
$13$ \( (T^{10} + 76 T^{8} + \cdots + 1792)^{2} \) Copy content Toggle raw display
$17$ \( (T^{10} - 116 T^{8} + \cdots - 1835008)^{2} \) Copy content Toggle raw display
$19$ \( (T^{10} + 108 T^{8} + \cdots + 351232)^{2} \) Copy content Toggle raw display
$23$ \( (T^{10} - 140 T^{8} + \cdots - 2453248)^{2} \) Copy content Toggle raw display
$29$ \( (T^{10} + 132 T^{8} + \cdots + 1478656)^{2} \) Copy content Toggle raw display
$31$ \( (T^{5} + 10 T^{4} + \cdots + 64)^{4} \) Copy content Toggle raw display
$37$ \( (T^{10} + 224 T^{8} + \cdots + 1835008)^{2} \) Copy content Toggle raw display
$41$ \( (T^{10} - 188 T^{8} + \cdots - 6028288)^{2} \) Copy content Toggle raw display
$43$ \( (T^{10} + 188 T^{8} + \cdots + 6028288)^{2} \) Copy content Toggle raw display
$47$ \( (T^{10} - 348 T^{8} + \cdots - 1507072)^{2} \) Copy content Toggle raw display
$53$ \( (T^{10} + 220 T^{8} + \cdots + 33362176)^{2} \) Copy content Toggle raw display
$59$ \( (T^{10} + 208 T^{8} + \cdots + 4194304)^{2} \) Copy content Toggle raw display
$61$ \( (T^{10} + 428 T^{8} + \cdots + 143519488)^{2} \) Copy content Toggle raw display
$67$ \( (T^{10} + 408 T^{8} + \cdots + 1101463552)^{2} \) Copy content Toggle raw display
$71$ \( (T^{10} - 156 T^{8} + \cdots - 646912)^{2} \) Copy content Toggle raw display
$73$ \( (T^{5} + 14 T^{4} + \cdots + 224)^{4} \) Copy content Toggle raw display
$79$ \( (T^{5} - 4 T^{4} + \cdots - 304)^{4} \) Copy content Toggle raw display
$83$ \( (T^{10} + 472 T^{8} + \cdots + 65536)^{2} \) Copy content Toggle raw display
$89$ \( (T^{10} - 416 T^{8} + \cdots - 7340032)^{2} \) Copy content Toggle raw display
$97$ \( (T^{5} - 2 T^{4} + \cdots - 4864)^{4} \) Copy content Toggle raw display
show more
show less