Properties

Label 2-3168-8.5-c1-0-0
Degree $2$
Conductor $3168$
Sign $-0.939 + 0.342i$
Analytic cond. $25.2966$
Root an. cond. $5.02957$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.21i·5-s − 1.26·7-s + i·11-s + 0.807i·13-s − 5.69·17-s − 5.87i·19-s + 7.89·23-s + 0.109·25-s + 7.17i·29-s − 7.31·31-s − 2.79i·35-s + 9.62i·37-s − 2.83·41-s + 2.83i·43-s − 7.22·47-s + ⋯
L(s)  = 1  + 0.989i·5-s − 0.476·7-s + 0.301i·11-s + 0.223i·13-s − 1.38·17-s − 1.34i·19-s + 1.64·23-s + 0.0218·25-s + 1.33i·29-s − 1.31·31-s − 0.471i·35-s + 1.58i·37-s − 0.441·41-s + 0.431i·43-s − 1.05·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3168 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.939 + 0.342i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3168 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.939 + 0.342i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3168\)    =    \(2^{5} \cdot 3^{2} \cdot 11\)
Sign: $-0.939 + 0.342i$
Analytic conductor: \(25.2966\)
Root analytic conductor: \(5.02957\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3168} (1585, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3168,\ (\ :1/2),\ -0.939 + 0.342i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.2603310685\)
\(L(\frac12)\) \(\approx\) \(0.2603310685\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 - iT \)
good5 \( 1 - 2.21iT - 5T^{2} \)
7 \( 1 + 1.26T + 7T^{2} \)
13 \( 1 - 0.807iT - 13T^{2} \)
17 \( 1 + 5.69T + 17T^{2} \)
19 \( 1 + 5.87iT - 19T^{2} \)
23 \( 1 - 7.89T + 23T^{2} \)
29 \( 1 - 7.17iT - 29T^{2} \)
31 \( 1 + 7.31T + 31T^{2} \)
37 \( 1 - 9.62iT - 37T^{2} \)
41 \( 1 + 2.83T + 41T^{2} \)
43 \( 1 - 2.83iT - 43T^{2} \)
47 \( 1 + 7.22T + 47T^{2} \)
53 \( 1 - 3.01iT - 53T^{2} \)
59 \( 1 + 3.32iT - 59T^{2} \)
61 \( 1 + 8.97iT - 61T^{2} \)
67 \( 1 + 12.3iT - 67T^{2} \)
71 \( 1 + 2.56T + 71T^{2} \)
73 \( 1 + 9.01T + 73T^{2} \)
79 \( 1 + 2.35T + 79T^{2} \)
83 \( 1 + 2.50iT - 83T^{2} \)
89 \( 1 - 0.832T + 89T^{2} \)
97 \( 1 + 15.0T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.143961275177943787386192787737, −8.472114671643754663347450463927, −7.28395777938482516473924173960, −6.77401019331018690570620009372, −6.48766922099665054439502122432, −5.11901441801242899717778566332, −4.58073033694830168338757598764, −3.25513802973278408979311622425, −2.87387764517540450531264468144, −1.66266295422843400004231852248, 0.079350604941791020611071695099, 1.33351497644065391150139023824, 2.47198725085171343914044751634, 3.59893150929995508464716255342, 4.34011487271718494887528740538, 5.24815753552064567414989703830, 5.87445915078433756416004102817, 6.77256496182676360010217734861, 7.53077728784552082138812034482, 8.479494723729627918444376171349

Graph of the $Z$-function along the critical line