Properties

Label 3168.2.f.h.1585.4
Level $3168$
Weight $2$
Character 3168.1585
Analytic conductor $25.297$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3168,2,Mod(1585,3168)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3168, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3168.1585"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3168 = 2^{5} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3168.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.2966073603\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: 20.0.74831334220841134637329678336.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 2x^{18} + 5x^{16} - 8x^{14} + 28x^{12} - 64x^{10} + 112x^{8} - 128x^{6} + 320x^{4} - 512x^{2} + 1024 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{29} \)
Twist minimal: no (minimal twist has level 792)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1585.4
Root \(1.25295 + 0.655834i\) of defining polynomial
Character \(\chi\) \(=\) 3168.1585
Dual form 3168.2.f.h.1585.17

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.54164i q^{5} -4.84329 q^{7} +1.00000i q^{11} +4.85572i q^{13} +7.15011 q^{17} -1.80543i q^{19} +3.29371 q^{23} -1.45995 q^{25} +4.82588i q^{29} +0.623337 q^{31} +12.3099i q^{35} -10.3565i q^{37} -6.34400 q^{41} +6.34400i q^{43} -6.08486 q^{47} +16.4575 q^{49} -4.47736i q^{53} +2.54164 q^{55} -7.75087i q^{59} -2.14112i q^{61} +12.3415 q^{65} -9.21748i q^{67} -0.911979 q^{71} +0.0991030 q^{73} -4.84329i q^{77} +7.99086 q^{79} +1.41148i q^{83} -18.1730i q^{85} +14.5622 q^{89} -23.5177i q^{91} -4.58877 q^{95} -2.04425 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 12 q^{25} - 40 q^{31} + 36 q^{49} + 16 q^{55} - 56 q^{73} + 16 q^{79} + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3168\mathbb{Z}\right)^\times\).

\(n\) \(353\) \(991\) \(1189\) \(1729\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) − 2.54164i − 1.13666i −0.822802 0.568329i \(-0.807590\pi\)
0.822802 0.568329i \(-0.192410\pi\)
\(6\) 0 0
\(7\) −4.84329 −1.83059 −0.915296 0.402781i \(-0.868044\pi\)
−0.915296 + 0.402781i \(0.868044\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.00000i 0.301511i
\(12\) 0 0
\(13\) 4.85572i 1.34674i 0.739308 + 0.673368i \(0.235153\pi\)
−0.739308 + 0.673368i \(0.764847\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 7.15011 1.73416 0.867078 0.498172i \(-0.165995\pi\)
0.867078 + 0.498172i \(0.165995\pi\)
\(18\) 0 0
\(19\) − 1.80543i − 0.414195i −0.978320 0.207097i \(-0.933598\pi\)
0.978320 0.207097i \(-0.0664017\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.29371 0.686785 0.343393 0.939192i \(-0.388424\pi\)
0.343393 + 0.939192i \(0.388424\pi\)
\(24\) 0 0
\(25\) −1.45995 −0.291990
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 4.82588i 0.896144i 0.893997 + 0.448072i \(0.147889\pi\)
−0.893997 + 0.448072i \(0.852111\pi\)
\(30\) 0 0
\(31\) 0.623337 0.111955 0.0559773 0.998432i \(-0.482173\pi\)
0.0559773 + 0.998432i \(0.482173\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 12.3099i 2.08076i
\(36\) 0 0
\(37\) − 10.3565i − 1.70259i −0.524685 0.851297i \(-0.675817\pi\)
0.524685 0.851297i \(-0.324183\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −6.34400 −0.990766 −0.495383 0.868675i \(-0.664972\pi\)
−0.495383 + 0.868675i \(0.664972\pi\)
\(42\) 0 0
\(43\) 6.34400i 0.967450i 0.875220 + 0.483725i \(0.160717\pi\)
−0.875220 + 0.483725i \(0.839283\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −6.08486 −0.887569 −0.443784 0.896134i \(-0.646364\pi\)
−0.443784 + 0.896134i \(0.646364\pi\)
\(48\) 0 0
\(49\) 16.4575 2.35107
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 4.47736i − 0.615013i −0.951546 0.307506i \(-0.900505\pi\)
0.951546 0.307506i \(-0.0994945\pi\)
\(54\) 0 0
\(55\) 2.54164 0.342715
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) − 7.75087i − 1.00908i −0.863389 0.504539i \(-0.831663\pi\)
0.863389 0.504539i \(-0.168337\pi\)
\(60\) 0 0
\(61\) − 2.14112i − 0.274142i −0.990561 0.137071i \(-0.956231\pi\)
0.990561 0.137071i \(-0.0437689\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 12.3415 1.53078
\(66\) 0 0
\(67\) − 9.21748i − 1.12609i −0.826425 0.563047i \(-0.809629\pi\)
0.826425 0.563047i \(-0.190371\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −0.911979 −0.108232 −0.0541160 0.998535i \(-0.517234\pi\)
−0.0541160 + 0.998535i \(0.517234\pi\)
\(72\) 0 0
\(73\) 0.0991030 0.0115991 0.00579956 0.999983i \(-0.498154\pi\)
0.00579956 + 0.999983i \(0.498154\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 4.84329i − 0.551945i
\(78\) 0 0
\(79\) 7.99086 0.899042 0.449521 0.893270i \(-0.351595\pi\)
0.449521 + 0.893270i \(0.351595\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 1.41148i 0.154930i 0.996995 + 0.0774652i \(0.0246827\pi\)
−0.996995 + 0.0774652i \(0.975317\pi\)
\(84\) 0 0
\(85\) − 18.1730i − 1.97114i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 14.5622 1.54359 0.771793 0.635874i \(-0.219360\pi\)
0.771793 + 0.635874i \(0.219360\pi\)
\(90\) 0 0
\(91\) − 23.5177i − 2.46532i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −4.58877 −0.470798
\(96\) 0 0
\(97\) −2.04425 −0.207562 −0.103781 0.994600i \(-0.533094\pi\)
−0.103781 + 0.994600i \(0.533094\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1.90917i 0.189970i 0.995479 + 0.0949848i \(0.0302802\pi\)
−0.995479 + 0.0949848i \(0.969720\pi\)
\(102\) 0 0
\(103\) 19.5566 1.92697 0.963484 0.267764i \(-0.0862849\pi\)
0.963484 + 0.267764i \(0.0862849\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 9.52320i − 0.920643i −0.887752 0.460321i \(-0.847734\pi\)
0.887752 0.460321i \(-0.152266\pi\)
\(108\) 0 0
\(109\) − 17.8559i − 1.71028i −0.518396 0.855141i \(-0.673471\pi\)
0.518396 0.855141i \(-0.326529\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0.584117 0.0549491 0.0274746 0.999623i \(-0.491253\pi\)
0.0274746 + 0.999623i \(0.491253\pi\)
\(114\) 0 0
\(115\) − 8.37142i − 0.780639i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −34.6301 −3.17453
\(120\) 0 0
\(121\) −1.00000 −0.0909091
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) − 8.99754i − 0.804765i
\(126\) 0 0
\(127\) −12.5593 −1.11446 −0.557231 0.830358i \(-0.688136\pi\)
−0.557231 + 0.830358i \(0.688136\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 13.2298i 1.15590i 0.816074 + 0.577948i \(0.196146\pi\)
−0.816074 + 0.577948i \(0.803854\pi\)
\(132\) 0 0
\(133\) 8.74425i 0.758222i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −8.14943 −0.696253 −0.348126 0.937448i \(-0.613182\pi\)
−0.348126 + 0.937448i \(0.613182\pi\)
\(138\) 0 0
\(139\) − 15.2150i − 1.29052i −0.763963 0.645260i \(-0.776749\pi\)
0.763963 0.645260i \(-0.223251\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −4.85572 −0.406056
\(144\) 0 0
\(145\) 12.2657 1.01861
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 18.6759i − 1.52999i −0.644039 0.764993i \(-0.722742\pi\)
0.644039 0.764993i \(-0.277258\pi\)
\(150\) 0 0
\(151\) 3.92339 0.319281 0.159641 0.987175i \(-0.448966\pi\)
0.159641 + 0.987175i \(0.448966\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) − 1.58430i − 0.127254i
\(156\) 0 0
\(157\) − 8.19964i − 0.654402i −0.944955 0.327201i \(-0.893895\pi\)
0.944955 0.327201i \(-0.106105\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −15.9524 −1.25722
\(162\) 0 0
\(163\) 1.15259i 0.0902776i 0.998981 + 0.0451388i \(0.0143730\pi\)
−0.998981 + 0.0451388i \(0.985627\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 17.9481 1.38887 0.694434 0.719556i \(-0.255655\pi\)
0.694434 + 0.719556i \(0.255655\pi\)
\(168\) 0 0
\(169\) −10.5781 −0.813697
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 0.697316i − 0.0530160i −0.999649 0.0265080i \(-0.991561\pi\)
0.999649 0.0265080i \(-0.00843874\pi\)
\(174\) 0 0
\(175\) 7.07096 0.534515
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 18.2551i 1.36445i 0.731143 + 0.682224i \(0.238987\pi\)
−0.731143 + 0.682224i \(0.761013\pi\)
\(180\) 0 0
\(181\) − 10.0236i − 0.745048i −0.928023 0.372524i \(-0.878492\pi\)
0.928023 0.372524i \(-0.121508\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −26.3225 −1.93527
\(186\) 0 0
\(187\) 7.15011i 0.522868i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 13.3380 0.965106 0.482553 0.875867i \(-0.339710\pi\)
0.482553 + 0.875867i \(0.339710\pi\)
\(192\) 0 0
\(193\) −12.0590 −0.868028 −0.434014 0.900906i \(-0.642903\pi\)
−0.434014 + 0.900906i \(0.642903\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 25.4806i 1.81541i 0.419604 + 0.907707i \(0.362169\pi\)
−0.419604 + 0.907707i \(0.637831\pi\)
\(198\) 0 0
\(199\) 10.7899 0.764876 0.382438 0.923981i \(-0.375084\pi\)
0.382438 + 0.923981i \(0.375084\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) − 23.3732i − 1.64048i
\(204\) 0 0
\(205\) 16.1242i 1.12616i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 1.80543 0.124884
\(210\) 0 0
\(211\) − 21.3658i − 1.47088i −0.677589 0.735441i \(-0.736975\pi\)
0.677589 0.735441i \(-0.263025\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 16.1242 1.09966
\(216\) 0 0
\(217\) −3.01900 −0.204943
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 34.7190i 2.33545i
\(222\) 0 0
\(223\) 4.27192 0.286069 0.143034 0.989718i \(-0.454314\pi\)
0.143034 + 0.989718i \(0.454314\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 4.00000i − 0.265489i −0.991150 0.132745i \(-0.957621\pi\)
0.991150 0.132745i \(-0.0423790\pi\)
\(228\) 0 0
\(229\) 18.2440i 1.20559i 0.797894 + 0.602797i \(0.205947\pi\)
−0.797894 + 0.602797i \(0.794053\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 13.5657 0.888721 0.444360 0.895848i \(-0.353431\pi\)
0.444360 + 0.895848i \(0.353431\pi\)
\(234\) 0 0
\(235\) 15.4656i 1.00886i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −2.66440 −0.172346 −0.0861728 0.996280i \(-0.527464\pi\)
−0.0861728 + 0.996280i \(0.527464\pi\)
\(240\) 0 0
\(241\) 10.2657 0.661270 0.330635 0.943759i \(-0.392737\pi\)
0.330635 + 0.943759i \(0.392737\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) − 41.8291i − 2.67236i
\(246\) 0 0
\(247\) 8.76669 0.557811
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) − 21.9871i − 1.38781i −0.720065 0.693906i \(-0.755888\pi\)
0.720065 0.693906i \(-0.244112\pi\)
\(252\) 0 0
\(253\) 3.29371i 0.207074i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −17.0204 −1.06171 −0.530853 0.847464i \(-0.678128\pi\)
−0.530853 + 0.847464i \(0.678128\pi\)
\(258\) 0 0
\(259\) 50.1594i 3.11676i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 20.8876 1.28799 0.643993 0.765031i \(-0.277277\pi\)
0.643993 + 0.765031i \(0.277277\pi\)
\(264\) 0 0
\(265\) −11.3798 −0.699059
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 24.3916i 1.48718i 0.668634 + 0.743592i \(0.266879\pi\)
−0.668634 + 0.743592i \(0.733121\pi\)
\(270\) 0 0
\(271\) 12.0583 0.732492 0.366246 0.930518i \(-0.380643\pi\)
0.366246 + 0.930518i \(0.380643\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 1.45995i − 0.0880383i
\(276\) 0 0
\(277\) 0.142476i 0.00856054i 0.999991 + 0.00428027i \(0.00136246\pi\)
−0.999991 + 0.00428027i \(0.998638\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 9.14875 0.545769 0.272884 0.962047i \(-0.412022\pi\)
0.272884 + 0.962047i \(0.412022\pi\)
\(282\) 0 0
\(283\) − 7.37210i − 0.438226i −0.975699 0.219113i \(-0.929684\pi\)
0.975699 0.219113i \(-0.0703163\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 30.7258 1.81369
\(288\) 0 0
\(289\) 34.1240 2.00730
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 4.38597i − 0.256231i −0.991759 0.128116i \(-0.959107\pi\)
0.991759 0.128116i \(-0.0408928\pi\)
\(294\) 0 0
\(295\) −19.6999 −1.14698
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 15.9933i 0.924918i
\(300\) 0 0
\(301\) − 30.7258i − 1.77101i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −5.44196 −0.311606
\(306\) 0 0
\(307\) − 27.3791i − 1.56261i −0.624150 0.781304i \(-0.714555\pi\)
0.624150 0.781304i \(-0.285445\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −15.0540 −0.853634 −0.426817 0.904338i \(-0.640365\pi\)
−0.426817 + 0.904338i \(0.640365\pi\)
\(312\) 0 0
\(313\) −21.0355 −1.18900 −0.594500 0.804096i \(-0.702650\pi\)
−0.594500 + 0.804096i \(0.702650\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 3.29178i 0.184885i 0.995718 + 0.0924425i \(0.0294674\pi\)
−0.995718 + 0.0924425i \(0.970533\pi\)
\(318\) 0 0
\(319\) −4.82588 −0.270198
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 12.9090i − 0.718279i
\(324\) 0 0
\(325\) − 7.08911i − 0.393233i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 29.4708 1.62478
\(330\) 0 0
\(331\) − 12.6880i − 0.697395i −0.937235 0.348698i \(-0.886624\pi\)
0.937235 0.348698i \(-0.113376\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −23.4275 −1.27998
\(336\) 0 0
\(337\) −6.48274 −0.353137 −0.176569 0.984288i \(-0.556500\pi\)
−0.176569 + 0.984288i \(0.556500\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0.623337i 0.0337556i
\(342\) 0 0
\(343\) −45.8054 −2.47326
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 27.0102i 1.44998i 0.688759 + 0.724991i \(0.258156\pi\)
−0.688759 + 0.724991i \(0.741844\pi\)
\(348\) 0 0
\(349\) − 2.22276i − 0.118981i −0.998229 0.0594907i \(-0.981052\pi\)
0.998229 0.0594907i \(-0.0189477\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 25.9731 1.38241 0.691204 0.722660i \(-0.257081\pi\)
0.691204 + 0.722660i \(0.257081\pi\)
\(354\) 0 0
\(355\) 2.31792i 0.123023i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 15.6003 0.823352 0.411676 0.911330i \(-0.364944\pi\)
0.411676 + 0.911330i \(0.364944\pi\)
\(360\) 0 0
\(361\) 15.7404 0.828443
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) − 0.251884i − 0.0131842i
\(366\) 0 0
\(367\) −2.56706 −0.133999 −0.0669997 0.997753i \(-0.521343\pi\)
−0.0669997 + 0.997753i \(0.521343\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 21.6852i 1.12584i
\(372\) 0 0
\(373\) 20.9799i 1.08630i 0.839636 + 0.543149i \(0.182768\pi\)
−0.839636 + 0.543149i \(0.817232\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −23.4332 −1.20687
\(378\) 0 0
\(379\) − 2.32082i − 0.119213i −0.998222 0.0596063i \(-0.981015\pi\)
0.998222 0.0596063i \(-0.0189845\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 7.30839 0.373441 0.186721 0.982413i \(-0.440214\pi\)
0.186721 + 0.982413i \(0.440214\pi\)
\(384\) 0 0
\(385\) −12.3099 −0.627372
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 12.4190i 0.629669i 0.949147 + 0.314835i \(0.101949\pi\)
−0.949147 + 0.314835i \(0.898051\pi\)
\(390\) 0 0
\(391\) 23.5504 1.19099
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) − 20.3099i − 1.02190i
\(396\) 0 0
\(397\) − 12.8462i − 0.644731i −0.946615 0.322366i \(-0.895522\pi\)
0.946615 0.322366i \(-0.104478\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −6.73490 −0.336325 −0.168163 0.985759i \(-0.553783\pi\)
−0.168163 + 0.985759i \(0.553783\pi\)
\(402\) 0 0
\(403\) 3.02675i 0.150773i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 10.3565 0.513351
\(408\) 0 0
\(409\) 6.06964 0.300124 0.150062 0.988677i \(-0.452053\pi\)
0.150062 + 0.988677i \(0.452053\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 37.5397i 1.84721i
\(414\) 0 0
\(415\) 3.58748 0.176103
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) − 18.3756i − 0.897708i −0.893605 0.448854i \(-0.851832\pi\)
0.893605 0.448854i \(-0.148168\pi\)
\(420\) 0 0
\(421\) − 14.8185i − 0.722208i −0.932525 0.361104i \(-0.882400\pi\)
0.932525 0.361104i \(-0.117600\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −10.4388 −0.506356
\(426\) 0 0
\(427\) 10.3701i 0.501843i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 31.7144 1.52763 0.763815 0.645435i \(-0.223324\pi\)
0.763815 + 0.645435i \(0.223324\pi\)
\(432\) 0 0
\(433\) 14.8878 0.715464 0.357732 0.933824i \(-0.383550\pi\)
0.357732 + 0.933824i \(0.383550\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 5.94657i − 0.284463i
\(438\) 0 0
\(439\) −29.4357 −1.40489 −0.702446 0.711737i \(-0.747909\pi\)
−0.702446 + 0.711737i \(0.747909\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) − 3.34361i − 0.158860i −0.996840 0.0794298i \(-0.974690\pi\)
0.996840 0.0794298i \(-0.0253100\pi\)
\(444\) 0 0
\(445\) − 37.0118i − 1.75453i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −19.2984 −0.910749 −0.455374 0.890300i \(-0.650495\pi\)
−0.455374 + 0.890300i \(0.650495\pi\)
\(450\) 0 0
\(451\) − 6.34400i − 0.298727i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −59.7736 −2.80223
\(456\) 0 0
\(457\) 2.68162 0.125441 0.0627205 0.998031i \(-0.480022\pi\)
0.0627205 + 0.998031i \(0.480022\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0.240855i 0.0112177i 0.999984 + 0.00560887i \(0.00178537\pi\)
−0.999984 + 0.00560887i \(0.998215\pi\)
\(462\) 0 0
\(463\) 2.80818 0.130507 0.0652536 0.997869i \(-0.479214\pi\)
0.0652536 + 0.997869i \(0.479214\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 0.198206i − 0.00917188i −0.999989 0.00458594i \(-0.998540\pi\)
0.999989 0.00458594i \(-0.00145975\pi\)
\(468\) 0 0
\(469\) 44.6430i 2.06142i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −6.34400 −0.291697
\(474\) 0 0
\(475\) 2.63584i 0.120941i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −0.634324 −0.0289830 −0.0144915 0.999895i \(-0.504613\pi\)
−0.0144915 + 0.999895i \(0.504613\pi\)
\(480\) 0 0
\(481\) 50.2882 2.29294
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 5.19575i 0.235927i
\(486\) 0 0
\(487\) 24.7182 1.12009 0.560044 0.828463i \(-0.310784\pi\)
0.560044 + 0.828463i \(0.310784\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 30.5099i − 1.37689i −0.725288 0.688446i \(-0.758293\pi\)
0.725288 0.688446i \(-0.241707\pi\)
\(492\) 0 0
\(493\) 34.5056i 1.55405i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 4.41698 0.198129
\(498\) 0 0
\(499\) − 30.1394i − 1.34923i −0.738171 0.674613i \(-0.764310\pi\)
0.738171 0.674613i \(-0.235690\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 28.4586 1.26890 0.634452 0.772962i \(-0.281226\pi\)
0.634452 + 0.772962i \(0.281226\pi\)
\(504\) 0 0
\(505\) 4.85243 0.215930
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 8.27915i 0.366967i 0.983023 + 0.183484i \(0.0587374\pi\)
−0.983023 + 0.183484i \(0.941263\pi\)
\(510\) 0 0
\(511\) −0.479985 −0.0212333
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) − 49.7059i − 2.19030i
\(516\) 0 0
\(517\) − 6.08486i − 0.267612i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −14.9245 −0.653855 −0.326927 0.945050i \(-0.606013\pi\)
−0.326927 + 0.945050i \(0.606013\pi\)
\(522\) 0 0
\(523\) 28.0034i 1.22450i 0.790663 + 0.612252i \(0.209736\pi\)
−0.790663 + 0.612252i \(0.790264\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 4.45692 0.194147
\(528\) 0 0
\(529\) −12.1515 −0.528326
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) − 30.8047i − 1.33430i
\(534\) 0 0
\(535\) −24.2046 −1.04646
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 16.4575i 0.708874i
\(540\) 0 0
\(541\) 42.3272i 1.81979i 0.414842 + 0.909893i \(0.363837\pi\)
−0.414842 + 0.909893i \(0.636163\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −45.3832 −1.94400
\(546\) 0 0
\(547\) 5.55376i 0.237462i 0.992926 + 0.118731i \(0.0378826\pi\)
−0.992926 + 0.118731i \(0.962117\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 8.71281 0.371178
\(552\) 0 0
\(553\) −38.7021 −1.64578
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 6.05429i − 0.256528i −0.991740 0.128264i \(-0.959059\pi\)
0.991740 0.128264i \(-0.0409405\pi\)
\(558\) 0 0
\(559\) −30.8047 −1.30290
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 36.5314i 1.53961i 0.638277 + 0.769806i \(0.279647\pi\)
−0.638277 + 0.769806i \(0.720353\pi\)
\(564\) 0 0
\(565\) − 1.48462i − 0.0624583i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 39.1923 1.64303 0.821514 0.570188i \(-0.193130\pi\)
0.821514 + 0.570188i \(0.193130\pi\)
\(570\) 0 0
\(571\) 0.253449i 0.0106065i 0.999986 + 0.00530325i \(0.00168808\pi\)
−0.999986 + 0.00530325i \(0.998312\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −4.80864 −0.200534
\(576\) 0 0
\(577\) −25.2484 −1.05111 −0.525553 0.850761i \(-0.676142\pi\)
−0.525553 + 0.850761i \(0.676142\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) − 6.83622i − 0.283614i
\(582\) 0 0
\(583\) 4.47736 0.185433
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 39.1304i 1.61509i 0.589809 + 0.807543i \(0.299203\pi\)
−0.589809 + 0.807543i \(0.700797\pi\)
\(588\) 0 0
\(589\) − 1.12539i − 0.0463710i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −25.4476 −1.04501 −0.522504 0.852637i \(-0.675002\pi\)
−0.522504 + 0.852637i \(0.675002\pi\)
\(594\) 0 0
\(595\) 88.0173i 3.60836i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 37.0670 1.51452 0.757259 0.653115i \(-0.226538\pi\)
0.757259 + 0.653115i \(0.226538\pi\)
\(600\) 0 0
\(601\) 30.5587 1.24652 0.623259 0.782016i \(-0.285808\pi\)
0.623259 + 0.782016i \(0.285808\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 2.54164i 0.103332i
\(606\) 0 0
\(607\) −15.4063 −0.625322 −0.312661 0.949865i \(-0.601220\pi\)
−0.312661 + 0.949865i \(0.601220\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) − 29.5464i − 1.19532i
\(612\) 0 0
\(613\) 24.0437i 0.971116i 0.874205 + 0.485558i \(0.161383\pi\)
−0.874205 + 0.485558i \(0.838617\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 8.77372 0.353217 0.176608 0.984281i \(-0.443487\pi\)
0.176608 + 0.984281i \(0.443487\pi\)
\(618\) 0 0
\(619\) 1.81682i 0.0730242i 0.999333 + 0.0365121i \(0.0116248\pi\)
−0.999333 + 0.0365121i \(0.988375\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −70.5288 −2.82568
\(624\) 0 0
\(625\) −30.1683 −1.20673
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) − 74.0499i − 2.95256i
\(630\) 0 0
\(631\) −2.72027 −0.108292 −0.0541461 0.998533i \(-0.517244\pi\)
−0.0541461 + 0.998533i \(0.517244\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 31.9214i 1.26676i
\(636\) 0 0
\(637\) 79.9130i 3.16627i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −6.10619 −0.241180 −0.120590 0.992702i \(-0.538479\pi\)
−0.120590 + 0.992702i \(0.538479\pi\)
\(642\) 0 0
\(643\) 32.9170i 1.29812i 0.760737 + 0.649060i \(0.224838\pi\)
−0.760737 + 0.649060i \(0.775162\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −11.0567 −0.434684 −0.217342 0.976095i \(-0.569739\pi\)
−0.217342 + 0.976095i \(0.569739\pi\)
\(648\) 0 0
\(649\) 7.75087 0.304248
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) − 18.6278i − 0.728963i −0.931211 0.364482i \(-0.881246\pi\)
0.931211 0.364482i \(-0.118754\pi\)
\(654\) 0 0
\(655\) 33.6255 1.31386
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) − 26.2315i − 1.02184i −0.859629 0.510918i \(-0.829306\pi\)
0.859629 0.510918i \(-0.170694\pi\)
\(660\) 0 0
\(661\) − 38.4922i − 1.49717i −0.663038 0.748586i \(-0.730733\pi\)
0.663038 0.748586i \(-0.269267\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 22.2248 0.861839
\(666\) 0 0
\(667\) 15.8950i 0.615459i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 2.14112 0.0826570
\(672\) 0 0
\(673\) −29.0436 −1.11955 −0.559773 0.828646i \(-0.689112\pi\)
−0.559773 + 0.828646i \(0.689112\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 14.6056i − 0.561340i −0.959804 0.280670i \(-0.909443\pi\)
0.959804 0.280670i \(-0.0905567\pi\)
\(678\) 0 0
\(679\) 9.90090 0.379962
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 29.6575i 1.13481i 0.823438 + 0.567406i \(0.192053\pi\)
−0.823438 + 0.567406i \(0.807947\pi\)
\(684\) 0 0
\(685\) 20.7129i 0.791401i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 21.7408 0.828259
\(690\) 0 0
\(691\) − 16.6181i − 0.632184i −0.948729 0.316092i \(-0.897629\pi\)
0.948729 0.316092i \(-0.102371\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −38.6711 −1.46688
\(696\) 0 0
\(697\) −45.3603 −1.71814
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 36.9173i 1.39435i 0.716902 + 0.697174i \(0.245559\pi\)
−0.716902 + 0.697174i \(0.754441\pi\)
\(702\) 0 0
\(703\) −18.6979 −0.705206
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 9.24667i − 0.347757i
\(708\) 0 0
\(709\) 1.80322i 0.0677215i 0.999427 + 0.0338608i \(0.0107803\pi\)
−0.999427 + 0.0338608i \(0.989220\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 2.05309 0.0768887
\(714\) 0 0
\(715\) 12.3415i 0.461547i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −30.0049 −1.11899 −0.559496 0.828833i \(-0.689005\pi\)
−0.559496 + 0.828833i \(0.689005\pi\)
\(720\) 0 0
\(721\) −94.7183 −3.52750
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) − 7.04555i − 0.261665i
\(726\) 0 0
\(727\) −5.71187 −0.211842 −0.105921 0.994375i \(-0.533779\pi\)
−0.105921 + 0.994375i \(0.533779\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 45.3603i 1.67771i
\(732\) 0 0
\(733\) − 13.4418i − 0.496483i −0.968698 0.248242i \(-0.920147\pi\)
0.968698 0.248242i \(-0.0798527\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 9.21748 0.339530
\(738\) 0 0
\(739\) − 15.6188i − 0.574548i −0.957849 0.287274i \(-0.907251\pi\)
0.957849 0.287274i \(-0.0927489\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −41.2940 −1.51493 −0.757466 0.652875i \(-0.773563\pi\)
−0.757466 + 0.652875i \(0.773563\pi\)
\(744\) 0 0
\(745\) −47.4674 −1.73907
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 46.1237i 1.68532i
\(750\) 0 0
\(751\) −5.34503 −0.195043 −0.0975215 0.995233i \(-0.531091\pi\)
−0.0975215 + 0.995233i \(0.531091\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) − 9.97187i − 0.362913i
\(756\) 0 0
\(757\) 13.6401i 0.495757i 0.968791 + 0.247878i \(0.0797334\pi\)
−0.968791 + 0.247878i \(0.920267\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 29.1959 1.05835 0.529176 0.848512i \(-0.322501\pi\)
0.529176 + 0.848512i \(0.322501\pi\)
\(762\) 0 0
\(763\) 86.4812i 3.13083i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 37.6361 1.35896
\(768\) 0 0
\(769\) 23.4723 0.846432 0.423216 0.906029i \(-0.360901\pi\)
0.423216 + 0.906029i \(0.360901\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 4.20825i − 0.151360i −0.997132 0.0756802i \(-0.975887\pi\)
0.997132 0.0756802i \(-0.0241128\pi\)
\(774\) 0 0
\(775\) −0.910040 −0.0326896
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 11.4537i 0.410370i
\(780\) 0 0
\(781\) − 0.911979i − 0.0326332i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −20.8405 −0.743831
\(786\) 0 0
\(787\) 17.8152i 0.635042i 0.948251 + 0.317521i \(0.102850\pi\)
−0.948251 + 0.317521i \(0.897150\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −2.82905 −0.100590
\(792\) 0 0
\(793\) 10.3967 0.369197
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 35.5339i 1.25868i 0.777131 + 0.629338i \(0.216674\pi\)
−0.777131 + 0.629338i \(0.783326\pi\)
\(798\) 0 0
\(799\) −43.5074 −1.53918
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0.0991030i 0.00349727i
\(804\) 0 0
\(805\) 40.5453i 1.42903i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −3.57918 −0.125837 −0.0629187 0.998019i \(-0.520041\pi\)
−0.0629187 + 0.998019i \(0.520041\pi\)
\(810\) 0 0
\(811\) − 14.0896i − 0.494753i −0.968919 0.247377i \(-0.920432\pi\)
0.968919 0.247377i \(-0.0795685\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 2.92946 0.102615
\(816\) 0 0
\(817\) 11.4537 0.400713
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 47.8288i − 1.66924i −0.550829 0.834618i \(-0.685688\pi\)
0.550829 0.834618i \(-0.314312\pi\)
\(822\) 0 0
\(823\) 31.6451 1.10308 0.551539 0.834149i \(-0.314041\pi\)
0.551539 + 0.834149i \(0.314041\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 25.5630i − 0.888911i −0.895801 0.444456i \(-0.853397\pi\)
0.895801 0.444456i \(-0.146603\pi\)
\(828\) 0 0
\(829\) − 14.1148i − 0.490228i −0.969494 0.245114i \(-0.921175\pi\)
0.969494 0.245114i \(-0.0788254\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 117.673 4.07712
\(834\) 0 0
\(835\) − 45.6177i − 1.57867i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 6.13279 0.211727 0.105864 0.994381i \(-0.466239\pi\)
0.105864 + 0.994381i \(0.466239\pi\)
\(840\) 0 0
\(841\) 5.71084 0.196926
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 26.8856i 0.924894i
\(846\) 0 0
\(847\) 4.84329 0.166418
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) − 34.1112i − 1.16932i
\(852\) 0 0
\(853\) − 3.74773i − 0.128320i −0.997940 0.0641599i \(-0.979563\pi\)
0.997940 0.0641599i \(-0.0204368\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −41.2567 −1.40930 −0.704652 0.709553i \(-0.748897\pi\)
−0.704652 + 0.709553i \(0.748897\pi\)
\(858\) 0 0
\(859\) 9.21458i 0.314398i 0.987567 + 0.157199i \(0.0502463\pi\)
−0.987567 + 0.157199i \(0.949754\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −39.3004 −1.33780 −0.668901 0.743352i \(-0.733235\pi\)
−0.668901 + 0.743352i \(0.733235\pi\)
\(864\) 0 0
\(865\) −1.77233 −0.0602610
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 7.99086i 0.271071i
\(870\) 0 0
\(871\) 44.7575 1.51655
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 43.5778i 1.47320i
\(876\) 0 0
\(877\) 19.2061i 0.648545i 0.945964 + 0.324273i \(0.105120\pi\)
−0.945964 + 0.324273i \(0.894880\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −5.78843 −0.195017 −0.0975087 0.995235i \(-0.531087\pi\)
−0.0975087 + 0.995235i \(0.531087\pi\)
\(882\) 0 0
\(883\) 27.1286i 0.912949i 0.889737 + 0.456474i \(0.150888\pi\)
−0.889737 + 0.456474i \(0.849112\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 9.55834 0.320938 0.160469 0.987041i \(-0.448699\pi\)
0.160469 + 0.987041i \(0.448699\pi\)
\(888\) 0 0
\(889\) 60.8286 2.04013
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 10.9858i 0.367626i
\(894\) 0 0
\(895\) 46.3979 1.55091
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 3.00815i 0.100327i
\(900\) 0 0
\(901\) − 32.0136i − 1.06653i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −25.4764 −0.846864
\(906\) 0 0
\(907\) − 23.2370i − 0.771571i −0.922588 0.385786i \(-0.873930\pi\)
0.922588 0.385786i \(-0.126070\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 30.9370 1.02499 0.512494 0.858691i \(-0.328722\pi\)
0.512494 + 0.858691i \(0.328722\pi\)
\(912\) 0 0
\(913\) −1.41148 −0.0467132
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 64.0759i − 2.11597i
\(918\) 0 0
\(919\) −44.8067 −1.47804 −0.739019 0.673684i \(-0.764711\pi\)
−0.739019 + 0.673684i \(0.764711\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) − 4.42832i − 0.145760i
\(924\) 0 0
\(925\) 15.1199i 0.497140i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 39.2081 1.28638 0.643189 0.765708i \(-0.277611\pi\)
0.643189 + 0.765708i \(0.277611\pi\)
\(930\) 0 0
\(931\) − 29.7129i − 0.973802i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 18.1730 0.594321
\(936\) 0 0
\(937\) 55.8729 1.82529 0.912644 0.408756i \(-0.134037\pi\)
0.912644 + 0.408756i \(0.134037\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 43.3369i − 1.41274i −0.707842 0.706371i \(-0.750331\pi\)
0.707842 0.706371i \(-0.249669\pi\)
\(942\) 0 0
\(943\) −20.8953 −0.680443
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 6.07170i 0.197304i 0.995122 + 0.0986519i \(0.0314530\pi\)
−0.995122 + 0.0986519i \(0.968547\pi\)
\(948\) 0 0
\(949\) 0.481217i 0.0156210i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −14.0254 −0.454326 −0.227163 0.973857i \(-0.572945\pi\)
−0.227163 + 0.973857i \(0.572945\pi\)
\(954\) 0 0
\(955\) − 33.9005i − 1.09699i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 39.4701 1.27456
\(960\) 0 0
\(961\) −30.6115 −0.987466
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 30.6498i 0.986651i
\(966\) 0 0
\(967\) 7.68589 0.247162 0.123581 0.992335i \(-0.460562\pi\)
0.123581 + 0.992335i \(0.460562\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) − 26.3648i − 0.846086i −0.906110 0.423043i \(-0.860962\pi\)
0.906110 0.423043i \(-0.139038\pi\)
\(972\) 0 0
\(973\) 73.6907i 2.36242i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 58.2530 1.86368 0.931840 0.362870i \(-0.118203\pi\)
0.931840 + 0.362870i \(0.118203\pi\)
\(978\) 0 0
\(979\) 14.5622i 0.465409i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −28.7987 −0.918537 −0.459268 0.888298i \(-0.651888\pi\)
−0.459268 + 0.888298i \(0.651888\pi\)
\(984\) 0 0
\(985\) 64.7625 2.06350
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 20.8953i 0.664430i
\(990\) 0 0
\(991\) 32.1947 1.02270 0.511349 0.859373i \(-0.329146\pi\)
0.511349 + 0.859373i \(0.329146\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) − 27.4241i − 0.869402i
\(996\) 0 0
\(997\) − 32.6398i − 1.03371i −0.856072 0.516856i \(-0.827102\pi\)
0.856072 0.516856i \(-0.172898\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3168.2.f.h.1585.4 20
3.2 odd 2 inner 3168.2.f.h.1585.18 20
4.3 odd 2 792.2.f.h.397.4 yes 20
8.3 odd 2 792.2.f.h.397.3 20
8.5 even 2 inner 3168.2.f.h.1585.17 20
12.11 even 2 792.2.f.h.397.17 yes 20
24.5 odd 2 inner 3168.2.f.h.1585.3 20
24.11 even 2 792.2.f.h.397.18 yes 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
792.2.f.h.397.3 20 8.3 odd 2
792.2.f.h.397.4 yes 20 4.3 odd 2
792.2.f.h.397.17 yes 20 12.11 even 2
792.2.f.h.397.18 yes 20 24.11 even 2
3168.2.f.h.1585.3 20 24.5 odd 2 inner
3168.2.f.h.1585.4 20 1.1 even 1 trivial
3168.2.f.h.1585.17 20 8.5 even 2 inner
3168.2.f.h.1585.18 20 3.2 odd 2 inner