Properties

Label 792.2.f.h.397.18
Level $792$
Weight $2$
Character 792.397
Analytic conductor $6.324$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [792,2,Mod(397,792)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(792, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("792.397"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 792 = 2^{3} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 792.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,0,4,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.32415184009\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: 20.0.74831334220841134637329678336.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 2x^{18} + 5x^{16} - 8x^{14} + 28x^{12} - 64x^{10} + 112x^{8} - 128x^{6} + 320x^{4} - 512x^{2} + 1024 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{17} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 397.18
Root \(-1.25295 + 0.655834i\) of defining polynomial
Character \(\chi\) \(=\) 792.397
Dual form 792.2.f.h.397.17

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.25295 + 0.655834i) q^{2} +(1.13976 + 1.64345i) q^{4} -2.54164i q^{5} +4.84329 q^{7} +(0.350232 + 2.80666i) q^{8} +(1.66690 - 3.18455i) q^{10} -1.00000i q^{11} -4.85572i q^{13} +(6.06840 + 3.17640i) q^{14} +(-1.40188 + 3.74630i) q^{16} -7.15011 q^{17} -1.80543i q^{19} +(4.17707 - 2.89687i) q^{20} +(0.655834 - 1.25295i) q^{22} +3.29371 q^{23} -1.45995 q^{25} +(3.18455 - 6.08398i) q^{26} +(5.52021 + 7.95973i) q^{28} +4.82588i q^{29} -0.623337 q^{31} +(-4.21343 + 3.77452i) q^{32} +(-8.95872 - 4.68929i) q^{34} -12.3099i q^{35} +10.3565i q^{37} +(1.18407 - 2.26212i) q^{38} +(7.13353 - 0.890165i) q^{40} +6.34400 q^{41} +6.34400i q^{43} +(1.64345 - 1.13976i) q^{44} +(4.12685 + 2.16012i) q^{46} -6.08486 q^{47} +16.4575 q^{49} +(-1.82924 - 0.957485i) q^{50} +(7.98016 - 5.53438i) q^{52} -4.47736i q^{53} -2.54164 q^{55} +(1.69628 + 13.5935i) q^{56} +(-3.16498 + 6.04659i) q^{58} +7.75087i q^{59} +2.14112i q^{61} +(-0.781009 - 0.408805i) q^{62} +(-7.75467 + 1.96597i) q^{64} -12.3415 q^{65} -9.21748i q^{67} +(-8.14943 - 11.7509i) q^{68} +(8.07327 - 15.4237i) q^{70} -0.911979 q^{71} +0.0991030 q^{73} +(-6.79213 + 12.9761i) q^{74} +(2.96715 - 2.05777i) q^{76} -4.84329i q^{77} -7.99086 q^{79} +(9.52175 + 3.56308i) q^{80} +(7.94870 + 4.16061i) q^{82} -1.41148i q^{83} +18.1730i q^{85} +(-4.16061 + 7.94870i) q^{86} +(2.80666 - 0.350232i) q^{88} -14.5622 q^{89} -23.5177i q^{91} +(3.75404 + 5.41305i) q^{92} +(-7.62403 - 3.99066i) q^{94} -4.58877 q^{95} -2.04425 q^{97} +(20.6204 + 10.7934i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 4 q^{4} + 8 q^{10} - 12 q^{16} - 12 q^{25} + 24 q^{28} + 40 q^{31} - 24 q^{34} - 32 q^{40} + 40 q^{46} + 36 q^{49} + 56 q^{52} - 16 q^{55} + 24 q^{58} + 4 q^{64} + 56 q^{70} - 56 q^{73} - 8 q^{76}+ \cdots + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/792\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(199\) \(353\) \(397\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.25295 + 0.655834i 0.885969 + 0.463745i
\(3\) 0 0
\(4\) 1.13976 + 1.64345i 0.569882 + 0.821727i
\(5\) 2.54164i 1.13666i −0.822802 0.568329i \(-0.807590\pi\)
0.822802 0.568329i \(-0.192410\pi\)
\(6\) 0 0
\(7\) 4.84329 1.83059 0.915296 0.402781i \(-0.131956\pi\)
0.915296 + 0.402781i \(0.131956\pi\)
\(8\) 0.350232 + 2.80666i 0.123826 + 0.992304i
\(9\) 0 0
\(10\) 1.66690 3.18455i 0.527119 1.00704i
\(11\) 1.00000i 0.301511i
\(12\) 0 0
\(13\) 4.85572i 1.34674i −0.739308 0.673368i \(-0.764847\pi\)
0.739308 0.673368i \(-0.235153\pi\)
\(14\) 6.06840 + 3.17640i 1.62185 + 0.848928i
\(15\) 0 0
\(16\) −1.40188 + 3.74630i −0.350470 + 0.936574i
\(17\) −7.15011 −1.73416 −0.867078 0.498172i \(-0.834005\pi\)
−0.867078 + 0.498172i \(0.834005\pi\)
\(18\) 0 0
\(19\) 1.80543i 0.414195i −0.978320 0.207097i \(-0.933598\pi\)
0.978320 0.207097i \(-0.0664017\pi\)
\(20\) 4.17707 2.89687i 0.934022 0.647760i
\(21\) 0 0
\(22\) 0.655834 1.25295i 0.139824 0.267130i
\(23\) 3.29371 0.686785 0.343393 0.939192i \(-0.388424\pi\)
0.343393 + 0.939192i \(0.388424\pi\)
\(24\) 0 0
\(25\) −1.45995 −0.291990
\(26\) 3.18455 6.08398i 0.624542 1.19317i
\(27\) 0 0
\(28\) 5.52021 + 7.95973i 1.04322 + 1.50425i
\(29\) 4.82588i 0.896144i 0.893997 + 0.448072i \(0.147889\pi\)
−0.893997 + 0.448072i \(0.852111\pi\)
\(30\) 0 0
\(31\) −0.623337 −0.111955 −0.0559773 0.998432i \(-0.517827\pi\)
−0.0559773 + 0.998432i \(0.517827\pi\)
\(32\) −4.21343 + 3.77452i −0.744837 + 0.667247i
\(33\) 0 0
\(34\) −8.95872 4.68929i −1.53641 0.804206i
\(35\) 12.3099i 2.08076i
\(36\) 0 0
\(37\) 10.3565i 1.70259i 0.524685 + 0.851297i \(0.324183\pi\)
−0.524685 + 0.851297i \(0.675817\pi\)
\(38\) 1.18407 2.26212i 0.192081 0.366964i
\(39\) 0 0
\(40\) 7.13353 0.890165i 1.12791 0.140747i
\(41\) 6.34400 0.990766 0.495383 0.868675i \(-0.335028\pi\)
0.495383 + 0.868675i \(0.335028\pi\)
\(42\) 0 0
\(43\) 6.34400i 0.967450i 0.875220 + 0.483725i \(0.160717\pi\)
−0.875220 + 0.483725i \(0.839283\pi\)
\(44\) 1.64345 1.13976i 0.247760 0.171826i
\(45\) 0 0
\(46\) 4.12685 + 2.16012i 0.608470 + 0.318493i
\(47\) −6.08486 −0.887569 −0.443784 0.896134i \(-0.646364\pi\)
−0.443784 + 0.896134i \(0.646364\pi\)
\(48\) 0 0
\(49\) 16.4575 2.35107
\(50\) −1.82924 0.957485i −0.258694 0.135409i
\(51\) 0 0
\(52\) 7.98016 5.53438i 1.10665 0.767480i
\(53\) 4.47736i 0.615013i −0.951546 0.307506i \(-0.900505\pi\)
0.951546 0.307506i \(-0.0994945\pi\)
\(54\) 0 0
\(55\) −2.54164 −0.342715
\(56\) 1.69628 + 13.5935i 0.226675 + 1.81650i
\(57\) 0 0
\(58\) −3.16498 + 6.04659i −0.415582 + 0.793956i
\(59\) 7.75087i 1.00908i 0.863389 + 0.504539i \(0.168337\pi\)
−0.863389 + 0.504539i \(0.831663\pi\)
\(60\) 0 0
\(61\) 2.14112i 0.274142i 0.990561 + 0.137071i \(0.0437689\pi\)
−0.990561 + 0.137071i \(0.956231\pi\)
\(62\) −0.781009 0.408805i −0.0991882 0.0519183i
\(63\) 0 0
\(64\) −7.75467 + 1.96597i −0.969334 + 0.245746i
\(65\) −12.3415 −1.53078
\(66\) 0 0
\(67\) 9.21748i 1.12609i −0.826425 0.563047i \(-0.809629\pi\)
0.826425 0.563047i \(-0.190371\pi\)
\(68\) −8.14943 11.7509i −0.988264 1.42500i
\(69\) 0 0
\(70\) 8.07327 15.4237i 0.964940 1.84349i
\(71\) −0.911979 −0.108232 −0.0541160 0.998535i \(-0.517234\pi\)
−0.0541160 + 0.998535i \(0.517234\pi\)
\(72\) 0 0
\(73\) 0.0991030 0.0115991 0.00579956 0.999983i \(-0.498154\pi\)
0.00579956 + 0.999983i \(0.498154\pi\)
\(74\) −6.79213 + 12.9761i −0.789569 + 1.50844i
\(75\) 0 0
\(76\) 2.96715 2.05777i 0.340355 0.236042i
\(77\) 4.84329i 0.551945i
\(78\) 0 0
\(79\) −7.99086 −0.899042 −0.449521 0.893270i \(-0.648405\pi\)
−0.449521 + 0.893270i \(0.648405\pi\)
\(80\) 9.52175 + 3.56308i 1.06456 + 0.398364i
\(81\) 0 0
\(82\) 7.94870 + 4.16061i 0.877788 + 0.459462i
\(83\) 1.41148i 0.154930i −0.996995 0.0774652i \(-0.975317\pi\)
0.996995 0.0774652i \(-0.0246827\pi\)
\(84\) 0 0
\(85\) 18.1730i 1.97114i
\(86\) −4.16061 + 7.94870i −0.448650 + 0.857131i
\(87\) 0 0
\(88\) 2.80666 0.350232i 0.299191 0.0373349i
\(89\) −14.5622 −1.54359 −0.771793 0.635874i \(-0.780640\pi\)
−0.771793 + 0.635874i \(0.780640\pi\)
\(90\) 0 0
\(91\) 23.5177i 2.46532i
\(92\) 3.75404 + 5.41305i 0.391386 + 0.564350i
\(93\) 0 0
\(94\) −7.62403 3.99066i −0.786358 0.411605i
\(95\) −4.58877 −0.470798
\(96\) 0 0
\(97\) −2.04425 −0.207562 −0.103781 0.994600i \(-0.533094\pi\)
−0.103781 + 0.994600i \(0.533094\pi\)
\(98\) 20.6204 + 10.7934i 2.08298 + 1.09030i
\(99\) 0 0
\(100\) −1.66400 2.39936i −0.166400 0.239936i
\(101\) 1.90917i 0.189970i 0.995479 + 0.0949848i \(0.0302802\pi\)
−0.995479 + 0.0949848i \(0.969720\pi\)
\(102\) 0 0
\(103\) −19.5566 −1.92697 −0.963484 0.267764i \(-0.913715\pi\)
−0.963484 + 0.267764i \(0.913715\pi\)
\(104\) 13.6284 1.70063i 1.33637 0.166761i
\(105\) 0 0
\(106\) 2.93640 5.60990i 0.285209 0.544882i
\(107\) 9.52320i 0.920643i 0.887752 + 0.460321i \(0.152266\pi\)
−0.887752 + 0.460321i \(0.847734\pi\)
\(108\) 0 0
\(109\) 17.8559i 1.71028i 0.518396 + 0.855141i \(0.326529\pi\)
−0.518396 + 0.855141i \(0.673471\pi\)
\(110\) −3.18455 1.66690i −0.303635 0.158932i
\(111\) 0 0
\(112\) −6.78972 + 18.1444i −0.641568 + 1.71449i
\(113\) −0.584117 −0.0549491 −0.0274746 0.999623i \(-0.508747\pi\)
−0.0274746 + 0.999623i \(0.508747\pi\)
\(114\) 0 0
\(115\) 8.37142i 0.780639i
\(116\) −7.93112 + 5.50037i −0.736386 + 0.510696i
\(117\) 0 0
\(118\) −5.08329 + 9.71145i −0.467954 + 0.894011i
\(119\) −34.6301 −3.17453
\(120\) 0 0
\(121\) −1.00000 −0.0909091
\(122\) −1.40422 + 2.68271i −0.127132 + 0.242881i
\(123\) 0 0
\(124\) −0.710456 1.02442i −0.0638008 0.0919961i
\(125\) 8.99754i 0.804765i
\(126\) 0 0
\(127\) 12.5593 1.11446 0.557231 0.830358i \(-0.311864\pi\)
0.557231 + 0.830358i \(0.311864\pi\)
\(128\) −11.0056 2.62253i −0.972763 0.231801i
\(129\) 0 0
\(130\) −15.4633 8.09399i −1.35622 0.709890i
\(131\) 13.2298i 1.15590i −0.816074 0.577948i \(-0.803854\pi\)
0.816074 0.577948i \(-0.196146\pi\)
\(132\) 0 0
\(133\) 8.74425i 0.758222i
\(134\) 6.04514 11.5490i 0.522220 0.997685i
\(135\) 0 0
\(136\) −2.50420 20.0679i −0.214733 1.72081i
\(137\) 8.14943 0.696253 0.348126 0.937448i \(-0.386818\pi\)
0.348126 + 0.937448i \(0.386818\pi\)
\(138\) 0 0
\(139\) 15.2150i 1.29052i −0.763963 0.645260i \(-0.776749\pi\)
0.763963 0.645260i \(-0.223251\pi\)
\(140\) 20.2308 14.0304i 1.70981 1.18579i
\(141\) 0 0
\(142\) −1.14266 0.598107i −0.0958901 0.0501920i
\(143\) −4.85572 −0.406056
\(144\) 0 0
\(145\) 12.2657 1.01861
\(146\) 0.124171 + 0.0649951i 0.0102765 + 0.00537903i
\(147\) 0 0
\(148\) −17.0204 + 11.8039i −1.39907 + 0.970277i
\(149\) 18.6759i 1.52999i −0.644039 0.764993i \(-0.722742\pi\)
0.644039 0.764993i \(-0.277258\pi\)
\(150\) 0 0
\(151\) −3.92339 −0.319281 −0.159641 0.987175i \(-0.551034\pi\)
−0.159641 + 0.987175i \(0.551034\pi\)
\(152\) 5.06724 0.632321i 0.411007 0.0512880i
\(153\) 0 0
\(154\) 3.17640 6.06840i 0.255961 0.489006i
\(155\) 1.58430i 0.127254i
\(156\) 0 0
\(157\) 8.19964i 0.654402i 0.944955 + 0.327201i \(0.106105\pi\)
−0.944955 + 0.327201i \(0.893895\pi\)
\(158\) −10.0121 5.24068i −0.796524 0.416926i
\(159\) 0 0
\(160\) 9.59348 + 10.7090i 0.758431 + 0.846624i
\(161\) 15.9524 1.25722
\(162\) 0 0
\(163\) 1.15259i 0.0902776i 0.998981 + 0.0451388i \(0.0143730\pi\)
−0.998981 + 0.0451388i \(0.985627\pi\)
\(164\) 7.23065 + 10.4261i 0.564619 + 0.814139i
\(165\) 0 0
\(166\) 0.925698 1.76852i 0.0718481 0.137263i
\(167\) 17.9481 1.38887 0.694434 0.719556i \(-0.255655\pi\)
0.694434 + 0.719556i \(0.255655\pi\)
\(168\) 0 0
\(169\) −10.5781 −0.813697
\(170\) −11.9185 + 22.7699i −0.914106 + 1.74637i
\(171\) 0 0
\(172\) −10.4261 + 7.23065i −0.794980 + 0.551332i
\(173\) 0.697316i 0.0530160i −0.999649 0.0265080i \(-0.991561\pi\)
0.999649 0.0265080i \(-0.00843874\pi\)
\(174\) 0 0
\(175\) −7.07096 −0.534515
\(176\) 3.74630 + 1.40188i 0.282388 + 0.105671i
\(177\) 0 0
\(178\) −18.2456 9.55036i −1.36757 0.715830i
\(179\) 18.2551i 1.36445i −0.731143 0.682224i \(-0.761013\pi\)
0.731143 0.682224i \(-0.238987\pi\)
\(180\) 0 0
\(181\) 10.0236i 0.745048i 0.928023 + 0.372524i \(0.121508\pi\)
−0.928023 + 0.372524i \(0.878492\pi\)
\(182\) 15.4237 29.4665i 1.14328 2.18420i
\(183\) 0 0
\(184\) 1.15356 + 9.24431i 0.0850417 + 0.681500i
\(185\) 26.3225 1.93527
\(186\) 0 0
\(187\) 7.15011i 0.522868i
\(188\) −6.93530 10.0002i −0.505809 0.729339i
\(189\) 0 0
\(190\) −5.74949 3.00947i −0.417112 0.218330i
\(191\) 13.3380 0.965106 0.482553 0.875867i \(-0.339710\pi\)
0.482553 + 0.875867i \(0.339710\pi\)
\(192\) 0 0
\(193\) −12.0590 −0.868028 −0.434014 0.900906i \(-0.642903\pi\)
−0.434014 + 0.900906i \(0.642903\pi\)
\(194\) −2.56134 1.34069i −0.183893 0.0962558i
\(195\) 0 0
\(196\) 18.7576 + 27.0471i 1.33983 + 1.93194i
\(197\) 25.4806i 1.81541i 0.419604 + 0.907707i \(0.362169\pi\)
−0.419604 + 0.907707i \(0.637831\pi\)
\(198\) 0 0
\(199\) −10.7899 −0.764876 −0.382438 0.923981i \(-0.624916\pi\)
−0.382438 + 0.923981i \(0.624916\pi\)
\(200\) −0.511321 4.09758i −0.0361559 0.289743i
\(201\) 0 0
\(202\) −1.25210 + 2.39209i −0.0880974 + 0.168307i
\(203\) 23.3732i 1.64048i
\(204\) 0 0
\(205\) 16.1242i 1.12616i
\(206\) −24.5034 12.8259i −1.70723 0.893622i
\(207\) 0 0
\(208\) 18.1910 + 6.80714i 1.26132 + 0.471990i
\(209\) −1.80543 −0.124884
\(210\) 0 0
\(211\) 21.3658i 1.47088i −0.677589 0.735441i \(-0.736975\pi\)
0.677589 0.735441i \(-0.263025\pi\)
\(212\) 7.35833 5.10313i 0.505372 0.350484i
\(213\) 0 0
\(214\) −6.24564 + 11.9321i −0.426943 + 0.815661i
\(215\) 16.1242 1.09966
\(216\) 0 0
\(217\) −3.01900 −0.204943
\(218\) −11.7105 + 22.3725i −0.793134 + 1.51526i
\(219\) 0 0
\(220\) −2.89687 4.17707i −0.195307 0.281618i
\(221\) 34.7190i 2.33545i
\(222\) 0 0
\(223\) −4.27192 −0.286069 −0.143034 0.989718i \(-0.545686\pi\)
−0.143034 + 0.989718i \(0.545686\pi\)
\(224\) −20.4069 + 18.2811i −1.36349 + 1.22146i
\(225\) 0 0
\(226\) −0.731869 0.383084i −0.0486832 0.0254824i
\(227\) 4.00000i 0.265489i 0.991150 + 0.132745i \(0.0423790\pi\)
−0.991150 + 0.132745i \(0.957621\pi\)
\(228\) 0 0
\(229\) 18.2440i 1.20559i −0.797894 0.602797i \(-0.794053\pi\)
0.797894 0.602797i \(-0.205947\pi\)
\(230\) 5.49027 10.4890i 0.362017 0.691622i
\(231\) 0 0
\(232\) −13.5446 + 1.69018i −0.889247 + 0.110966i
\(233\) −13.5657 −0.888721 −0.444360 0.895848i \(-0.646569\pi\)
−0.444360 + 0.895848i \(0.646569\pi\)
\(234\) 0 0
\(235\) 15.4656i 1.00886i
\(236\) −12.7382 + 8.83416i −0.829186 + 0.575055i
\(237\) 0 0
\(238\) −43.3897 22.7116i −2.81254 1.47217i
\(239\) −2.66440 −0.172346 −0.0861728 0.996280i \(-0.527464\pi\)
−0.0861728 + 0.996280i \(0.527464\pi\)
\(240\) 0 0
\(241\) 10.2657 0.661270 0.330635 0.943759i \(-0.392737\pi\)
0.330635 + 0.943759i \(0.392737\pi\)
\(242\) −1.25295 0.655834i −0.0805426 0.0421586i
\(243\) 0 0
\(244\) −3.51883 + 2.44037i −0.225270 + 0.156229i
\(245\) 41.8291i 2.67236i
\(246\) 0 0
\(247\) −8.76669 −0.557811
\(248\) −0.218313 1.74949i −0.0138629 0.111093i
\(249\) 0 0
\(250\) 5.90090 11.2735i 0.373205 0.712997i
\(251\) 21.9871i 1.38781i 0.720065 + 0.693906i \(0.244112\pi\)
−0.720065 + 0.693906i \(0.755888\pi\)
\(252\) 0 0
\(253\) 3.29371i 0.207074i
\(254\) 15.7362 + 8.23685i 0.987378 + 0.516826i
\(255\) 0 0
\(256\) −12.0695 10.5037i −0.754342 0.656482i
\(257\) 17.0204 1.06171 0.530853 0.847464i \(-0.321872\pi\)
0.530853 + 0.847464i \(0.321872\pi\)
\(258\) 0 0
\(259\) 50.1594i 3.11676i
\(260\) −14.0664 20.2827i −0.872361 1.25788i
\(261\) 0 0
\(262\) 8.67657 16.5763i 0.536040 1.02409i
\(263\) 20.8876 1.28799 0.643993 0.765031i \(-0.277277\pi\)
0.643993 + 0.765031i \(0.277277\pi\)
\(264\) 0 0
\(265\) −11.3798 −0.699059
\(266\) 5.73478 10.9561i 0.351622 0.671761i
\(267\) 0 0
\(268\) 15.1485 10.5057i 0.925342 0.641741i
\(269\) 24.3916i 1.48718i 0.668634 + 0.743592i \(0.266879\pi\)
−0.668634 + 0.743592i \(0.733121\pi\)
\(270\) 0 0
\(271\) −12.0583 −0.732492 −0.366246 0.930518i \(-0.619357\pi\)
−0.366246 + 0.930518i \(0.619357\pi\)
\(272\) 10.0236 26.7864i 0.607770 1.62417i
\(273\) 0 0
\(274\) 10.2108 + 5.34467i 0.616858 + 0.322884i
\(275\) 1.45995i 0.0880383i
\(276\) 0 0
\(277\) 0.142476i 0.00856054i −0.999991 0.00428027i \(-0.998638\pi\)
0.999991 0.00428027i \(-0.00136246\pi\)
\(278\) 9.97852 19.0636i 0.598472 1.14336i
\(279\) 0 0
\(280\) 34.5498 4.31133i 2.06474 0.257651i
\(281\) −9.14875 −0.545769 −0.272884 0.962047i \(-0.587978\pi\)
−0.272884 + 0.962047i \(0.587978\pi\)
\(282\) 0 0
\(283\) 7.37210i 0.438226i −0.975699 0.219113i \(-0.929684\pi\)
0.975699 0.219113i \(-0.0703163\pi\)
\(284\) −1.03944 1.49879i −0.0616794 0.0889371i
\(285\) 0 0
\(286\) −6.08398 3.18455i −0.359753 0.188306i
\(287\) 30.7258 1.81369
\(288\) 0 0
\(289\) 34.1240 2.00730
\(290\) 15.3683 + 8.04425i 0.902456 + 0.472375i
\(291\) 0 0
\(292\) 0.112954 + 0.162871i 0.00661013 + 0.00953131i
\(293\) 4.38597i 0.256231i −0.991759 0.128116i \(-0.959107\pi\)
0.991759 0.128116i \(-0.0408928\pi\)
\(294\) 0 0
\(295\) 19.6999 1.14698
\(296\) −29.0671 + 3.62717i −1.68949 + 0.210825i
\(297\) 0 0
\(298\) 12.2483 23.3999i 0.709523 1.35552i
\(299\) 15.9933i 0.924918i
\(300\) 0 0
\(301\) 30.7258i 1.77101i
\(302\) −4.91581 2.57310i −0.282873 0.148065i
\(303\) 0 0
\(304\) 6.76369 + 2.53100i 0.387924 + 0.145163i
\(305\) 5.44196 0.311606
\(306\) 0 0
\(307\) 27.3791i 1.56261i −0.624150 0.781304i \(-0.714555\pi\)
0.624150 0.781304i \(-0.285445\pi\)
\(308\) 7.95973 5.52021i 0.453548 0.314543i
\(309\) 0 0
\(310\) −1.03904 + 1.98505i −0.0590134 + 0.112743i
\(311\) −15.0540 −0.853634 −0.426817 0.904338i \(-0.640365\pi\)
−0.426817 + 0.904338i \(0.640365\pi\)
\(312\) 0 0
\(313\) −21.0355 −1.18900 −0.594500 0.804096i \(-0.702650\pi\)
−0.594500 + 0.804096i \(0.702650\pi\)
\(314\) −5.37760 + 10.2737i −0.303476 + 0.579780i
\(315\) 0 0
\(316\) −9.10769 13.1326i −0.512348 0.738767i
\(317\) 3.29178i 0.184885i 0.995718 + 0.0924425i \(0.0294674\pi\)
−0.995718 + 0.0924425i \(0.970533\pi\)
\(318\) 0 0
\(319\) 4.82588 0.270198
\(320\) 4.99678 + 19.7096i 0.279329 + 1.10180i
\(321\) 0 0
\(322\) 19.9875 + 10.4621i 1.11386 + 0.583031i
\(323\) 12.9090i 0.718279i
\(324\) 0 0
\(325\) 7.08911i 0.393233i
\(326\) −0.755906 + 1.44413i −0.0418658 + 0.0799831i
\(327\) 0 0
\(328\) 2.22187 + 17.8054i 0.122682 + 0.983141i
\(329\) −29.4708 −1.62478
\(330\) 0 0
\(331\) 12.6880i 0.697395i −0.937235 0.348698i \(-0.886624\pi\)
0.937235 0.348698i \(-0.113376\pi\)
\(332\) 2.31971 1.60876i 0.127310 0.0882919i
\(333\) 0 0
\(334\) 22.4881 + 11.7710i 1.23049 + 0.644080i
\(335\) −23.4275 −1.27998
\(336\) 0 0
\(337\) −6.48274 −0.353137 −0.176569 0.984288i \(-0.556500\pi\)
−0.176569 + 0.984288i \(0.556500\pi\)
\(338\) −13.2538 6.93745i −0.720910 0.377348i
\(339\) 0 0
\(340\) −29.8665 + 20.7129i −1.61974 + 1.12332i
\(341\) 0.623337i 0.0337556i
\(342\) 0 0
\(343\) 45.8054 2.47326
\(344\) −17.8054 + 2.22187i −0.960005 + 0.119795i
\(345\) 0 0
\(346\) 0.457324 0.873702i 0.0245859 0.0469705i
\(347\) 27.0102i 1.44998i −0.688759 0.724991i \(-0.741844\pi\)
0.688759 0.724991i \(-0.258156\pi\)
\(348\) 0 0
\(349\) 2.22276i 0.118981i 0.998229 + 0.0594907i \(0.0189477\pi\)
−0.998229 + 0.0594907i \(0.981052\pi\)
\(350\) −8.85956 4.63738i −0.473563 0.247878i
\(351\) 0 0
\(352\) 3.77452 + 4.21343i 0.201182 + 0.224577i
\(353\) −25.9731 −1.38241 −0.691204 0.722660i \(-0.742919\pi\)
−0.691204 + 0.722660i \(0.742919\pi\)
\(354\) 0 0
\(355\) 2.31792i 0.123023i
\(356\) −16.5974 23.9322i −0.879661 1.26841i
\(357\) 0 0
\(358\) 11.9723 22.8727i 0.632756 1.20886i
\(359\) 15.6003 0.823352 0.411676 0.911330i \(-0.364944\pi\)
0.411676 + 0.911330i \(0.364944\pi\)
\(360\) 0 0
\(361\) 15.7404 0.828443
\(362\) −6.57381 + 12.5591i −0.345512 + 0.660089i
\(363\) 0 0
\(364\) 38.6502 26.8046i 2.02582 1.40494i
\(365\) 0.251884i 0.0131842i
\(366\) 0 0
\(367\) 2.56706 0.133999 0.0669997 0.997753i \(-0.478657\pi\)
0.0669997 + 0.997753i \(0.478657\pi\)
\(368\) −4.61738 + 12.3392i −0.240698 + 0.643225i
\(369\) 0 0
\(370\) 32.9807 + 17.2632i 1.71458 + 0.897469i
\(371\) 21.6852i 1.12584i
\(372\) 0 0
\(373\) 20.9799i 1.08630i −0.839636 0.543149i \(-0.817232\pi\)
0.839636 0.543149i \(-0.182768\pi\)
\(374\) −4.68929 + 8.95872i −0.242477 + 0.463244i
\(375\) 0 0
\(376\) −2.13112 17.0781i −0.109904 0.880738i
\(377\) 23.4332 1.20687
\(378\) 0 0
\(379\) 2.32082i 0.119213i −0.998222 0.0596063i \(-0.981015\pi\)
0.998222 0.0596063i \(-0.0189845\pi\)
\(380\) −5.23011 7.54143i −0.268299 0.386867i
\(381\) 0 0
\(382\) 16.7119 + 8.74754i 0.855054 + 0.447563i
\(383\) 7.30839 0.373441 0.186721 0.982413i \(-0.440214\pi\)
0.186721 + 0.982413i \(0.440214\pi\)
\(384\) 0 0
\(385\) −12.3099 −0.627372
\(386\) −15.1094 7.90873i −0.769046 0.402544i
\(387\) 0 0
\(388\) −2.32996 3.35963i −0.118286 0.170559i
\(389\) 12.4190i 0.629669i 0.949147 + 0.314835i \(0.101949\pi\)
−0.949147 + 0.314835i \(0.898051\pi\)
\(390\) 0 0
\(391\) −23.5504 −1.19099
\(392\) 5.76394 + 46.1906i 0.291123 + 2.33298i
\(393\) 0 0
\(394\) −16.7110 + 31.9258i −0.841889 + 1.60840i
\(395\) 20.3099i 1.02190i
\(396\) 0 0
\(397\) 12.8462i 0.644731i 0.946615 + 0.322366i \(0.104478\pi\)
−0.946615 + 0.322366i \(0.895522\pi\)
\(398\) −13.5192 7.07639i −0.677657 0.354707i
\(399\) 0 0
\(400\) 2.04667 5.46940i 0.102334 0.273470i
\(401\) 6.73490 0.336325 0.168163 0.985759i \(-0.446217\pi\)
0.168163 + 0.985759i \(0.446217\pi\)
\(402\) 0 0
\(403\) 3.02675i 0.150773i
\(404\) −3.13763 + 2.17600i −0.156103 + 0.108260i
\(405\) 0 0
\(406\) −15.3289 + 29.2854i −0.760762 + 1.45341i
\(407\) 10.3565 0.513351
\(408\) 0 0
\(409\) 6.06964 0.300124 0.150062 0.988677i \(-0.452053\pi\)
0.150062 + 0.988677i \(0.452053\pi\)
\(410\) 10.5748 20.2028i 0.522251 0.997744i
\(411\) 0 0
\(412\) −22.2899 32.1404i −1.09814 1.58344i
\(413\) 37.5397i 1.84721i
\(414\) 0 0
\(415\) −3.58748 −0.176103
\(416\) 18.3280 + 20.4593i 0.898605 + 1.00310i
\(417\) 0 0
\(418\) −2.26212 1.18407i −0.110644 0.0579145i
\(419\) 18.3756i 0.897708i 0.893605 + 0.448854i \(0.148168\pi\)
−0.893605 + 0.448854i \(0.851832\pi\)
\(420\) 0 0
\(421\) 14.8185i 0.722208i 0.932525 + 0.361104i \(0.117600\pi\)
−0.932525 + 0.361104i \(0.882400\pi\)
\(422\) 14.0124 26.7702i 0.682114 1.30316i
\(423\) 0 0
\(424\) 12.5664 1.56812i 0.610279 0.0761544i
\(425\) 10.4388 0.506356
\(426\) 0 0
\(427\) 10.3701i 0.501843i
\(428\) −15.6509 + 10.8542i −0.756517 + 0.524657i
\(429\) 0 0
\(430\) 20.2028 + 10.5748i 0.974264 + 0.509961i
\(431\) 31.7144 1.52763 0.763815 0.645435i \(-0.223324\pi\)
0.763815 + 0.645435i \(0.223324\pi\)
\(432\) 0 0
\(433\) 14.8878 0.715464 0.357732 0.933824i \(-0.383550\pi\)
0.357732 + 0.933824i \(0.383550\pi\)
\(434\) −3.78266 1.97996i −0.181573 0.0950413i
\(435\) 0 0
\(436\) −29.3453 + 20.3515i −1.40538 + 0.974658i
\(437\) 5.94657i 0.284463i
\(438\) 0 0
\(439\) 29.4357 1.40489 0.702446 0.711737i \(-0.252091\pi\)
0.702446 + 0.711737i \(0.252091\pi\)
\(440\) −0.890165 7.13353i −0.0424370 0.340078i
\(441\) 0 0
\(442\) −22.7699 + 43.5011i −1.08305 + 2.06914i
\(443\) 3.34361i 0.158860i 0.996840 + 0.0794298i \(0.0253100\pi\)
−0.996840 + 0.0794298i \(0.974690\pi\)
\(444\) 0 0
\(445\) 37.0118i 1.75453i
\(446\) −5.35250 2.80167i −0.253448 0.132663i
\(447\) 0 0
\(448\) −37.5582 + 9.52175i −1.77446 + 0.449860i
\(449\) 19.2984 0.910749 0.455374 0.890300i \(-0.349505\pi\)
0.455374 + 0.890300i \(0.349505\pi\)
\(450\) 0 0
\(451\) 6.34400i 0.298727i
\(452\) −0.665755 0.959970i −0.0313145 0.0451532i
\(453\) 0 0
\(454\) −2.62334 + 5.01180i −0.123119 + 0.235215i
\(455\) −59.7736 −2.80223
\(456\) 0 0
\(457\) 2.68162 0.125441 0.0627205 0.998031i \(-0.480022\pi\)
0.0627205 + 0.998031i \(0.480022\pi\)
\(458\) 11.9650 22.8588i 0.559088 1.06812i
\(459\) 0 0
\(460\) 13.7580 9.54144i 0.641472 0.444872i
\(461\) 0.240855i 0.0112177i 0.999984 + 0.00560887i \(0.00178537\pi\)
−0.999984 + 0.00560887i \(0.998215\pi\)
\(462\) 0 0
\(463\) −2.80818 −0.130507 −0.0652536 0.997869i \(-0.520786\pi\)
−0.0652536 + 0.997869i \(0.520786\pi\)
\(464\) −18.0792 6.76531i −0.839305 0.314072i
\(465\) 0 0
\(466\) −16.9972 8.89687i −0.787379 0.412140i
\(467\) 0.198206i 0.00917188i 0.999989 + 0.00458594i \(0.00145975\pi\)
−0.999989 + 0.00458594i \(0.998540\pi\)
\(468\) 0 0
\(469\) 44.6430i 2.06142i
\(470\) −10.1428 + 19.3776i −0.467854 + 0.893820i
\(471\) 0 0
\(472\) −21.7541 + 2.71460i −1.00131 + 0.124950i
\(473\) 6.34400 0.291697
\(474\) 0 0
\(475\) 2.63584i 0.120941i
\(476\) −39.4701 56.9129i −1.80911 2.60860i
\(477\) 0 0
\(478\) −3.33836 1.74740i −0.152693 0.0799244i
\(479\) −0.634324 −0.0289830 −0.0144915 0.999895i \(-0.504613\pi\)
−0.0144915 + 0.999895i \(0.504613\pi\)
\(480\) 0 0
\(481\) 50.2882 2.29294
\(482\) 12.8624 + 6.73258i 0.585865 + 0.306661i
\(483\) 0 0
\(484\) −1.13976 1.64345i −0.0518074 0.0747024i
\(485\) 5.19575i 0.235927i
\(486\) 0 0
\(487\) −24.7182 −1.12009 −0.560044 0.828463i \(-0.689216\pi\)
−0.560044 + 0.828463i \(0.689216\pi\)
\(488\) −6.00939 + 0.749889i −0.272032 + 0.0339459i
\(489\) 0 0
\(490\) 27.4329 52.4097i 1.23929 2.36763i
\(491\) 30.5099i 1.37689i 0.725288 + 0.688446i \(0.241707\pi\)
−0.725288 + 0.688446i \(0.758293\pi\)
\(492\) 0 0
\(493\) 34.5056i 1.55405i
\(494\) −10.9842 5.74949i −0.494203 0.258682i
\(495\) 0 0
\(496\) 0.873843 2.33520i 0.0392367 0.104854i
\(497\) −4.41698 −0.198129
\(498\) 0 0
\(499\) 30.1394i 1.34923i −0.738171 0.674613i \(-0.764310\pi\)
0.738171 0.674613i \(-0.235690\pi\)
\(500\) 14.7870 10.2551i 0.661297 0.458621i
\(501\) 0 0
\(502\) −14.4199 + 27.5487i −0.643591 + 1.22956i
\(503\) 28.4586 1.26890 0.634452 0.772962i \(-0.281226\pi\)
0.634452 + 0.772962i \(0.281226\pi\)
\(504\) 0 0
\(505\) 4.85243 0.215930
\(506\) 2.16012 4.12685i 0.0960293 0.183461i
\(507\) 0 0
\(508\) 14.3147 + 20.6407i 0.635111 + 0.915783i
\(509\) 8.27915i 0.366967i 0.983023 + 0.183484i \(0.0587374\pi\)
−0.983023 + 0.183484i \(0.941263\pi\)
\(510\) 0 0
\(511\) 0.479985 0.0212333
\(512\) −8.23373 21.0762i −0.363883 0.931445i
\(513\) 0 0
\(514\) 21.3257 + 11.1626i 0.940638 + 0.492360i
\(515\) 49.7059i 2.19030i
\(516\) 0 0
\(517\) 6.08486i 0.267612i
\(518\) −32.8963 + 62.8472i −1.44538 + 2.76135i
\(519\) 0 0
\(520\) −4.32240 34.6384i −0.189550 1.51900i
\(521\) 14.9245 0.653855 0.326927 0.945050i \(-0.393987\pi\)
0.326927 + 0.945050i \(0.393987\pi\)
\(522\) 0 0
\(523\) 28.0034i 1.22450i 0.790663 + 0.612252i \(0.209736\pi\)
−0.790663 + 0.612252i \(0.790264\pi\)
\(524\) 21.7426 15.0789i 0.949830 0.658723i
\(525\) 0 0
\(526\) 26.1711 + 13.6988i 1.14112 + 0.597297i
\(527\) 4.45692 0.194147
\(528\) 0 0
\(529\) −12.1515 −0.528326
\(530\) −14.2584 7.46329i −0.619344 0.324185i
\(531\) 0 0
\(532\) 14.3708 9.96637i 0.623052 0.432097i
\(533\) 30.8047i 1.33430i
\(534\) 0 0
\(535\) 24.2046 1.04646
\(536\) 25.8703 3.22826i 1.11743 0.139440i
\(537\) 0 0
\(538\) −15.9969 + 30.5615i −0.689673 + 1.31760i
\(539\) 16.4575i 0.708874i
\(540\) 0 0
\(541\) 42.3272i 1.81979i −0.414842 0.909893i \(-0.636163\pi\)
0.414842 0.909893i \(-0.363837\pi\)
\(542\) −15.1085 7.90827i −0.648965 0.339689i
\(543\) 0 0
\(544\) 30.1265 26.9882i 1.29166 1.15711i
\(545\) 45.3832 1.94400
\(546\) 0 0
\(547\) 5.55376i 0.237462i 0.992926 + 0.118731i \(0.0378826\pi\)
−0.992926 + 0.118731i \(0.962117\pi\)
\(548\) 9.28842 + 13.3932i 0.396782 + 0.572130i
\(549\) 0 0
\(550\) −0.957485 + 1.82924i −0.0408273 + 0.0779992i
\(551\) 8.71281 0.371178
\(552\) 0 0
\(553\) −38.7021 −1.64578
\(554\) 0.0934404 0.178515i 0.00396990 0.00758437i
\(555\) 0 0
\(556\) 25.0052 17.3415i 1.06045 0.735443i
\(557\) 6.05429i 0.256528i −0.991740 0.128264i \(-0.959059\pi\)
0.991740 0.128264i \(-0.0409405\pi\)
\(558\) 0 0
\(559\) 30.8047 1.30290
\(560\) 46.1166 + 17.2570i 1.94878 + 0.729243i
\(561\) 0 0
\(562\) −11.4629 6.00006i −0.483534 0.253097i
\(563\) 36.5314i 1.53961i −0.638277 0.769806i \(-0.720353\pi\)
0.638277 0.769806i \(-0.279647\pi\)
\(564\) 0 0
\(565\) 1.48462i 0.0624583i
\(566\) 4.83488 9.23687i 0.203225 0.388255i
\(567\) 0 0
\(568\) −0.319404 2.55961i −0.0134019 0.107399i
\(569\) −39.1923 −1.64303 −0.821514 0.570188i \(-0.806870\pi\)
−0.821514 + 0.570188i \(0.806870\pi\)
\(570\) 0 0
\(571\) 0.253449i 0.0106065i 0.999986 + 0.00530325i \(0.00168808\pi\)
−0.999986 + 0.00530325i \(0.998312\pi\)
\(572\) −5.53438 7.98016i −0.231404 0.333667i
\(573\) 0 0
\(574\) 38.4979 + 20.1511i 1.60687 + 0.841089i
\(575\) −4.80864 −0.200534
\(576\) 0 0
\(577\) −25.2484 −1.05111 −0.525553 0.850761i \(-0.676142\pi\)
−0.525553 + 0.850761i \(0.676142\pi\)
\(578\) 42.7557 + 22.3797i 1.77840 + 0.930873i
\(579\) 0 0
\(580\) 13.9800 + 20.1581i 0.580486 + 0.837018i
\(581\) 6.83622i 0.283614i
\(582\) 0 0
\(583\) −4.47736 −0.185433
\(584\) 0.0347091 + 0.278148i 0.00143627 + 0.0115099i
\(585\) 0 0
\(586\) 2.87647 5.49540i 0.118826 0.227013i
\(587\) 39.1304i 1.61509i −0.589809 0.807543i \(-0.700797\pi\)
0.589809 0.807543i \(-0.299203\pi\)
\(588\) 0 0
\(589\) 1.12539i 0.0463710i
\(590\) 24.6830 + 12.9199i 1.01618 + 0.531904i
\(591\) 0 0
\(592\) −38.7984 14.5185i −1.59460 0.596708i
\(593\) 25.4476 1.04501 0.522504 0.852637i \(-0.324998\pi\)
0.522504 + 0.852637i \(0.324998\pi\)
\(594\) 0 0
\(595\) 88.0173i 3.60836i
\(596\) 30.6929 21.2861i 1.25723 0.871911i
\(597\) 0 0
\(598\) 10.4890 20.0388i 0.428926 0.819448i
\(599\) 37.0670 1.51452 0.757259 0.653115i \(-0.226538\pi\)
0.757259 + 0.653115i \(0.226538\pi\)
\(600\) 0 0
\(601\) 30.5587 1.24652 0.623259 0.782016i \(-0.285808\pi\)
0.623259 + 0.782016i \(0.285808\pi\)
\(602\) −20.1511 + 38.4979i −0.821296 + 1.56906i
\(603\) 0 0
\(604\) −4.47174 6.44792i −0.181953 0.262362i
\(605\) 2.54164i 0.103332i
\(606\) 0 0
\(607\) 15.4063 0.625322 0.312661 0.949865i \(-0.398780\pi\)
0.312661 + 0.949865i \(0.398780\pi\)
\(608\) 6.81464 + 7.60707i 0.276370 + 0.308508i
\(609\) 0 0
\(610\) 6.81850 + 3.56902i 0.276073 + 0.144506i
\(611\) 29.5464i 1.19532i
\(612\) 0 0
\(613\) 24.0437i 0.971116i −0.874205 0.485558i \(-0.838617\pi\)
0.874205 0.485558i \(-0.161383\pi\)
\(614\) 17.9562 34.3046i 0.724652 1.38442i
\(615\) 0 0
\(616\) 13.5935 1.69628i 0.547697 0.0683450i
\(617\) −8.77372 −0.353217 −0.176608 0.984281i \(-0.556513\pi\)
−0.176608 + 0.984281i \(0.556513\pi\)
\(618\) 0 0
\(619\) 1.81682i 0.0730242i 0.999333 + 0.0365121i \(0.0116248\pi\)
−0.999333 + 0.0365121i \(0.988375\pi\)
\(620\) −2.60372 + 1.80573i −0.104568 + 0.0725197i
\(621\) 0 0
\(622\) −18.8619 9.87293i −0.756293 0.395868i
\(623\) −70.5288 −2.82568
\(624\) 0 0
\(625\) −30.1683 −1.20673
\(626\) −26.3565 13.7958i −1.05342 0.551392i
\(627\) 0 0
\(628\) −13.4757 + 9.34564i −0.537740 + 0.372932i
\(629\) 74.0499i 2.95256i
\(630\) 0 0
\(631\) 2.72027 0.108292 0.0541461 0.998533i \(-0.482756\pi\)
0.0541461 + 0.998533i \(0.482756\pi\)
\(632\) −2.79866 22.4276i −0.111325 0.892123i
\(633\) 0 0
\(634\) −2.15886 + 4.12444i −0.0857395 + 0.163802i
\(635\) 31.9214i 1.26676i
\(636\) 0 0
\(637\) 79.9130i 3.16627i
\(638\) 6.04659 + 3.16498i 0.239387 + 0.125303i
\(639\) 0 0
\(640\) −6.66553 + 27.9722i −0.263478 + 1.10570i
\(641\) 6.10619 0.241180 0.120590 0.992702i \(-0.461521\pi\)
0.120590 + 0.992702i \(0.461521\pi\)
\(642\) 0 0
\(643\) 32.9170i 1.29812i 0.760737 + 0.649060i \(0.224838\pi\)
−0.760737 + 0.649060i \(0.775162\pi\)
\(644\) 18.1819 + 26.2170i 0.716469 + 1.03309i
\(645\) 0 0
\(646\) −8.46619 + 16.1744i −0.333098 + 0.636372i
\(647\) −11.0567 −0.434684 −0.217342 0.976095i \(-0.569739\pi\)
−0.217342 + 0.976095i \(0.569739\pi\)
\(648\) 0 0
\(649\) 7.75087 0.304248
\(650\) −4.64928 + 8.88230i −0.182360 + 0.348392i
\(651\) 0 0
\(652\) −1.89422 + 1.31368i −0.0741835 + 0.0514475i
\(653\) 18.6278i 0.728963i −0.931211 0.364482i \(-0.881246\pi\)
0.931211 0.364482i \(-0.118754\pi\)
\(654\) 0 0
\(655\) −33.6255 −1.31386
\(656\) −8.89352 + 23.7665i −0.347234 + 0.927925i
\(657\) 0 0
\(658\) −36.9254 19.3279i −1.43950 0.753482i
\(659\) 26.2315i 1.02184i 0.859629 + 0.510918i \(0.170694\pi\)
−0.859629 + 0.510918i \(0.829306\pi\)
\(660\) 0 0
\(661\) 38.4922i 1.49717i 0.663038 + 0.748586i \(0.269267\pi\)
−0.663038 + 0.748586i \(0.730733\pi\)
\(662\) 8.32122 15.8974i 0.323413 0.617870i
\(663\) 0 0
\(664\) 3.96155 0.494347i 0.153738 0.0191844i
\(665\) −22.2248 −0.861839
\(666\) 0 0
\(667\) 15.8950i 0.615459i
\(668\) 20.4566 + 29.4969i 0.791490 + 1.14127i
\(669\) 0 0
\(670\) −29.3535 15.3646i −1.13403 0.593586i
\(671\) 2.14112 0.0826570
\(672\) 0 0
\(673\) −29.0436 −1.11955 −0.559773 0.828646i \(-0.689112\pi\)
−0.559773 + 0.828646i \(0.689112\pi\)
\(674\) −8.12254 4.25160i −0.312869 0.163766i
\(675\) 0 0
\(676\) −12.0565 17.3845i −0.463711 0.668636i
\(677\) 14.6056i 0.561340i −0.959804 0.280670i \(-0.909443\pi\)
0.959804 0.280670i \(-0.0905567\pi\)
\(678\) 0 0
\(679\) −9.90090 −0.379962
\(680\) −51.0055 + 6.36478i −1.95597 + 0.244078i
\(681\) 0 0
\(682\) −0.408805 + 0.781009i −0.0156540 + 0.0299064i
\(683\) 29.6575i 1.13481i −0.823438 0.567406i \(-0.807947\pi\)
0.823438 0.567406i \(-0.192053\pi\)
\(684\) 0 0
\(685\) 20.7129i 0.791401i
\(686\) 57.3919 + 30.0408i 2.19123 + 1.14696i
\(687\) 0 0
\(688\) −23.7665 8.89352i −0.906089 0.339062i
\(689\) −21.7408 −0.828259
\(690\) 0 0
\(691\) 16.6181i 0.632184i −0.948729 0.316092i \(-0.897629\pi\)
0.948729 0.316092i \(-0.102371\pi\)
\(692\) 1.14601 0.794775i 0.0435646 0.0302128i
\(693\) 0 0
\(694\) 17.7142 33.8424i 0.672421 1.28464i
\(695\) −38.6711 −1.46688
\(696\) 0 0
\(697\) −45.3603 −1.71814
\(698\) −1.45776 + 2.78500i −0.0551770 + 0.105414i
\(699\) 0 0
\(700\) −8.05923 11.6208i −0.304610 0.439225i
\(701\) 36.9173i 1.39435i 0.716902 + 0.697174i \(0.245559\pi\)
−0.716902 + 0.697174i \(0.754441\pi\)
\(702\) 0 0
\(703\) 18.6979 0.705206
\(704\) 1.96597 + 7.75467i 0.0740951 + 0.292265i
\(705\) 0 0
\(706\) −32.5429 17.0340i −1.22477 0.641084i
\(707\) 9.24667i 0.347757i
\(708\) 0 0
\(709\) 1.80322i 0.0677215i −0.999427 0.0338608i \(-0.989220\pi\)
0.999427 0.0338608i \(-0.0107803\pi\)
\(710\) −1.52017 + 2.90424i −0.0570511 + 0.108994i
\(711\) 0 0
\(712\) −5.10014 40.8710i −0.191136 1.53171i
\(713\) −2.05309 −0.0768887
\(714\) 0 0
\(715\) 12.3415i 0.461547i
\(716\) 30.0014 20.8065i 1.12120 0.777574i
\(717\) 0 0
\(718\) 19.5464 + 10.2312i 0.729464 + 0.381825i
\(719\) −30.0049 −1.11899 −0.559496 0.828833i \(-0.689005\pi\)
−0.559496 + 0.828833i \(0.689005\pi\)
\(720\) 0 0
\(721\) −94.7183 −3.52750
\(722\) 19.7219 + 10.3231i 0.733974 + 0.384186i
\(723\) 0 0
\(724\) −16.4733 + 11.4245i −0.612226 + 0.424589i
\(725\) 7.04555i 0.261665i
\(726\) 0 0
\(727\) 5.71187 0.211842 0.105921 0.994375i \(-0.466221\pi\)
0.105921 + 0.994375i \(0.466221\pi\)
\(728\) 66.0062 8.23666i 2.44635 0.305271i
\(729\) 0 0
\(730\) 0.165194 0.315598i 0.00611412 0.0116808i
\(731\) 45.3603i 1.67771i
\(732\) 0 0
\(733\) 13.4418i 0.496483i 0.968698 + 0.248242i \(0.0798527\pi\)
−0.968698 + 0.248242i \(0.920147\pi\)
\(734\) 3.21640 + 1.68357i 0.118719 + 0.0621415i
\(735\) 0 0
\(736\) −13.8778 + 12.4322i −0.511543 + 0.458255i
\(737\) −9.21748 −0.339530
\(738\) 0 0
\(739\) 15.6188i 0.574548i −0.957849 0.287274i \(-0.907251\pi\)
0.957849 0.287274i \(-0.0927489\pi\)
\(740\) 30.0014 + 43.2597i 1.10287 + 1.59026i
\(741\) 0 0
\(742\) 14.2219 27.1704i 0.522101 0.997457i
\(743\) −41.2940 −1.51493 −0.757466 0.652875i \(-0.773563\pi\)
−0.757466 + 0.652875i \(0.773563\pi\)
\(744\) 0 0
\(745\) −47.4674 −1.73907
\(746\) 13.7593 26.2867i 0.503765 0.962426i
\(747\) 0 0
\(748\) −11.7509 + 8.14943i −0.429654 + 0.297973i
\(749\) 46.1237i 1.68532i
\(750\) 0 0
\(751\) 5.34503 0.195043 0.0975215 0.995233i \(-0.468909\pi\)
0.0975215 + 0.995233i \(0.468909\pi\)
\(752\) 8.53025 22.7957i 0.311066 0.831274i
\(753\) 0 0
\(754\) 29.3606 + 15.3683i 1.06925 + 0.559679i
\(755\) 9.97187i 0.362913i
\(756\) 0 0
\(757\) 13.6401i 0.495757i −0.968791 0.247878i \(-0.920267\pi\)
0.968791 0.247878i \(-0.0797334\pi\)
\(758\) 1.52207 2.90787i 0.0552842 0.105619i
\(759\) 0 0
\(760\) −1.60713 12.8791i −0.0582969 0.467174i
\(761\) −29.1959 −1.05835 −0.529176 0.848512i \(-0.677499\pi\)
−0.529176 + 0.848512i \(0.677499\pi\)
\(762\) 0 0
\(763\) 86.4812i 3.13083i
\(764\) 15.2022 + 21.9204i 0.549996 + 0.793054i
\(765\) 0 0
\(766\) 9.15704 + 4.79309i 0.330857 + 0.173181i
\(767\) 37.6361 1.35896
\(768\) 0 0
\(769\) 23.4723 0.846432 0.423216 0.906029i \(-0.360901\pi\)
0.423216 + 0.906029i \(0.360901\pi\)
\(770\) −15.4237 8.07327i −0.555832 0.290940i
\(771\) 0 0
\(772\) −13.7444 19.8185i −0.494673 0.713282i
\(773\) 4.20825i 0.151360i −0.997132 0.0756802i \(-0.975887\pi\)
0.997132 0.0756802i \(-0.0241128\pi\)
\(774\) 0 0
\(775\) 0.910040 0.0326896
\(776\) −0.715962 5.73751i −0.0257015 0.205965i
\(777\) 0 0
\(778\) −8.14481 + 15.5604i −0.292006 + 0.557867i
\(779\) 11.4537i 0.410370i
\(780\) 0 0
\(781\) 0.911979i 0.0326332i
\(782\) −29.5074 15.4451i −1.05518 0.552317i
\(783\) 0 0
\(784\) −23.0714 + 61.6546i −0.823980 + 2.20195i
\(785\) 20.8405 0.743831
\(786\) 0 0
\(787\) 17.8152i 0.635042i 0.948251 + 0.317521i \(0.102850\pi\)
−0.948251 + 0.317521i \(0.897150\pi\)
\(788\) −41.8761 + 29.0418i −1.49177 + 1.03457i
\(789\) 0 0
\(790\) −13.3199 + 25.4473i −0.473902 + 0.905374i
\(791\) −2.82905 −0.100590
\(792\) 0 0
\(793\) 10.3967 0.369197
\(794\) −8.42497 + 16.0956i −0.298991 + 0.571212i
\(795\) 0 0
\(796\) −12.2979 17.7327i −0.435889 0.628519i
\(797\) 35.5339i 1.25868i 0.777131 + 0.629338i \(0.216674\pi\)
−0.777131 + 0.629338i \(0.783326\pi\)
\(798\) 0 0
\(799\) 43.5074 1.53918
\(800\) 6.15140 5.51061i 0.217485 0.194829i
\(801\) 0 0
\(802\) 8.43849 + 4.41698i 0.297974 + 0.155969i
\(803\) 0.0991030i 0.00349727i
\(804\) 0 0
\(805\) 40.5453i 1.42903i
\(806\) −1.98505 + 3.79236i −0.0699203 + 0.133580i
\(807\) 0 0
\(808\) −5.35839 + 0.668653i −0.188508 + 0.0235231i
\(809\) 3.57918 0.125837 0.0629187 0.998019i \(-0.479959\pi\)
0.0629187 + 0.998019i \(0.479959\pi\)
\(810\) 0 0
\(811\) 14.0896i 0.494753i −0.968919 0.247377i \(-0.920432\pi\)
0.968919 0.247377i \(-0.0795685\pi\)
\(812\) −38.4127 + 26.6399i −1.34802 + 0.934877i
\(813\) 0 0
\(814\) 12.9761 + 6.79213i 0.454813 + 0.238064i
\(815\) 2.92946 0.102615
\(816\) 0 0
\(817\) 11.4537 0.400713
\(818\) 7.60495 + 3.98068i 0.265901 + 0.139181i
\(819\) 0 0
\(820\) 26.4993 18.3777i 0.925397 0.641778i
\(821\) 47.8288i 1.66924i −0.550829 0.834618i \(-0.685688\pi\)
0.550829 0.834618i \(-0.314312\pi\)
\(822\) 0 0
\(823\) −31.6451 −1.10308 −0.551539 0.834149i \(-0.685959\pi\)
−0.551539 + 0.834149i \(0.685959\pi\)
\(824\) −6.84935 54.8887i −0.238608 1.91214i
\(825\) 0 0
\(826\) −24.6198 + 47.0354i −0.856634 + 1.63657i
\(827\) 25.5630i 0.888911i 0.895801 + 0.444456i \(0.146603\pi\)
−0.895801 + 0.444456i \(0.853397\pi\)
\(828\) 0 0
\(829\) 14.1148i 0.490228i 0.969494 + 0.245114i \(0.0788254\pi\)
−0.969494 + 0.245114i \(0.921175\pi\)
\(830\) −4.49494 2.35279i −0.156021 0.0816667i
\(831\) 0 0
\(832\) 9.54618 + 37.6546i 0.330954 + 1.30544i
\(833\) −117.673 −4.07712
\(834\) 0 0
\(835\) 45.6177i 1.57867i
\(836\) −2.05777 2.96715i −0.0711694 0.102621i
\(837\) 0 0
\(838\) −12.0514 + 23.0237i −0.416308 + 0.795342i
\(839\) 6.13279 0.211727 0.105864 0.994381i \(-0.466239\pi\)
0.105864 + 0.994381i \(0.466239\pi\)
\(840\) 0 0
\(841\) 5.71084 0.196926
\(842\) −9.71846 + 18.5668i −0.334920 + 0.639854i
\(843\) 0 0
\(844\) 35.1137 24.3519i 1.20866 0.838228i
\(845\) 26.8856i 0.924894i
\(846\) 0 0
\(847\) −4.84329 −0.166418
\(848\) 16.7735 + 6.27672i 0.576005 + 0.215543i
\(849\) 0 0
\(850\) 13.0793 + 6.84612i 0.448616 + 0.234820i
\(851\) 34.1112i 1.16932i
\(852\) 0 0
\(853\) 3.74773i 0.128320i 0.997940 + 0.0641599i \(0.0204368\pi\)
−0.997940 + 0.0641599i \(0.979563\pi\)
\(854\) −6.80104 + 12.9932i −0.232727 + 0.444617i
\(855\) 0 0
\(856\) −26.7284 + 3.33533i −0.913557 + 0.113999i
\(857\) 41.2567 1.40930 0.704652 0.709553i \(-0.251103\pi\)
0.704652 + 0.709553i \(0.251103\pi\)
\(858\) 0 0
\(859\) 9.21458i 0.314398i 0.987567 + 0.157199i \(0.0502463\pi\)
−0.987567 + 0.157199i \(0.949754\pi\)
\(860\) 18.3777 + 26.4993i 0.626676 + 0.903620i
\(861\) 0 0
\(862\) 39.7366 + 20.7994i 1.35343 + 0.708431i
\(863\) −39.3004 −1.33780 −0.668901 0.743352i \(-0.733235\pi\)
−0.668901 + 0.743352i \(0.733235\pi\)
\(864\) 0 0
\(865\) −1.77233 −0.0602610
\(866\) 18.6537 + 9.76395i 0.633879 + 0.331793i
\(867\) 0 0
\(868\) −3.44095 4.96159i −0.116793 0.168407i
\(869\) 7.99086i 0.271071i
\(870\) 0 0
\(871\) −44.7575 −1.51655
\(872\) −50.1153 + 6.25370i −1.69712 + 0.211777i
\(873\) 0 0
\(874\) 3.89996 7.45075i 0.131918 0.252025i
\(875\) 43.5778i 1.47320i
\(876\) 0 0
\(877\) 19.2061i 0.648545i −0.945964 0.324273i \(-0.894880\pi\)
0.945964 0.324273i \(-0.105120\pi\)
\(878\) 36.8815 + 19.3050i 1.24469 + 0.651511i
\(879\) 0 0
\(880\) 3.56308 9.52175i 0.120111 0.320978i
\(881\) 5.78843 0.195017 0.0975087 0.995235i \(-0.468913\pi\)
0.0975087 + 0.995235i \(0.468913\pi\)
\(882\) 0 0
\(883\) 27.1286i 0.912949i 0.889737 + 0.456474i \(0.150888\pi\)
−0.889737 + 0.456474i \(0.849112\pi\)
\(884\) −57.0590 + 39.5714i −1.91910 + 1.33093i
\(885\) 0 0
\(886\) −2.19285 + 4.18937i −0.0736703 + 0.140745i
\(887\) 9.55834 0.320938 0.160469 0.987041i \(-0.448699\pi\)
0.160469 + 0.987041i \(0.448699\pi\)
\(888\) 0 0
\(889\) 60.8286 2.04013
\(890\) −24.2736 + 46.3739i −0.813653 + 1.55446i
\(891\) 0 0
\(892\) −4.86898 7.02070i −0.163025 0.235070i
\(893\) 10.9858i 0.367626i
\(894\) 0 0
\(895\) −46.3979 −1.55091
\(896\) −53.3032 12.7017i −1.78073 0.424333i
\(897\) 0 0
\(898\) 24.1799 + 12.6566i 0.806895 + 0.422355i
\(899\) 3.00815i 0.100327i
\(900\) 0 0
\(901\) 32.0136i 1.06653i
\(902\) 4.16061 7.94870i 0.138533 0.264663i
\(903\) 0 0
\(904\) −0.204577 1.63942i −0.00680412 0.0545262i
\(905\) 25.4764 0.846864
\(906\) 0 0
\(907\) 23.2370i 0.771571i −0.922588 0.385786i \(-0.873930\pi\)
0.922588 0.385786i \(-0.126070\pi\)
\(908\) −6.57381 + 4.55905i −0.218160 + 0.151297i
\(909\) 0 0
\(910\) −74.8933 39.2016i −2.48269 1.29952i
\(911\) 30.9370 1.02499 0.512494 0.858691i \(-0.328722\pi\)
0.512494 + 0.858691i \(0.328722\pi\)
\(912\) 0 0
\(913\) −1.41148 −0.0467132
\(914\) 3.35994 + 1.75870i 0.111137 + 0.0581726i
\(915\) 0 0
\(916\) 29.9831 20.7938i 0.990670 0.687046i
\(917\) 64.0759i 2.11597i
\(918\) 0 0
\(919\) 44.8067 1.47804 0.739019 0.673684i \(-0.235289\pi\)
0.739019 + 0.673684i \(0.235289\pi\)
\(920\) 23.4957 2.93194i 0.774632 0.0966633i
\(921\) 0 0
\(922\) −0.157961 + 0.301779i −0.00520217 + 0.00993857i
\(923\) 4.42832i 0.145760i
\(924\) 0 0
\(925\) 15.1199i 0.497140i
\(926\) −3.51851 1.84170i −0.115625 0.0605221i
\(927\) 0 0
\(928\) −18.2154 20.3335i −0.597949 0.667481i
\(929\) −39.2081 −1.28638 −0.643189 0.765708i \(-0.722389\pi\)
−0.643189 + 0.765708i \(0.722389\pi\)
\(930\) 0 0
\(931\) 29.7129i 0.973802i
\(932\) −15.4617 22.2947i −0.506465 0.730286i
\(933\) 0 0
\(934\) −0.129990 + 0.248342i −0.00425341 + 0.00812600i
\(935\) 18.1730 0.594321
\(936\) 0 0
\(937\) 55.8729 1.82529 0.912644 0.408756i \(-0.134037\pi\)
0.912644 + 0.408756i \(0.134037\pi\)
\(938\) 29.2784 55.9354i 0.955973 1.82635i
\(939\) 0 0
\(940\) −25.4169 + 17.6271i −0.829009 + 0.574932i
\(941\) 43.3369i 1.41274i −0.707842 0.706371i \(-0.750331\pi\)
0.707842 0.706371i \(-0.249669\pi\)
\(942\) 0 0
\(943\) 20.8953 0.680443
\(944\) −29.0371 10.8658i −0.945076 0.353651i
\(945\) 0 0
\(946\) 7.94870 + 4.16061i 0.258435 + 0.135273i
\(947\) 6.07170i 0.197304i −0.995122 0.0986519i \(-0.968547\pi\)
0.995122 0.0986519i \(-0.0314530\pi\)
\(948\) 0 0
\(949\) 0.481217i 0.0156210i
\(950\) −1.72868 + 3.30258i −0.0560856 + 0.107150i
\(951\) 0 0
\(952\) −12.1286 97.1948i −0.393089 3.15010i
\(953\) 14.0254 0.454326 0.227163 0.973857i \(-0.427055\pi\)
0.227163 + 0.973857i \(0.427055\pi\)
\(954\) 0 0
\(955\) 33.9005i 1.09699i
\(956\) −3.03678 4.37882i −0.0982166 0.141621i
\(957\) 0 0
\(958\) −0.794775 0.416011i −0.0256780 0.0134407i
\(959\) 39.4701 1.27456
\(960\) 0 0
\(961\) −30.6115 −0.987466
\(962\) 63.0085 + 32.9807i 2.03148 + 1.06334i
\(963\) 0 0
\(964\) 11.7004 + 16.8712i 0.376846 + 0.543384i
\(965\) 30.6498i 0.986651i
\(966\) 0 0
\(967\) −7.68589 −0.247162 −0.123581 0.992335i \(-0.539438\pi\)
−0.123581 + 0.992335i \(0.539438\pi\)
\(968\) −0.350232 2.80666i −0.0112569 0.0902095i
\(969\) 0 0
\(970\) −3.40755 + 6.51001i −0.109410 + 0.209024i
\(971\) 26.3648i 0.846086i 0.906110 + 0.423043i \(0.139038\pi\)
−0.906110 + 0.423043i \(0.860962\pi\)
\(972\) 0 0
\(973\) 73.6907i 2.36242i
\(974\) −30.9707 16.2110i −0.992364 0.519435i
\(975\) 0 0
\(976\) −8.02126 3.00159i −0.256754 0.0960786i
\(977\) −58.2530 −1.86368 −0.931840 0.362870i \(-0.881797\pi\)
−0.931840 + 0.362870i \(0.881797\pi\)
\(978\) 0 0
\(979\) 14.5622i 0.465409i
\(980\) 68.7441 47.6752i 2.19595 1.52293i
\(981\) 0 0
\(982\) −20.0094 + 38.2273i −0.638527 + 1.21988i
\(983\) −28.7987 −0.918537 −0.459268 0.888298i \(-0.651888\pi\)
−0.459268 + 0.888298i \(0.651888\pi\)
\(984\) 0 0
\(985\) 64.7625 2.06350
\(986\) 22.6299 43.2338i 0.720684 1.37684i
\(987\) 0 0
\(988\) −9.99195 14.4076i −0.317886 0.458368i
\(989\) 20.8953i 0.664430i
\(990\) 0 0
\(991\) −32.1947 −1.02270 −0.511349 0.859373i \(-0.670854\pi\)
−0.511349 + 0.859373i \(0.670854\pi\)
\(992\) 2.62639 2.35279i 0.0833879 0.0747013i
\(993\) 0 0
\(994\) −5.53425 2.89681i −0.175536 0.0918811i
\(995\) 27.4241i 0.869402i
\(996\) 0 0
\(997\) 32.6398i 1.03371i 0.856072 + 0.516856i \(0.172898\pi\)
−0.856072 + 0.516856i \(0.827102\pi\)
\(998\) 19.7665 37.7632i 0.625697 1.19537i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 792.2.f.h.397.18 yes 20
3.2 odd 2 inner 792.2.f.h.397.3 20
4.3 odd 2 3168.2.f.h.1585.3 20
8.3 odd 2 3168.2.f.h.1585.18 20
8.5 even 2 inner 792.2.f.h.397.17 yes 20
12.11 even 2 3168.2.f.h.1585.17 20
24.5 odd 2 inner 792.2.f.h.397.4 yes 20
24.11 even 2 3168.2.f.h.1585.4 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
792.2.f.h.397.3 20 3.2 odd 2 inner
792.2.f.h.397.4 yes 20 24.5 odd 2 inner
792.2.f.h.397.17 yes 20 8.5 even 2 inner
792.2.f.h.397.18 yes 20 1.1 even 1 trivial
3168.2.f.h.1585.3 20 4.3 odd 2
3168.2.f.h.1585.4 20 24.11 even 2
3168.2.f.h.1585.17 20 12.11 even 2
3168.2.f.h.1585.18 20 8.3 odd 2