Properties

Label 3150.3.c.b
Level $3150$
Weight $3$
Character orbit 3150.c
Analytic conductor $85.831$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3150,3,Mod(449,3150)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3150, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3150.449"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3150 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 3150.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,16,0,0,0,0,0,0,0,0,0,0,0,32,0,0,-160] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(85.8312832735\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.157351936.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + x^{4} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{29}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{3} q^{2} + 2 q^{4} + \beta_1 q^{7} - 2 \beta_{3} q^{8} + ( - 4 \beta_{6} - 2 \beta_{5}) q^{11} + ( - 4 \beta_{2} - 4 \beta_1) q^{13} - \beta_{6} q^{14} + 4 q^{16} + (2 \beta_{7} - 13 \beta_{3}) q^{17}+ \cdots + 7 \beta_{3} q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 16 q^{4} + 32 q^{16} - 160 q^{19} + 32 q^{31} + 208 q^{34} + 32 q^{46} - 56 q^{49} + 464 q^{61} + 64 q^{64} - 320 q^{76} - 608 q^{79} + 224 q^{91} + 192 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} + x^{4} + 16 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 2\nu^{4} + 1 ) / 3 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{6} + 5\nu^{2} ) / 6 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{7} - 4\nu^{5} + 7\nu^{3} + 4\nu ) / 24 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -\nu^{6} + 3\nu^{2} ) / 2 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( \nu^{7} - 4\nu^{5} - 7\nu^{3} + 4\nu ) / 24 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 5\nu^{7} + 4\nu^{5} + 13\nu^{3} + 44\nu ) / 24 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -5\nu^{7} + 4\nu^{5} - 13\nu^{3} + 44\nu ) / 24 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{7} + \beta_{6} + \beta_{5} + \beta_{3} ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{4} + 3\beta_{2} ) / 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -\beta_{7} + \beta_{6} - 5\beta_{5} + 5\beta_{3} ) / 4 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 3\beta _1 - 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( \beta_{7} + \beta_{6} - 11\beta_{5} - 11\beta_{3} ) / 4 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( -5\beta_{4} + 9\beta_{2} ) / 4 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( -7\beta_{7} + 7\beta_{6} + 13\beta_{5} - 13\beta_{3} ) / 4 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3150\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(451\) \(2801\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
449.1
1.28897 0.581861i
−0.581861 1.28897i
−0.581861 + 1.28897i
1.28897 + 0.581861i
0.581861 + 1.28897i
−1.28897 + 0.581861i
−1.28897 0.581861i
0.581861 1.28897i
−1.41421 0 2.00000 0 0 2.64575i −2.82843 0 0
449.2 −1.41421 0 2.00000 0 0 2.64575i −2.82843 0 0
449.3 −1.41421 0 2.00000 0 0 2.64575i −2.82843 0 0
449.4 −1.41421 0 2.00000 0 0 2.64575i −2.82843 0 0
449.5 1.41421 0 2.00000 0 0 2.64575i 2.82843 0 0
449.6 1.41421 0 2.00000 0 0 2.64575i 2.82843 0 0
449.7 1.41421 0 2.00000 0 0 2.64575i 2.82843 0 0
449.8 1.41421 0 2.00000 0 0 2.64575i 2.82843 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 449.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
5.b even 2 1 inner
15.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3150.3.c.b 8
3.b odd 2 1 inner 3150.3.c.b 8
5.b even 2 1 inner 3150.3.c.b 8
5.c odd 4 1 126.3.b.a 4
5.c odd 4 1 3150.3.e.e 4
15.d odd 2 1 inner 3150.3.c.b 8
15.e even 4 1 126.3.b.a 4
15.e even 4 1 3150.3.e.e 4
20.e even 4 1 1008.3.d.a 4
35.f even 4 1 882.3.b.f 4
35.k even 12 2 882.3.s.i 8
35.l odd 12 2 882.3.s.e 8
40.i odd 4 1 4032.3.d.i 4
40.k even 4 1 4032.3.d.j 4
45.k odd 12 2 1134.3.q.c 8
45.l even 12 2 1134.3.q.c 8
60.l odd 4 1 1008.3.d.a 4
105.k odd 4 1 882.3.b.f 4
105.w odd 12 2 882.3.s.i 8
105.x even 12 2 882.3.s.e 8
120.q odd 4 1 4032.3.d.j 4
120.w even 4 1 4032.3.d.i 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
126.3.b.a 4 5.c odd 4 1
126.3.b.a 4 15.e even 4 1
882.3.b.f 4 35.f even 4 1
882.3.b.f 4 105.k odd 4 1
882.3.s.e 8 35.l odd 12 2
882.3.s.e 8 105.x even 12 2
882.3.s.i 8 35.k even 12 2
882.3.s.i 8 105.w odd 12 2
1008.3.d.a 4 20.e even 4 1
1008.3.d.a 4 60.l odd 4 1
1134.3.q.c 8 45.k odd 12 2
1134.3.q.c 8 45.l even 12 2
3150.3.c.b 8 1.a even 1 1 trivial
3150.3.c.b 8 3.b odd 2 1 inner
3150.3.c.b 8 5.b even 2 1 inner
3150.3.c.b 8 15.d odd 2 1 inner
3150.3.e.e 4 5.c odd 4 1
3150.3.e.e 4 15.e even 4 1
4032.3.d.i 4 40.i odd 4 1
4032.3.d.i 4 120.w even 4 1
4032.3.d.j 4 40.k even 4 1
4032.3.d.j 4 120.q odd 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{11}^{4} + 464T_{11}^{2} + 46656 \) acting on \(S_{3}^{\mathrm{new}}(3150, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} - 2)^{4} \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( T^{8} \) Copy content Toggle raw display
$7$ \( (T^{2} + 7)^{4} \) Copy content Toggle raw display
$11$ \( (T^{4} + 464 T^{2} + 46656)^{2} \) Copy content Toggle raw display
$13$ \( (T^{4} + 352 T^{2} + 2304)^{2} \) Copy content Toggle raw display
$17$ \( (T^{4} - 788 T^{2} + 79524)^{2} \) Copy content Toggle raw display
$19$ \( (T + 20)^{8} \) Copy content Toggle raw display
$23$ \( (T^{4} - 464 T^{2} + 46656)^{2} \) Copy content Toggle raw display
$29$ \( (T^{4} + 1892 T^{2} + 248004)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} - 8 T - 432)^{4} \) Copy content Toggle raw display
$37$ \( (T^{2} + 1444)^{4} \) Copy content Toggle raw display
$41$ \( (T^{4} + 3924 T^{2} + 910116)^{2} \) Copy content Toggle raw display
$43$ \( (T^{4} + 8864 T^{2} + 13191424)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} - 288)^{4} \) Copy content Toggle raw display
$53$ \( (T^{4} - 16164 T^{2} + 64738116)^{2} \) Copy content Toggle raw display
$59$ \( (T^{4} + 3392 T^{2} + 9216)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} - 116 T + 1572)^{4} \) Copy content Toggle raw display
$67$ \( (T^{4} + 18944 T^{2} + 23658496)^{2} \) Copy content Toggle raw display
$71$ \( (T^{4} + 464 T^{2} + 46656)^{2} \) Copy content Toggle raw display
$73$ \( (T^{4} + 6752 T^{2} + 4946176)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} + 152 T + 3984)^{4} \) Copy content Toggle raw display
$83$ \( (T^{4} - 18176 T^{2} + 53231616)^{2} \) Copy content Toggle raw display
$89$ \( (T^{4} + 19476 T^{2} + 443556)^{2} \) Copy content Toggle raw display
$97$ \( (T^{4} + 37472 T^{2} + 70023424)^{2} \) Copy content Toggle raw display
show more
show less