Properties

Label 2-3150-15.14-c2-0-1
Degree $2$
Conductor $3150$
Sign $-0.881 + 0.472i$
Analytic cond. $85.8312$
Root an. cond. $9.26451$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.41·2-s + 2.00·4-s − 2.64i·7-s − 2.82·8-s + 12.1i·11-s + 18.5i·13-s + 3.74i·14-s + 4.00·16-s − 10.9·17-s − 20·19-s − 17.1i·22-s + 12.1·23-s − 26.2i·26-s − 5.29i·28-s + 41.8i·29-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.500·4-s − 0.377i·7-s − 0.353·8-s + 1.10i·11-s + 1.42i·13-s + 0.267i·14-s + 0.250·16-s − 0.641·17-s − 1.05·19-s − 0.780i·22-s + 0.527·23-s − 1.01i·26-s − 0.188i·28-s + 1.44i·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3150 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.881 + 0.472i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3150 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.881 + 0.472i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3150\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 7\)
Sign: $-0.881 + 0.472i$
Analytic conductor: \(85.8312\)
Root analytic conductor: \(9.26451\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{3150} (449, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3150,\ (\ :1),\ -0.881 + 0.472i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.1546353030\)
\(L(\frac12)\) \(\approx\) \(0.1546353030\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 1.41T \)
3 \( 1 \)
5 \( 1 \)
7 \( 1 + 2.64iT \)
good11 \( 1 - 12.1iT - 121T^{2} \)
13 \( 1 - 18.5iT - 169T^{2} \)
17 \( 1 + 10.9T + 289T^{2} \)
19 \( 1 + 20T + 361T^{2} \)
23 \( 1 - 12.1T + 529T^{2} \)
29 \( 1 - 41.8iT - 841T^{2} \)
31 \( 1 - 25.1T + 961T^{2} \)
37 \( 1 - 38iT - 1.36e3T^{2} \)
41 \( 1 - 60.6iT - 1.68e3T^{2} \)
43 \( 1 + 83.4iT - 1.84e3T^{2} \)
47 \( 1 + 16.9T + 2.20e3T^{2} \)
53 \( 1 + 94.0T + 2.80e3T^{2} \)
59 \( 1 + 58.2iT - 3.48e3T^{2} \)
61 \( 1 - 15.6T + 3.72e3T^{2} \)
67 \( 1 + 132. iT - 4.48e3T^{2} \)
71 \( 1 - 12.1iT - 5.04e3T^{2} \)
73 \( 1 - 76.9iT - 5.32e3T^{2} \)
79 \( 1 + 33.6T + 6.24e3T^{2} \)
83 \( 1 - 60.5T + 6.88e3T^{2} \)
89 \( 1 + 4.77iT - 7.92e3T^{2} \)
97 \( 1 + 188. iT - 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.903446154433591853901322481531, −8.353379212659788129114150424868, −7.37209184613825944832581837191, −6.73840132675792847418801385747, −6.37702781116489425612985916536, −4.87122419165797570515826859486, −4.45320076595599798934701525737, −3.30496383816425878190354837881, −2.12157930929601965754773966528, −1.47866574097974411362182285844, 0.04953987545270601989495739922, 0.955162553451375940150193426757, 2.33722268844965155503128400046, 2.99533826906411521363323354836, 4.05000830913044401216496057238, 5.15991758777410325027382861308, 6.03147034550873787675925421206, 6.43690299060995674556265909644, 7.62424175580834365847852359010, 8.142129334128378863756180746975

Graph of the $Z$-function along the critical line