Properties

Label 1008.3.d.a
Level $1008$
Weight $3$
Character orbit 1008.d
Analytic conductor $27.466$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1008,3,Mod(449,1008)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1008, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1008.449"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1008.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,0,0,0,0,-32,0,0,0,0,0,-80] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(27.4660106475\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{7})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 8x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2\cdot 3 \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{3} + 2 \beta_1) q^{5} + \beta_{2} q^{7} + (2 \beta_{3} - 4 \beta_1) q^{11} + ( - 4 \beta_{2} - 8) q^{13} + (5 \beta_{3} - 2 \beta_1) q^{17} - 20 q^{19} + (2 \beta_{3} - 4 \beta_1) q^{23}+ \cdots + ( - 44 \beta_{2} - 72) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 32 q^{13} - 80 q^{19} - 132 q^{25} - 16 q^{31} + 152 q^{37} - 80 q^{43} + 28 q^{49} + 464 q^{55} + 232 q^{61} + 192 q^{67} - 96 q^{73} - 304 q^{79} + 328 q^{85} - 112 q^{91} - 288 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 8x^{2} + 9 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -2\nu^{3} - 16\nu ) / 3 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} + 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( -\nu^{3} - 5\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( 2\beta_{3} - 3\beta_1 ) / 6 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} - 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -16\beta_{3} + 15\beta_1 ) / 6 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
449.1
2.57794i
1.16372i
1.16372i
2.57794i
0 0 0 8.89753i 0 −2.64575 0 0 0
449.2 0 0 0 6.06910i 0 2.64575 0 0 0
449.3 0 0 0 6.06910i 0 2.64575 0 0 0
449.4 0 0 0 8.89753i 0 −2.64575 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1008.3.d.a 4
3.b odd 2 1 inner 1008.3.d.a 4
4.b odd 2 1 126.3.b.a 4
8.b even 2 1 4032.3.d.j 4
8.d odd 2 1 4032.3.d.i 4
12.b even 2 1 126.3.b.a 4
20.d odd 2 1 3150.3.e.e 4
20.e even 4 2 3150.3.c.b 8
24.f even 2 1 4032.3.d.i 4
24.h odd 2 1 4032.3.d.j 4
28.d even 2 1 882.3.b.f 4
28.f even 6 2 882.3.s.i 8
28.g odd 6 2 882.3.s.e 8
36.f odd 6 2 1134.3.q.c 8
36.h even 6 2 1134.3.q.c 8
60.h even 2 1 3150.3.e.e 4
60.l odd 4 2 3150.3.c.b 8
84.h odd 2 1 882.3.b.f 4
84.j odd 6 2 882.3.s.i 8
84.n even 6 2 882.3.s.e 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
126.3.b.a 4 4.b odd 2 1
126.3.b.a 4 12.b even 2 1
882.3.b.f 4 28.d even 2 1
882.3.b.f 4 84.h odd 2 1
882.3.s.e 8 28.g odd 6 2
882.3.s.e 8 84.n even 6 2
882.3.s.i 8 28.f even 6 2
882.3.s.i 8 84.j odd 6 2
1008.3.d.a 4 1.a even 1 1 trivial
1008.3.d.a 4 3.b odd 2 1 inner
1134.3.q.c 8 36.f odd 6 2
1134.3.q.c 8 36.h even 6 2
3150.3.c.b 8 20.e even 4 2
3150.3.c.b 8 60.l odd 4 2
3150.3.e.e 4 20.d odd 2 1
3150.3.e.e 4 60.h even 2 1
4032.3.d.i 4 8.d odd 2 1
4032.3.d.i 4 24.f even 2 1
4032.3.d.j 4 8.b even 2 1
4032.3.d.j 4 24.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(1008, [\chi])\):

\( T_{5}^{4} + 116T_{5}^{2} + 2916 \) Copy content Toggle raw display
\( T_{11}^{4} + 464T_{11}^{2} + 46656 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + 116T^{2} + 2916 \) Copy content Toggle raw display
$7$ \( (T^{2} - 7)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} + 464 T^{2} + 46656 \) Copy content Toggle raw display
$13$ \( (T^{2} + 16 T - 48)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} + 788 T^{2} + 79524 \) Copy content Toggle raw display
$19$ \( (T + 20)^{4} \) Copy content Toggle raw display
$23$ \( T^{4} + 464 T^{2} + 46656 \) Copy content Toggle raw display
$29$ \( T^{4} + 1892 T^{2} + 248004 \) Copy content Toggle raw display
$31$ \( (T^{2} + 8 T - 432)^{2} \) Copy content Toggle raw display
$37$ \( (T - 38)^{4} \) Copy content Toggle raw display
$41$ \( T^{4} + 3924 T^{2} + 910116 \) Copy content Toggle raw display
$43$ \( (T^{2} + 40 T - 3632)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} + 288)^{2} \) Copy content Toggle raw display
$53$ \( T^{4} + 16164 T^{2} + 64738116 \) Copy content Toggle raw display
$59$ \( T^{4} + 3392 T^{2} + 9216 \) Copy content Toggle raw display
$61$ \( (T^{2} - 116 T + 1572)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} - 96 T - 4864)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} + 464 T^{2} + 46656 \) Copy content Toggle raw display
$73$ \( (T^{2} + 48 T - 2224)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} + 152 T + 3984)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + 18176 T^{2} + 53231616 \) Copy content Toggle raw display
$89$ \( T^{4} + 19476 T^{2} + 443556 \) Copy content Toggle raw display
$97$ \( (T^{2} + 144 T - 8368)^{2} \) Copy content Toggle raw display
show more
show less