Properties

Label 315.8.a.q.1.3
Level $315$
Weight $8$
Character 315.1
Self dual yes
Analytic conductor $98.401$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [315,8,Mod(1,315)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("315.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(315, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 315.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(98.4012830275\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{7} - 832x^{6} + 1124x^{5} + 214693x^{4} - 78223x^{3} - 18019982x^{2} - 2181234x + 146417544 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{7}\cdot 3^{4} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(12.3623\) of defining polynomial
Character \(\chi\) \(=\) 315.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-11.3623 q^{2} +1.10101 q^{4} -125.000 q^{5} +343.000 q^{7} +1441.86 q^{8} +1420.28 q^{10} +7083.95 q^{11} -9009.21 q^{13} -3897.26 q^{14} -16523.7 q^{16} -34857.1 q^{17} +9352.33 q^{19} -137.626 q^{20} -80489.7 q^{22} -13824.7 q^{23} +15625.0 q^{25} +102365. q^{26} +377.645 q^{28} -187074. q^{29} +211239. q^{31} +3188.77 q^{32} +396056. q^{34} -42875.0 q^{35} +541911. q^{37} -106264. q^{38} -180232. q^{40} +776141. q^{41} -400320. q^{43} +7799.47 q^{44} +157080. q^{46} +490421. q^{47} +117649. q^{49} -177535. q^{50} -9919.20 q^{52} -1.83533e6 q^{53} -885494. q^{55} +494558. q^{56} +2.12559e6 q^{58} +28206.5 q^{59} -1.31536e6 q^{61} -2.40015e6 q^{62} +2.07880e6 q^{64} +1.12615e6 q^{65} +259266. q^{67} -38377.9 q^{68} +487157. q^{70} +1.63724e6 q^{71} +2.83182e6 q^{73} -6.15733e6 q^{74} +10297.0 q^{76} +2.42980e6 q^{77} +5.67086e6 q^{79} +2.06546e6 q^{80} -8.81871e6 q^{82} -2.02481e6 q^{83} +4.35714e6 q^{85} +4.54855e6 q^{86} +1.02141e7 q^{88} -4.34277e6 q^{89} -3.09016e6 q^{91} -15221.0 q^{92} -5.57229e6 q^{94} -1.16904e6 q^{95} +1.45480e7 q^{97} -1.33676e6 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 5 q^{2} + 651 q^{4} - 1000 q^{5} + 2744 q^{7} - 405 q^{8} - 625 q^{10} - 1040 q^{11} - 10412 q^{13} + 1715 q^{14} + 23555 q^{16} - 33600 q^{17} + 25508 q^{19} - 81375 q^{20} + 27440 q^{22} - 110100 q^{23}+ \cdots + 588245 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −11.3623 −1.00429 −0.502146 0.864783i \(-0.667456\pi\)
−0.502146 + 0.864783i \(0.667456\pi\)
\(3\) 0 0
\(4\) 1.10101 0.00860161
\(5\) −125.000 −0.447214
\(6\) 0 0
\(7\) 343.000 0.377964
\(8\) 1441.86 0.995653
\(9\) 0 0
\(10\) 1420.28 0.449133
\(11\) 7083.95 1.60473 0.802364 0.596835i \(-0.203576\pi\)
0.802364 + 0.596835i \(0.203576\pi\)
\(12\) 0 0
\(13\) −9009.21 −1.13733 −0.568663 0.822570i \(-0.692539\pi\)
−0.568663 + 0.822570i \(0.692539\pi\)
\(14\) −3897.26 −0.379587
\(15\) 0 0
\(16\) −16523.7 −1.00853
\(17\) −34857.1 −1.72076 −0.860380 0.509654i \(-0.829773\pi\)
−0.860380 + 0.509654i \(0.829773\pi\)
\(18\) 0 0
\(19\) 9352.33 0.312811 0.156406 0.987693i \(-0.450009\pi\)
0.156406 + 0.987693i \(0.450009\pi\)
\(20\) −137.626 −0.00384676
\(21\) 0 0
\(22\) −80489.7 −1.61161
\(23\) −13824.7 −0.236923 −0.118462 0.992959i \(-0.537796\pi\)
−0.118462 + 0.992959i \(0.537796\pi\)
\(24\) 0 0
\(25\) 15625.0 0.200000
\(26\) 102365. 1.14221
\(27\) 0 0
\(28\) 377.645 0.00325110
\(29\) −187074. −1.42436 −0.712182 0.701995i \(-0.752293\pi\)
−0.712182 + 0.701995i \(0.752293\pi\)
\(30\) 0 0
\(31\) 211239. 1.27353 0.636764 0.771059i \(-0.280273\pi\)
0.636764 + 0.771059i \(0.280273\pi\)
\(32\) 3188.77 0.0172027
\(33\) 0 0
\(34\) 396056. 1.72814
\(35\) −42875.0 −0.169031
\(36\) 0 0
\(37\) 541911. 1.75882 0.879410 0.476065i \(-0.157937\pi\)
0.879410 + 0.476065i \(0.157937\pi\)
\(38\) −106264. −0.314154
\(39\) 0 0
\(40\) −180232. −0.445270
\(41\) 776141. 1.75872 0.879360 0.476157i \(-0.157970\pi\)
0.879360 + 0.476157i \(0.157970\pi\)
\(42\) 0 0
\(43\) −400320. −0.767836 −0.383918 0.923367i \(-0.625425\pi\)
−0.383918 + 0.923367i \(0.625425\pi\)
\(44\) 7799.47 0.0138032
\(45\) 0 0
\(46\) 157080. 0.237940
\(47\) 490421. 0.689012 0.344506 0.938784i \(-0.388046\pi\)
0.344506 + 0.938784i \(0.388046\pi\)
\(48\) 0 0
\(49\) 117649. 0.142857
\(50\) −177535. −0.200858
\(51\) 0 0
\(52\) −9919.20 −0.00978284
\(53\) −1.83533e6 −1.69336 −0.846678 0.532106i \(-0.821401\pi\)
−0.846678 + 0.532106i \(0.821401\pi\)
\(54\) 0 0
\(55\) −885494. −0.717656
\(56\) 494558. 0.376321
\(57\) 0 0
\(58\) 2.12559e6 1.43048
\(59\) 28206.5 0.0178800 0.00893998 0.999960i \(-0.497154\pi\)
0.00893998 + 0.999960i \(0.497154\pi\)
\(60\) 0 0
\(61\) −1.31536e6 −0.741974 −0.370987 0.928638i \(-0.620981\pi\)
−0.370987 + 0.928638i \(0.620981\pi\)
\(62\) −2.40015e6 −1.27899
\(63\) 0 0
\(64\) 2.07880e6 0.991251
\(65\) 1.12615e6 0.508628
\(66\) 0 0
\(67\) 259266. 0.105314 0.0526568 0.998613i \(-0.483231\pi\)
0.0526568 + 0.998613i \(0.483231\pi\)
\(68\) −38377.9 −0.0148013
\(69\) 0 0
\(70\) 487157. 0.169756
\(71\) 1.63724e6 0.542885 0.271443 0.962455i \(-0.412499\pi\)
0.271443 + 0.962455i \(0.412499\pi\)
\(72\) 0 0
\(73\) 2.83182e6 0.851992 0.425996 0.904725i \(-0.359924\pi\)
0.425996 + 0.904725i \(0.359924\pi\)
\(74\) −6.15733e6 −1.76637
\(75\) 0 0
\(76\) 10297.0 0.00269068
\(77\) 2.42980e6 0.606530
\(78\) 0 0
\(79\) 5.67086e6 1.29406 0.647029 0.762465i \(-0.276011\pi\)
0.647029 + 0.762465i \(0.276011\pi\)
\(80\) 2.06546e6 0.451027
\(81\) 0 0
\(82\) −8.81871e6 −1.76627
\(83\) −2.02481e6 −0.388696 −0.194348 0.980933i \(-0.562259\pi\)
−0.194348 + 0.980933i \(0.562259\pi\)
\(84\) 0 0
\(85\) 4.35714e6 0.769547
\(86\) 4.54855e6 0.771131
\(87\) 0 0
\(88\) 1.02141e7 1.59775
\(89\) −4.34277e6 −0.652982 −0.326491 0.945200i \(-0.605866\pi\)
−0.326491 + 0.945200i \(0.605866\pi\)
\(90\) 0 0
\(91\) −3.09016e6 −0.429869
\(92\) −15221.0 −0.00203792
\(93\) 0 0
\(94\) −5.57229e6 −0.691969
\(95\) −1.16904e6 −0.139893
\(96\) 0 0
\(97\) 1.45480e7 1.61846 0.809228 0.587495i \(-0.199886\pi\)
0.809228 + 0.587495i \(0.199886\pi\)
\(98\) −1.33676e6 −0.143470
\(99\) 0 0
\(100\) 17203.2 0.00172032
\(101\) −1.47112e7 −1.42077 −0.710384 0.703815i \(-0.751479\pi\)
−0.710384 + 0.703815i \(0.751479\pi\)
\(102\) 0 0
\(103\) −7.31348e6 −0.659468 −0.329734 0.944074i \(-0.606959\pi\)
−0.329734 + 0.944074i \(0.606959\pi\)
\(104\) −1.29900e7 −1.13238
\(105\) 0 0
\(106\) 2.08535e7 1.70062
\(107\) −1.95454e7 −1.54242 −0.771208 0.636583i \(-0.780347\pi\)
−0.771208 + 0.636583i \(0.780347\pi\)
\(108\) 0 0
\(109\) −1.69281e6 −0.125203 −0.0626016 0.998039i \(-0.519940\pi\)
−0.0626016 + 0.998039i \(0.519940\pi\)
\(110\) 1.00612e7 0.720736
\(111\) 0 0
\(112\) −5.66763e6 −0.381188
\(113\) 1.24951e7 0.814640 0.407320 0.913286i \(-0.366463\pi\)
0.407320 + 0.913286i \(0.366463\pi\)
\(114\) 0 0
\(115\) 1.72808e6 0.105955
\(116\) −205970. −0.0122518
\(117\) 0 0
\(118\) −320489. −0.0179567
\(119\) −1.19560e7 −0.650386
\(120\) 0 0
\(121\) 3.06952e7 1.57515
\(122\) 1.49454e7 0.745158
\(123\) 0 0
\(124\) 232575. 0.0109544
\(125\) −1.95312e6 −0.0894427
\(126\) 0 0
\(127\) 2.01112e7 0.871215 0.435608 0.900137i \(-0.356534\pi\)
0.435608 + 0.900137i \(0.356534\pi\)
\(128\) −2.40281e7 −1.01271
\(129\) 0 0
\(130\) −1.27956e7 −0.510811
\(131\) −2.16090e7 −0.839816 −0.419908 0.907567i \(-0.637938\pi\)
−0.419908 + 0.907567i \(0.637938\pi\)
\(132\) 0 0
\(133\) 3.20785e6 0.118232
\(134\) −2.94585e6 −0.105766
\(135\) 0 0
\(136\) −5.02591e7 −1.71328
\(137\) 5.04631e6 0.167669 0.0838343 0.996480i \(-0.473283\pi\)
0.0838343 + 0.996480i \(0.473283\pi\)
\(138\) 0 0
\(139\) −1.70685e7 −0.539067 −0.269534 0.962991i \(-0.586870\pi\)
−0.269534 + 0.962991i \(0.586870\pi\)
\(140\) −47205.6 −0.00145394
\(141\) 0 0
\(142\) −1.86027e7 −0.545215
\(143\) −6.38208e7 −1.82510
\(144\) 0 0
\(145\) 2.33843e7 0.636995
\(146\) −3.21759e7 −0.855648
\(147\) 0 0
\(148\) 596647. 0.0151287
\(149\) 2.17186e7 0.537873 0.268937 0.963158i \(-0.413328\pi\)
0.268937 + 0.963158i \(0.413328\pi\)
\(150\) 0 0
\(151\) −6.56456e7 −1.55162 −0.775812 0.630965i \(-0.782659\pi\)
−0.775812 + 0.630965i \(0.782659\pi\)
\(152\) 1.34847e7 0.311451
\(153\) 0 0
\(154\) −2.76080e7 −0.609133
\(155\) −2.64049e7 −0.569539
\(156\) 0 0
\(157\) 3.13893e7 0.647341 0.323671 0.946170i \(-0.395083\pi\)
0.323671 + 0.946170i \(0.395083\pi\)
\(158\) −6.44338e7 −1.29961
\(159\) 0 0
\(160\) −398596. −0.00769330
\(161\) −4.74186e6 −0.0895485
\(162\) 0 0
\(163\) −1.08639e8 −1.96486 −0.982428 0.186644i \(-0.940239\pi\)
−0.982428 + 0.186644i \(0.940239\pi\)
\(164\) 854535. 0.0151278
\(165\) 0 0
\(166\) 2.30064e7 0.390364
\(167\) 1.60597e7 0.266827 0.133413 0.991060i \(-0.457406\pi\)
0.133413 + 0.991060i \(0.457406\pi\)
\(168\) 0 0
\(169\) 1.84174e7 0.293512
\(170\) −4.95069e7 −0.772849
\(171\) 0 0
\(172\) −440755. −0.00660462
\(173\) 4.03262e6 0.0592142 0.0296071 0.999562i \(-0.490574\pi\)
0.0296071 + 0.999562i \(0.490574\pi\)
\(174\) 0 0
\(175\) 5.35938e6 0.0755929
\(176\) −1.17053e8 −1.61841
\(177\) 0 0
\(178\) 4.93436e7 0.655785
\(179\) −5.98324e6 −0.0779742 −0.0389871 0.999240i \(-0.512413\pi\)
−0.0389871 + 0.999240i \(0.512413\pi\)
\(180\) 0 0
\(181\) −9.29872e7 −1.16560 −0.582798 0.812617i \(-0.698042\pi\)
−0.582798 + 0.812617i \(0.698042\pi\)
\(182\) 3.51112e7 0.431714
\(183\) 0 0
\(184\) −1.99332e7 −0.235893
\(185\) −6.77388e7 −0.786569
\(186\) 0 0
\(187\) −2.46926e8 −2.76135
\(188\) 539956. 0.00592661
\(189\) 0 0
\(190\) 1.32830e7 0.140494
\(191\) 4.73858e6 0.0492075 0.0246038 0.999697i \(-0.492168\pi\)
0.0246038 + 0.999697i \(0.492168\pi\)
\(192\) 0 0
\(193\) 6.37490e7 0.638297 0.319149 0.947705i \(-0.396603\pi\)
0.319149 + 0.947705i \(0.396603\pi\)
\(194\) −1.65298e8 −1.62540
\(195\) 0 0
\(196\) 129532. 0.00122880
\(197\) −1.50904e8 −1.40627 −0.703134 0.711058i \(-0.748216\pi\)
−0.703134 + 0.711058i \(0.748216\pi\)
\(198\) 0 0
\(199\) −6.02814e7 −0.542247 −0.271124 0.962545i \(-0.587395\pi\)
−0.271124 + 0.962545i \(0.587395\pi\)
\(200\) 2.25291e7 0.199131
\(201\) 0 0
\(202\) 1.67152e8 1.42686
\(203\) −6.41664e7 −0.538359
\(204\) 0 0
\(205\) −9.70176e7 −0.786524
\(206\) 8.30977e7 0.662299
\(207\) 0 0
\(208\) 1.48866e8 1.14703
\(209\) 6.62515e7 0.501977
\(210\) 0 0
\(211\) 2.21018e8 1.61972 0.809860 0.586624i \(-0.199543\pi\)
0.809860 + 0.586624i \(0.199543\pi\)
\(212\) −2.02071e6 −0.0145656
\(213\) 0 0
\(214\) 2.22080e8 1.54904
\(215\) 5.00401e7 0.343386
\(216\) 0 0
\(217\) 7.24550e7 0.481348
\(218\) 1.92342e7 0.125741
\(219\) 0 0
\(220\) −974934. −0.00617299
\(221\) 3.14035e8 1.95706
\(222\) 0 0
\(223\) −2.88131e8 −1.73989 −0.869947 0.493145i \(-0.835847\pi\)
−0.869947 + 0.493145i \(0.835847\pi\)
\(224\) 1.09375e6 0.00650202
\(225\) 0 0
\(226\) −1.41973e8 −0.818136
\(227\) −1.66127e8 −0.942647 −0.471323 0.881960i \(-0.656224\pi\)
−0.471323 + 0.881960i \(0.656224\pi\)
\(228\) 0 0
\(229\) −1.97789e8 −1.08837 −0.544186 0.838965i \(-0.683161\pi\)
−0.544186 + 0.838965i \(0.683161\pi\)
\(230\) −1.96349e7 −0.106410
\(231\) 0 0
\(232\) −2.69735e8 −1.41817
\(233\) −1.49491e8 −0.774231 −0.387115 0.922031i \(-0.626528\pi\)
−0.387115 + 0.922031i \(0.626528\pi\)
\(234\) 0 0
\(235\) −6.13026e7 −0.308135
\(236\) 31055.5 0.000153796 0
\(237\) 0 0
\(238\) 1.35847e8 0.653177
\(239\) 1.72111e8 0.815486 0.407743 0.913097i \(-0.366316\pi\)
0.407743 + 0.913097i \(0.366316\pi\)
\(240\) 0 0
\(241\) 5.78274e7 0.266118 0.133059 0.991108i \(-0.457520\pi\)
0.133059 + 0.991108i \(0.457520\pi\)
\(242\) −3.48767e8 −1.58191
\(243\) 0 0
\(244\) −1.44821e6 −0.00638217
\(245\) −1.47061e7 −0.0638877
\(246\) 0 0
\(247\) −8.42572e7 −0.355768
\(248\) 3.04577e8 1.26799
\(249\) 0 0
\(250\) 2.21919e7 0.0898266
\(251\) −2.29474e8 −0.915957 −0.457978 0.888963i \(-0.651426\pi\)
−0.457978 + 0.888963i \(0.651426\pi\)
\(252\) 0 0
\(253\) −9.79333e7 −0.380197
\(254\) −2.28509e8 −0.874954
\(255\) 0 0
\(256\) 6.92642e6 0.0258029
\(257\) −4.11193e8 −1.51105 −0.755527 0.655117i \(-0.772619\pi\)
−0.755527 + 0.655117i \(0.772619\pi\)
\(258\) 0 0
\(259\) 1.85875e8 0.664772
\(260\) 1.23990e6 0.00437502
\(261\) 0 0
\(262\) 2.45527e8 0.843420
\(263\) −4.26697e8 −1.44635 −0.723177 0.690662i \(-0.757319\pi\)
−0.723177 + 0.690662i \(0.757319\pi\)
\(264\) 0 0
\(265\) 2.29416e8 0.757292
\(266\) −3.64484e7 −0.118739
\(267\) 0 0
\(268\) 285454. 0.000905866 0
\(269\) 4.26051e8 1.33453 0.667266 0.744820i \(-0.267465\pi\)
0.667266 + 0.744820i \(0.267465\pi\)
\(270\) 0 0
\(271\) 5.72893e8 1.74856 0.874282 0.485419i \(-0.161333\pi\)
0.874282 + 0.485419i \(0.161333\pi\)
\(272\) 5.75969e8 1.73543
\(273\) 0 0
\(274\) −5.73375e7 −0.168388
\(275\) 1.10687e8 0.320945
\(276\) 0 0
\(277\) 2.05790e8 0.581760 0.290880 0.956759i \(-0.406052\pi\)
0.290880 + 0.956759i \(0.406052\pi\)
\(278\) 1.93937e8 0.541381
\(279\) 0 0
\(280\) −6.18197e7 −0.168296
\(281\) 4.79814e8 1.29003 0.645016 0.764169i \(-0.276851\pi\)
0.645016 + 0.764169i \(0.276851\pi\)
\(282\) 0 0
\(283\) −1.37563e8 −0.360785 −0.180393 0.983595i \(-0.557737\pi\)
−0.180393 + 0.983595i \(0.557737\pi\)
\(284\) 1.80261e6 0.00466969
\(285\) 0 0
\(286\) 7.25149e8 1.83293
\(287\) 2.66216e8 0.664734
\(288\) 0 0
\(289\) 8.04679e8 1.96101
\(290\) −2.65698e8 −0.639729
\(291\) 0 0
\(292\) 3.11785e6 0.00732850
\(293\) −6.49956e8 −1.50955 −0.754775 0.655984i \(-0.772254\pi\)
−0.754775 + 0.655984i \(0.772254\pi\)
\(294\) 0 0
\(295\) −3.52581e6 −0.00799616
\(296\) 7.81359e8 1.75118
\(297\) 0 0
\(298\) −2.46772e8 −0.540182
\(299\) 1.24549e8 0.269459
\(300\) 0 0
\(301\) −1.37310e8 −0.290215
\(302\) 7.45882e8 1.55828
\(303\) 0 0
\(304\) −1.54535e8 −0.315479
\(305\) 1.64419e8 0.331821
\(306\) 0 0
\(307\) −4.19831e7 −0.0828114 −0.0414057 0.999142i \(-0.513184\pi\)
−0.0414057 + 0.999142i \(0.513184\pi\)
\(308\) 2.67522e6 0.00521713
\(309\) 0 0
\(310\) 3.00019e8 0.571983
\(311\) −2.89966e8 −0.546620 −0.273310 0.961926i \(-0.588119\pi\)
−0.273310 + 0.961926i \(0.588119\pi\)
\(312\) 0 0
\(313\) −4.93896e7 −0.0910395 −0.0455198 0.998963i \(-0.514494\pi\)
−0.0455198 + 0.998963i \(0.514494\pi\)
\(314\) −3.56654e8 −0.650119
\(315\) 0 0
\(316\) 6.24365e6 0.0111310
\(317\) 4.30076e8 0.758294 0.379147 0.925337i \(-0.376218\pi\)
0.379147 + 0.925337i \(0.376218\pi\)
\(318\) 0 0
\(319\) −1.32522e9 −2.28572
\(320\) −2.59851e8 −0.443301
\(321\) 0 0
\(322\) 5.38783e7 0.0899328
\(323\) −3.25995e8 −0.538273
\(324\) 0 0
\(325\) −1.40769e8 −0.227465
\(326\) 1.23439e9 1.97329
\(327\) 0 0
\(328\) 1.11909e9 1.75108
\(329\) 1.68214e8 0.260422
\(330\) 0 0
\(331\) −1.18542e9 −1.79669 −0.898344 0.439293i \(-0.855229\pi\)
−0.898344 + 0.439293i \(0.855229\pi\)
\(332\) −2.22932e6 −0.00334341
\(333\) 0 0
\(334\) −1.82474e8 −0.267972
\(335\) −3.24083e7 −0.0470977
\(336\) 0 0
\(337\) 3.87597e8 0.551666 0.275833 0.961206i \(-0.411046\pi\)
0.275833 + 0.961206i \(0.411046\pi\)
\(338\) −2.09264e8 −0.294771
\(339\) 0 0
\(340\) 4.79723e6 0.00661934
\(341\) 1.49641e9 2.04366
\(342\) 0 0
\(343\) 4.03536e7 0.0539949
\(344\) −5.77206e8 −0.764498
\(345\) 0 0
\(346\) −4.58197e7 −0.0594683
\(347\) 5.12544e8 0.658534 0.329267 0.944237i \(-0.393198\pi\)
0.329267 + 0.944237i \(0.393198\pi\)
\(348\) 0 0
\(349\) −4.81520e8 −0.606352 −0.303176 0.952935i \(-0.598047\pi\)
−0.303176 + 0.952935i \(0.598047\pi\)
\(350\) −6.08946e7 −0.0759173
\(351\) 0 0
\(352\) 2.25891e7 0.0276057
\(353\) −1.08368e9 −1.31126 −0.655632 0.755080i \(-0.727598\pi\)
−0.655632 + 0.755080i \(0.727598\pi\)
\(354\) 0 0
\(355\) −2.04655e8 −0.242786
\(356\) −4.78141e6 −0.00561670
\(357\) 0 0
\(358\) 6.79831e7 0.0783088
\(359\) 7.94916e8 0.906757 0.453378 0.891318i \(-0.350219\pi\)
0.453378 + 0.891318i \(0.350219\pi\)
\(360\) 0 0
\(361\) −8.06406e8 −0.902149
\(362\) 1.05654e9 1.17060
\(363\) 0 0
\(364\) −3.40228e6 −0.00369756
\(365\) −3.53977e8 −0.381022
\(366\) 0 0
\(367\) −1.84819e8 −0.195171 −0.0975857 0.995227i \(-0.531112\pi\)
−0.0975857 + 0.995227i \(0.531112\pi\)
\(368\) 2.28435e8 0.238944
\(369\) 0 0
\(370\) 7.69666e8 0.789944
\(371\) −6.29517e8 −0.640028
\(372\) 0 0
\(373\) 3.00820e8 0.300141 0.150071 0.988675i \(-0.452050\pi\)
0.150071 + 0.988675i \(0.452050\pi\)
\(374\) 2.80564e9 2.77320
\(375\) 0 0
\(376\) 7.07118e8 0.686017
\(377\) 1.68539e9 1.61997
\(378\) 0 0
\(379\) 1.64486e9 1.55200 0.775999 0.630734i \(-0.217246\pi\)
0.775999 + 0.630734i \(0.217246\pi\)
\(380\) −1.28712e6 −0.00120331
\(381\) 0 0
\(382\) −5.38410e7 −0.0494187
\(383\) −9.93750e8 −0.903819 −0.451909 0.892064i \(-0.649257\pi\)
−0.451909 + 0.892064i \(0.649257\pi\)
\(384\) 0 0
\(385\) −3.03724e8 −0.271248
\(386\) −7.24333e8 −0.641037
\(387\) 0 0
\(388\) 1.60174e7 0.0139213
\(389\) −1.61369e9 −1.38994 −0.694971 0.719038i \(-0.744583\pi\)
−0.694971 + 0.719038i \(0.744583\pi\)
\(390\) 0 0
\(391\) 4.81888e8 0.407688
\(392\) 1.69633e8 0.142236
\(393\) 0 0
\(394\) 1.71461e9 1.41230
\(395\) −7.08857e8 −0.578721
\(396\) 0 0
\(397\) −1.87653e9 −1.50518 −0.752591 0.658489i \(-0.771196\pi\)
−0.752591 + 0.658489i \(0.771196\pi\)
\(398\) 6.84933e8 0.544575
\(399\) 0 0
\(400\) −2.58183e8 −0.201706
\(401\) −4.69102e8 −0.363297 −0.181649 0.983364i \(-0.558143\pi\)
−0.181649 + 0.983364i \(0.558143\pi\)
\(402\) 0 0
\(403\) −1.90310e9 −1.44842
\(404\) −1.61971e7 −0.0122209
\(405\) 0 0
\(406\) 7.29076e8 0.540669
\(407\) 3.83887e9 2.82243
\(408\) 0 0
\(409\) −1.40800e9 −1.01758 −0.508791 0.860890i \(-0.669908\pi\)
−0.508791 + 0.860890i \(0.669908\pi\)
\(410\) 1.10234e9 0.789899
\(411\) 0 0
\(412\) −8.05219e6 −0.00567249
\(413\) 9.67482e6 0.00675799
\(414\) 0 0
\(415\) 2.53101e8 0.173830
\(416\) −2.87283e7 −0.0195651
\(417\) 0 0
\(418\) −7.52767e8 −0.504131
\(419\) 4.88680e8 0.324545 0.162273 0.986746i \(-0.448118\pi\)
0.162273 + 0.986746i \(0.448118\pi\)
\(420\) 0 0
\(421\) 9.74301e6 0.00636365 0.00318182 0.999995i \(-0.498987\pi\)
0.00318182 + 0.999995i \(0.498987\pi\)
\(422\) −2.51127e9 −1.62667
\(423\) 0 0
\(424\) −2.64629e9 −1.68599
\(425\) −5.44642e8 −0.344152
\(426\) 0 0
\(427\) −4.51167e8 −0.280440
\(428\) −2.15196e7 −0.0132673
\(429\) 0 0
\(430\) −5.68568e8 −0.344860
\(431\) 6.14059e8 0.369436 0.184718 0.982792i \(-0.440863\pi\)
0.184718 + 0.982792i \(0.440863\pi\)
\(432\) 0 0
\(433\) −1.26904e9 −0.751223 −0.375612 0.926777i \(-0.622567\pi\)
−0.375612 + 0.926777i \(0.622567\pi\)
\(434\) −8.23253e8 −0.483414
\(435\) 0 0
\(436\) −1.86379e6 −0.00107695
\(437\) −1.29293e8 −0.0741122
\(438\) 0 0
\(439\) −2.43834e9 −1.37553 −0.687764 0.725935i \(-0.741407\pi\)
−0.687764 + 0.725935i \(0.741407\pi\)
\(440\) −1.27676e9 −0.714536
\(441\) 0 0
\(442\) −3.56815e9 −1.96546
\(443\) −7.12131e8 −0.389177 −0.194588 0.980885i \(-0.562337\pi\)
−0.194588 + 0.980885i \(0.562337\pi\)
\(444\) 0 0
\(445\) 5.42846e8 0.292023
\(446\) 3.27382e9 1.74736
\(447\) 0 0
\(448\) 7.13030e8 0.374658
\(449\) −1.62831e9 −0.848934 −0.424467 0.905443i \(-0.639538\pi\)
−0.424467 + 0.905443i \(0.639538\pi\)
\(450\) 0 0
\(451\) 5.49814e9 2.82227
\(452\) 1.37572e7 0.00700721
\(453\) 0 0
\(454\) 1.88758e9 0.946692
\(455\) 3.86270e8 0.192243
\(456\) 0 0
\(457\) −3.35306e9 −1.64337 −0.821683 0.569945i \(-0.806965\pi\)
−0.821683 + 0.569945i \(0.806965\pi\)
\(458\) 2.24733e9 1.09304
\(459\) 0 0
\(460\) 1.90263e6 0.000911386 0
\(461\) 7.99292e8 0.379973 0.189986 0.981787i \(-0.439156\pi\)
0.189986 + 0.981787i \(0.439156\pi\)
\(462\) 0 0
\(463\) 6.18703e8 0.289700 0.144850 0.989454i \(-0.453730\pi\)
0.144850 + 0.989454i \(0.453730\pi\)
\(464\) 3.09116e9 1.43651
\(465\) 0 0
\(466\) 1.69856e9 0.777553
\(467\) −3.96700e9 −1.80241 −0.901204 0.433395i \(-0.857315\pi\)
−0.901204 + 0.433395i \(0.857315\pi\)
\(468\) 0 0
\(469\) 8.89284e7 0.0398048
\(470\) 6.96537e8 0.309458
\(471\) 0 0
\(472\) 4.06698e7 0.0178022
\(473\) −2.83585e9 −1.23217
\(474\) 0 0
\(475\) 1.46130e8 0.0625622
\(476\) −1.31636e7 −0.00559436
\(477\) 0 0
\(478\) −1.95557e9 −0.818986
\(479\) −1.75023e8 −0.0727647 −0.0363823 0.999338i \(-0.511583\pi\)
−0.0363823 + 0.999338i \(0.511583\pi\)
\(480\) 0 0
\(481\) −4.88219e9 −2.00035
\(482\) −6.57050e8 −0.267260
\(483\) 0 0
\(484\) 3.37956e7 0.0135488
\(485\) −1.81849e9 −0.723796
\(486\) 0 0
\(487\) −2.08394e9 −0.817585 −0.408793 0.912627i \(-0.634050\pi\)
−0.408793 + 0.912627i \(0.634050\pi\)
\(488\) −1.89656e9 −0.738749
\(489\) 0 0
\(490\) 1.67095e8 0.0641618
\(491\) 3.60299e9 1.37366 0.686828 0.726820i \(-0.259003\pi\)
0.686828 + 0.726820i \(0.259003\pi\)
\(492\) 0 0
\(493\) 6.52086e9 2.45099
\(494\) 9.57352e8 0.357295
\(495\) 0 0
\(496\) −3.49045e9 −1.28439
\(497\) 5.61573e8 0.205191
\(498\) 0 0
\(499\) −2.49479e9 −0.898840 −0.449420 0.893321i \(-0.648369\pi\)
−0.449420 + 0.893321i \(0.648369\pi\)
\(500\) −2.15040e6 −0.000769351 0
\(501\) 0 0
\(502\) 2.60734e9 0.919887
\(503\) −3.61891e9 −1.26791 −0.633957 0.773368i \(-0.718571\pi\)
−0.633957 + 0.773368i \(0.718571\pi\)
\(504\) 0 0
\(505\) 1.83890e9 0.635387
\(506\) 1.11274e9 0.381829
\(507\) 0 0
\(508\) 2.21426e7 0.00749385
\(509\) −3.92673e9 −1.31983 −0.659916 0.751340i \(-0.729408\pi\)
−0.659916 + 0.751340i \(0.729408\pi\)
\(510\) 0 0
\(511\) 9.71314e8 0.322023
\(512\) 2.99689e9 0.986794
\(513\) 0 0
\(514\) 4.67209e9 1.51754
\(515\) 9.14185e8 0.294923
\(516\) 0 0
\(517\) 3.47412e9 1.10568
\(518\) −2.11196e9 −0.667625
\(519\) 0 0
\(520\) 1.62375e9 0.506417
\(521\) 2.42452e9 0.751094 0.375547 0.926803i \(-0.377455\pi\)
0.375547 + 0.926803i \(0.377455\pi\)
\(522\) 0 0
\(523\) 2.34068e9 0.715462 0.357731 0.933825i \(-0.383550\pi\)
0.357731 + 0.933825i \(0.383550\pi\)
\(524\) −2.37916e7 −0.00722377
\(525\) 0 0
\(526\) 4.84825e9 1.45256
\(527\) −7.36318e9 −2.19143
\(528\) 0 0
\(529\) −3.21370e9 −0.943867
\(530\) −2.60668e9 −0.760541
\(531\) 0 0
\(532\) 3.53186e6 0.00101698
\(533\) −6.99242e9 −2.00024
\(534\) 0 0
\(535\) 2.44318e9 0.689789
\(536\) 3.73826e8 0.104856
\(537\) 0 0
\(538\) −4.84090e9 −1.34026
\(539\) 8.33420e8 0.229247
\(540\) 0 0
\(541\) 6.95764e9 1.88917 0.944587 0.328262i \(-0.106463\pi\)
0.944587 + 0.328262i \(0.106463\pi\)
\(542\) −6.50937e9 −1.75607
\(543\) 0 0
\(544\) −1.11151e8 −0.0296018
\(545\) 2.11601e8 0.0559926
\(546\) 0 0
\(547\) 5.57680e9 1.45690 0.728449 0.685100i \(-0.240241\pi\)
0.728449 + 0.685100i \(0.240241\pi\)
\(548\) 5.55602e6 0.00144222
\(549\) 0 0
\(550\) −1.25765e9 −0.322323
\(551\) −1.74958e9 −0.445557
\(552\) 0 0
\(553\) 1.94510e9 0.489108
\(554\) −2.33823e9 −0.584257
\(555\) 0 0
\(556\) −1.87925e7 −0.00463685
\(557\) 4.18187e9 1.02536 0.512681 0.858579i \(-0.328653\pi\)
0.512681 + 0.858579i \(0.328653\pi\)
\(558\) 0 0
\(559\) 3.60657e9 0.873280
\(560\) 7.08454e8 0.170472
\(561\) 0 0
\(562\) −5.45177e9 −1.29557
\(563\) −1.03544e9 −0.244538 −0.122269 0.992497i \(-0.539017\pi\)
−0.122269 + 0.992497i \(0.539017\pi\)
\(564\) 0 0
\(565\) −1.56189e9 −0.364318
\(566\) 1.56303e9 0.362334
\(567\) 0 0
\(568\) 2.36067e9 0.540525
\(569\) 4.67891e9 1.06476 0.532380 0.846505i \(-0.321298\pi\)
0.532380 + 0.846505i \(0.321298\pi\)
\(570\) 0 0
\(571\) −2.09498e9 −0.470927 −0.235463 0.971883i \(-0.575661\pi\)
−0.235463 + 0.971883i \(0.575661\pi\)
\(572\) −7.02671e7 −0.0156988
\(573\) 0 0
\(574\) −3.02482e9 −0.667587
\(575\) −2.16011e8 −0.0473846
\(576\) 0 0
\(577\) 5.97079e9 1.29395 0.646974 0.762512i \(-0.276034\pi\)
0.646974 + 0.762512i \(0.276034\pi\)
\(578\) −9.14297e9 −1.96943
\(579\) 0 0
\(580\) 2.57462e7 0.00547918
\(581\) −6.94508e8 −0.146913
\(582\) 0 0
\(583\) −1.30014e10 −2.71737
\(584\) 4.08309e9 0.848288
\(585\) 0 0
\(586\) 7.38497e9 1.51603
\(587\) −3.25018e9 −0.663244 −0.331622 0.943412i \(-0.607596\pi\)
−0.331622 + 0.943412i \(0.607596\pi\)
\(588\) 0 0
\(589\) 1.97558e9 0.398374
\(590\) 4.00612e7 0.00803048
\(591\) 0 0
\(592\) −8.95438e9 −1.77382
\(593\) 8.02960e9 1.58126 0.790629 0.612296i \(-0.209754\pi\)
0.790629 + 0.612296i \(0.209754\pi\)
\(594\) 0 0
\(595\) 1.49450e9 0.290861
\(596\) 2.39123e7 0.00462657
\(597\) 0 0
\(598\) −1.41516e9 −0.270615
\(599\) −9.80486e8 −0.186401 −0.0932003 0.995647i \(-0.529710\pi\)
−0.0932003 + 0.995647i \(0.529710\pi\)
\(600\) 0 0
\(601\) 9.69399e9 1.82155 0.910777 0.412899i \(-0.135484\pi\)
0.910777 + 0.412899i \(0.135484\pi\)
\(602\) 1.56015e9 0.291460
\(603\) 0 0
\(604\) −7.22762e7 −0.0133465
\(605\) −3.83690e9 −0.704428
\(606\) 0 0
\(607\) −5.43368e9 −0.986128 −0.493064 0.869993i \(-0.664123\pi\)
−0.493064 + 0.869993i \(0.664123\pi\)
\(608\) 2.98224e7 0.00538121
\(609\) 0 0
\(610\) −1.86818e9 −0.333245
\(611\) −4.41831e9 −0.783631
\(612\) 0 0
\(613\) −1.46693e8 −0.0257215 −0.0128608 0.999917i \(-0.504094\pi\)
−0.0128608 + 0.999917i \(0.504094\pi\)
\(614\) 4.77023e8 0.0831668
\(615\) 0 0
\(616\) 3.50342e9 0.603893
\(617\) 6.19027e8 0.106099 0.0530495 0.998592i \(-0.483106\pi\)
0.0530495 + 0.998592i \(0.483106\pi\)
\(618\) 0 0
\(619\) −9.45693e9 −1.60263 −0.801314 0.598244i \(-0.795865\pi\)
−0.801314 + 0.598244i \(0.795865\pi\)
\(620\) −2.90719e7 −0.00489895
\(621\) 0 0
\(622\) 3.29467e9 0.548966
\(623\) −1.48957e9 −0.246804
\(624\) 0 0
\(625\) 2.44141e8 0.0400000
\(626\) 5.61177e8 0.0914303
\(627\) 0 0
\(628\) 3.45598e7 0.00556817
\(629\) −1.88894e10 −3.02651
\(630\) 0 0
\(631\) −2.88883e8 −0.0457741 −0.0228870 0.999738i \(-0.507286\pi\)
−0.0228870 + 0.999738i \(0.507286\pi\)
\(632\) 8.17658e9 1.28843
\(633\) 0 0
\(634\) −4.88663e9 −0.761548
\(635\) −2.51390e9 −0.389619
\(636\) 0 0
\(637\) −1.05993e9 −0.162475
\(638\) 1.50575e10 2.29552
\(639\) 0 0
\(640\) 3.00351e9 0.452897
\(641\) −1.15705e10 −1.73520 −0.867600 0.497263i \(-0.834339\pi\)
−0.867600 + 0.497263i \(0.834339\pi\)
\(642\) 0 0
\(643\) 1.23393e10 1.83043 0.915215 0.402966i \(-0.132021\pi\)
0.915215 + 0.402966i \(0.132021\pi\)
\(644\) −5.22082e6 −0.000770261 0
\(645\) 0 0
\(646\) 3.70404e9 0.540583
\(647\) −7.08241e9 −1.02805 −0.514027 0.857774i \(-0.671847\pi\)
−0.514027 + 0.857774i \(0.671847\pi\)
\(648\) 0 0
\(649\) 1.99813e8 0.0286925
\(650\) 1.59945e9 0.228441
\(651\) 0 0
\(652\) −1.19613e8 −0.0169009
\(653\) −6.93556e9 −0.974732 −0.487366 0.873198i \(-0.662042\pi\)
−0.487366 + 0.873198i \(0.662042\pi\)
\(654\) 0 0
\(655\) 2.70112e9 0.375577
\(656\) −1.28247e10 −1.77372
\(657\) 0 0
\(658\) −1.91130e9 −0.261540
\(659\) −5.62562e9 −0.765723 −0.382861 0.923806i \(-0.625061\pi\)
−0.382861 + 0.923806i \(0.625061\pi\)
\(660\) 0 0
\(661\) 5.51506e9 0.742754 0.371377 0.928482i \(-0.378886\pi\)
0.371377 + 0.928482i \(0.378886\pi\)
\(662\) 1.34690e10 1.80440
\(663\) 0 0
\(664\) −2.91949e9 −0.387006
\(665\) −4.00981e8 −0.0528747
\(666\) 0 0
\(667\) 2.58624e9 0.337465
\(668\) 1.76818e7 0.00229514
\(669\) 0 0
\(670\) 3.68232e8 0.0472998
\(671\) −9.31791e9 −1.19067
\(672\) 0 0
\(673\) −1.04597e10 −1.32271 −0.661355 0.750073i \(-0.730018\pi\)
−0.661355 + 0.750073i \(0.730018\pi\)
\(674\) −4.40398e9 −0.554033
\(675\) 0 0
\(676\) 2.02777e7 0.00252467
\(677\) 2.38983e9 0.296010 0.148005 0.988987i \(-0.452715\pi\)
0.148005 + 0.988987i \(0.452715\pi\)
\(678\) 0 0
\(679\) 4.98995e9 0.611719
\(680\) 6.28238e9 0.766202
\(681\) 0 0
\(682\) −1.70026e10 −2.05243
\(683\) 8.97218e9 1.07752 0.538760 0.842459i \(-0.318893\pi\)
0.538760 + 0.842459i \(0.318893\pi\)
\(684\) 0 0
\(685\) −6.30789e8 −0.0749837
\(686\) −4.58508e8 −0.0542266
\(687\) 0 0
\(688\) 6.61478e9 0.774383
\(689\) 1.65349e10 1.92590
\(690\) 0 0
\(691\) −6.69457e9 −0.771879 −0.385940 0.922524i \(-0.626123\pi\)
−0.385940 + 0.922524i \(0.626123\pi\)
\(692\) 4.43994e6 0.000509337 0
\(693\) 0 0
\(694\) −5.82366e9 −0.661360
\(695\) 2.13356e9 0.241078
\(696\) 0 0
\(697\) −2.70540e10 −3.02633
\(698\) 5.47115e9 0.608955
\(699\) 0 0
\(700\) 5.90070e6 0.000650220 0
\(701\) 4.81924e9 0.528404 0.264202 0.964467i \(-0.414891\pi\)
0.264202 + 0.964467i \(0.414891\pi\)
\(702\) 0 0
\(703\) 5.06813e9 0.550179
\(704\) 1.47261e10 1.59069
\(705\) 0 0
\(706\) 1.23131e10 1.31689
\(707\) −5.04594e9 −0.537000
\(708\) 0 0
\(709\) 1.00519e10 1.05922 0.529612 0.848240i \(-0.322338\pi\)
0.529612 + 0.848240i \(0.322338\pi\)
\(710\) 2.32534e9 0.243828
\(711\) 0 0
\(712\) −6.26166e9 −0.650144
\(713\) −2.92031e9 −0.301728
\(714\) 0 0
\(715\) 7.97761e9 0.816209
\(716\) −6.58758e6 −0.000670703 0
\(717\) 0 0
\(718\) −9.03205e9 −0.910648
\(719\) −1.86383e10 −1.87005 −0.935027 0.354576i \(-0.884625\pi\)
−0.935027 + 0.354576i \(0.884625\pi\)
\(720\) 0 0
\(721\) −2.50852e9 −0.249256
\(722\) 9.16259e9 0.906021
\(723\) 0 0
\(724\) −1.02379e8 −0.0100260
\(725\) −2.92303e9 −0.284873
\(726\) 0 0
\(727\) −1.72431e10 −1.66435 −0.832175 0.554512i \(-0.812905\pi\)
−0.832175 + 0.554512i \(0.812905\pi\)
\(728\) −4.45558e9 −0.428000
\(729\) 0 0
\(730\) 4.02198e9 0.382658
\(731\) 1.39540e10 1.32126
\(732\) 0 0
\(733\) −1.16999e10 −1.09728 −0.548639 0.836059i \(-0.684854\pi\)
−0.548639 + 0.836059i \(0.684854\pi\)
\(734\) 2.09997e9 0.196009
\(735\) 0 0
\(736\) −4.40836e7 −0.00407573
\(737\) 1.83663e9 0.169000
\(738\) 0 0
\(739\) 3.61810e9 0.329781 0.164890 0.986312i \(-0.447273\pi\)
0.164890 + 0.986312i \(0.447273\pi\)
\(740\) −7.45808e7 −0.00676575
\(741\) 0 0
\(742\) 7.15274e9 0.642775
\(743\) 1.33275e10 1.19203 0.596017 0.802971i \(-0.296749\pi\)
0.596017 + 0.802971i \(0.296749\pi\)
\(744\) 0 0
\(745\) −2.71483e9 −0.240544
\(746\) −3.41800e9 −0.301430
\(747\) 0 0
\(748\) −2.71867e8 −0.0237520
\(749\) −6.70407e9 −0.582978
\(750\) 0 0
\(751\) 6.15962e9 0.530657 0.265328 0.964158i \(-0.414520\pi\)
0.265328 + 0.964158i \(0.414520\pi\)
\(752\) −8.10358e9 −0.694887
\(753\) 0 0
\(754\) −1.91499e10 −1.62692
\(755\) 8.20570e9 0.693907
\(756\) 0 0
\(757\) −6.89179e9 −0.577426 −0.288713 0.957416i \(-0.593227\pi\)
−0.288713 + 0.957416i \(0.593227\pi\)
\(758\) −1.86893e10 −1.55866
\(759\) 0 0
\(760\) −1.68559e9 −0.139285
\(761\) −5.78765e9 −0.476054 −0.238027 0.971259i \(-0.576501\pi\)
−0.238027 + 0.971259i \(0.576501\pi\)
\(762\) 0 0
\(763\) −5.80634e8 −0.0473224
\(764\) 5.21721e6 0.000423264 0
\(765\) 0 0
\(766\) 1.12912e10 0.907698
\(767\) −2.54118e8 −0.0203354
\(768\) 0 0
\(769\) 6.81983e9 0.540794 0.270397 0.962749i \(-0.412845\pi\)
0.270397 + 0.962749i \(0.412845\pi\)
\(770\) 3.45100e9 0.272413
\(771\) 0 0
\(772\) 7.01881e7 0.00549038
\(773\) 3.94610e8 0.0307284 0.0153642 0.999882i \(-0.495109\pi\)
0.0153642 + 0.999882i \(0.495109\pi\)
\(774\) 0 0
\(775\) 3.30061e9 0.254705
\(776\) 2.09761e10 1.61142
\(777\) 0 0
\(778\) 1.83352e10 1.39591
\(779\) 7.25872e9 0.550148
\(780\) 0 0
\(781\) 1.15981e10 0.871183
\(782\) −5.47534e9 −0.409437
\(783\) 0 0
\(784\) −1.94400e9 −0.144075
\(785\) −3.92367e9 −0.289500
\(786\) 0 0
\(787\) −3.03861e9 −0.222210 −0.111105 0.993809i \(-0.535439\pi\)
−0.111105 + 0.993809i \(0.535439\pi\)
\(788\) −1.66146e8 −0.0120962
\(789\) 0 0
\(790\) 8.05422e9 0.581204
\(791\) 4.28582e9 0.307905
\(792\) 0 0
\(793\) 1.18503e10 0.843867
\(794\) 2.13216e10 1.51164
\(795\) 0 0
\(796\) −6.63702e7 −0.00466420
\(797\) 1.02857e10 0.719663 0.359831 0.933017i \(-0.382834\pi\)
0.359831 + 0.933017i \(0.382834\pi\)
\(798\) 0 0
\(799\) −1.70947e10 −1.18562
\(800\) 4.98245e7 0.00344055
\(801\) 0 0
\(802\) 5.33006e9 0.364856
\(803\) 2.00605e10 1.36721
\(804\) 0 0
\(805\) 5.92733e8 0.0400473
\(806\) 2.16235e10 1.45463
\(807\) 0 0
\(808\) −2.12115e10 −1.41459
\(809\) 2.39679e9 0.159151 0.0795755 0.996829i \(-0.474644\pi\)
0.0795755 + 0.996829i \(0.474644\pi\)
\(810\) 0 0
\(811\) 2.41910e10 1.59250 0.796251 0.604966i \(-0.206813\pi\)
0.796251 + 0.604966i \(0.206813\pi\)
\(812\) −7.06476e7 −0.00463075
\(813\) 0 0
\(814\) −4.36182e10 −2.83454
\(815\) 1.35799e10 0.878710
\(816\) 0 0
\(817\) −3.74393e9 −0.240188
\(818\) 1.59980e10 1.02195
\(819\) 0 0
\(820\) −1.06817e8 −0.00676537
\(821\) −2.87851e10 −1.81537 −0.907687 0.419648i \(-0.862154\pi\)
−0.907687 + 0.419648i \(0.862154\pi\)
\(822\) 0 0
\(823\) −8.45606e9 −0.528772 −0.264386 0.964417i \(-0.585169\pi\)
−0.264386 + 0.964417i \(0.585169\pi\)
\(824\) −1.05450e10 −0.656602
\(825\) 0 0
\(826\) −1.09928e8 −0.00678699
\(827\) −3.68371e9 −0.226473 −0.113236 0.993568i \(-0.536122\pi\)
−0.113236 + 0.993568i \(0.536122\pi\)
\(828\) 0 0
\(829\) 6.49057e9 0.395678 0.197839 0.980235i \(-0.436608\pi\)
0.197839 + 0.980235i \(0.436608\pi\)
\(830\) −2.87580e9 −0.174576
\(831\) 0 0
\(832\) −1.87284e10 −1.12738
\(833\) −4.10090e9 −0.245823
\(834\) 0 0
\(835\) −2.00746e9 −0.119329
\(836\) 7.29432e7 0.00431781
\(837\) 0 0
\(838\) −5.55251e9 −0.325938
\(839\) −1.12657e10 −0.658554 −0.329277 0.944233i \(-0.606805\pi\)
−0.329277 + 0.944233i \(0.606805\pi\)
\(840\) 0 0
\(841\) 1.77469e10 1.02881
\(842\) −1.10703e8 −0.00639096
\(843\) 0 0
\(844\) 2.43342e8 0.0139322
\(845\) −2.30218e9 −0.131262
\(846\) 0 0
\(847\) 1.05285e10 0.595351
\(848\) 3.03264e10 1.70780
\(849\) 0 0
\(850\) 6.18837e9 0.345629
\(851\) −7.49174e9 −0.416705
\(852\) 0 0
\(853\) 1.11602e10 0.615675 0.307838 0.951439i \(-0.400395\pi\)
0.307838 + 0.951439i \(0.400395\pi\)
\(854\) 5.12628e9 0.281643
\(855\) 0 0
\(856\) −2.81817e10 −1.53571
\(857\) −3.34670e9 −0.181629 −0.0908144 0.995868i \(-0.528947\pi\)
−0.0908144 + 0.995868i \(0.528947\pi\)
\(858\) 0 0
\(859\) 1.47916e10 0.796233 0.398117 0.917335i \(-0.369664\pi\)
0.398117 + 0.917335i \(0.369664\pi\)
\(860\) 5.50944e7 0.00295368
\(861\) 0 0
\(862\) −6.97710e9 −0.371022
\(863\) 2.61067e10 1.38266 0.691329 0.722540i \(-0.257026\pi\)
0.691329 + 0.722540i \(0.257026\pi\)
\(864\) 0 0
\(865\) −5.04078e8 −0.0264814
\(866\) 1.44192e10 0.754447
\(867\) 0 0
\(868\) 7.97734e7 0.00414037
\(869\) 4.01721e10 2.07661
\(870\) 0 0
\(871\) −2.33579e9 −0.119776
\(872\) −2.44079e9 −0.124659
\(873\) 0 0
\(874\) 1.46906e9 0.0744303
\(875\) −6.69922e8 −0.0338062
\(876\) 0 0
\(877\) 9.77952e9 0.489575 0.244787 0.969577i \(-0.421282\pi\)
0.244787 + 0.969577i \(0.421282\pi\)
\(878\) 2.77051e10 1.38143
\(879\) 0 0
\(880\) 1.46317e10 0.723776
\(881\) 2.43721e9 0.120082 0.0600409 0.998196i \(-0.480877\pi\)
0.0600409 + 0.998196i \(0.480877\pi\)
\(882\) 0 0
\(883\) 1.46066e9 0.0713982 0.0356991 0.999363i \(-0.488634\pi\)
0.0356991 + 0.999363i \(0.488634\pi\)
\(884\) 3.45754e8 0.0168339
\(885\) 0 0
\(886\) 8.09142e9 0.390847
\(887\) 3.37167e9 0.162223 0.0811115 0.996705i \(-0.474153\pi\)
0.0811115 + 0.996705i \(0.474153\pi\)
\(888\) 0 0
\(889\) 6.89815e9 0.329288
\(890\) −6.16796e9 −0.293276
\(891\) 0 0
\(892\) −3.17234e8 −0.0149659
\(893\) 4.58658e9 0.215531
\(894\) 0 0
\(895\) 7.47905e8 0.0348711
\(896\) −8.24163e9 −0.382768
\(897\) 0 0
\(898\) 1.85012e10 0.852577
\(899\) −3.95174e10 −1.81397
\(900\) 0 0
\(901\) 6.39742e10 2.91386
\(902\) −6.24713e10 −2.83438
\(903\) 0 0
\(904\) 1.80162e10 0.811098
\(905\) 1.16234e10 0.521270
\(906\) 0 0
\(907\) 3.26298e10 1.45207 0.726037 0.687656i \(-0.241360\pi\)
0.726037 + 0.687656i \(0.241360\pi\)
\(908\) −1.82906e8 −0.00810828
\(909\) 0 0
\(910\) −4.38890e9 −0.193068
\(911\) −1.18670e9 −0.0520027 −0.0260013 0.999662i \(-0.508277\pi\)
−0.0260013 + 0.999662i \(0.508277\pi\)
\(912\) 0 0
\(913\) −1.43436e10 −0.623751
\(914\) 3.80983e10 1.65042
\(915\) 0 0
\(916\) −2.17767e8 −0.00936175
\(917\) −7.41187e9 −0.317421
\(918\) 0 0
\(919\) −2.05295e10 −0.872517 −0.436258 0.899821i \(-0.643697\pi\)
−0.436258 + 0.899821i \(0.643697\pi\)
\(920\) 2.49166e9 0.105495
\(921\) 0 0
\(922\) −9.08177e9 −0.381603
\(923\) −1.47502e10 −0.617438
\(924\) 0 0
\(925\) 8.46735e9 0.351764
\(926\) −7.02987e9 −0.290944
\(927\) 0 0
\(928\) −5.96536e8 −0.0245030
\(929\) −2.59782e10 −1.06305 −0.531524 0.847043i \(-0.678381\pi\)
−0.531524 + 0.847043i \(0.678381\pi\)
\(930\) 0 0
\(931\) 1.10029e9 0.0446873
\(932\) −1.64591e8 −0.00665963
\(933\) 0 0
\(934\) 4.50741e10 1.81014
\(935\) 3.08658e10 1.23491
\(936\) 0 0
\(937\) −2.87793e10 −1.14286 −0.571428 0.820652i \(-0.693610\pi\)
−0.571428 + 0.820652i \(0.693610\pi\)
\(938\) −1.01043e9 −0.0399756
\(939\) 0 0
\(940\) −6.74945e7 −0.00265046
\(941\) −8.32316e9 −0.325630 −0.162815 0.986657i \(-0.552057\pi\)
−0.162815 + 0.986657i \(0.552057\pi\)
\(942\) 0 0
\(943\) −1.07299e10 −0.416682
\(944\) −4.66076e8 −0.0180324
\(945\) 0 0
\(946\) 3.22217e10 1.23745
\(947\) −3.47394e10 −1.32922 −0.664611 0.747190i \(-0.731403\pi\)
−0.664611 + 0.747190i \(0.731403\pi\)
\(948\) 0 0
\(949\) −2.55125e10 −0.968993
\(950\) −1.66037e9 −0.0628307
\(951\) 0 0
\(952\) −1.72389e10 −0.647559
\(953\) 2.15908e10 0.808059 0.404030 0.914746i \(-0.367609\pi\)
0.404030 + 0.914746i \(0.367609\pi\)
\(954\) 0 0
\(955\) −5.92323e8 −0.0220063
\(956\) 1.89495e8 0.00701449
\(957\) 0 0
\(958\) 1.98866e9 0.0730770
\(959\) 1.73088e9 0.0633728
\(960\) 0 0
\(961\) 1.71093e10 0.621872
\(962\) 5.54727e10 2.00894
\(963\) 0 0
\(964\) 6.36683e7 0.00228904
\(965\) −7.96863e9 −0.285455
\(966\) 0 0
\(967\) −1.09511e10 −0.389463 −0.194731 0.980857i \(-0.562383\pi\)
−0.194731 + 0.980857i \(0.562383\pi\)
\(968\) 4.42582e10 1.56830
\(969\) 0 0
\(970\) 2.06622e10 0.726902
\(971\) −3.82109e10 −1.33943 −0.669714 0.742619i \(-0.733583\pi\)
−0.669714 + 0.742619i \(0.733583\pi\)
\(972\) 0 0
\(973\) −5.85449e9 −0.203748
\(974\) 2.36782e10 0.821094
\(975\) 0 0
\(976\) 2.17346e10 0.748301
\(977\) 5.99153e8 0.0205545 0.0102772 0.999947i \(-0.496729\pi\)
0.0102772 + 0.999947i \(0.496729\pi\)
\(978\) 0 0
\(979\) −3.07639e10 −1.04786
\(980\) −1.61915e7 −0.000549537 0
\(981\) 0 0
\(982\) −4.09381e10 −1.37955
\(983\) 2.33267e10 0.783278 0.391639 0.920119i \(-0.371908\pi\)
0.391639 + 0.920119i \(0.371908\pi\)
\(984\) 0 0
\(985\) 1.88630e10 0.628902
\(986\) −7.40918e10 −2.46151
\(987\) 0 0
\(988\) −9.27676e7 −0.00306018
\(989\) 5.53430e9 0.181918
\(990\) 0 0
\(991\) −7.22304e9 −0.235756 −0.117878 0.993028i \(-0.537609\pi\)
−0.117878 + 0.993028i \(0.537609\pi\)
\(992\) 6.73592e8 0.0219082
\(993\) 0 0
\(994\) −6.38074e9 −0.206072
\(995\) 7.53517e9 0.242500
\(996\) 0 0
\(997\) −2.26921e10 −0.725174 −0.362587 0.931950i \(-0.618106\pi\)
−0.362587 + 0.931950i \(0.618106\pi\)
\(998\) 2.83465e10 0.902697
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 315.8.a.q.1.3 yes 8
3.2 odd 2 315.8.a.p.1.6 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
315.8.a.p.1.6 8 3.2 odd 2
315.8.a.q.1.3 yes 8 1.1 even 1 trivial