Defining parameters
Level: | \( N \) | \(=\) | \( 315 = 3^{2} \cdot 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 8 \) |
Character orbit: | \([\chi]\) | \(=\) | 315.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 17 \) | ||
Sturm bound: | \(384\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_0(315))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 344 | 70 | 274 |
Cusp forms | 328 | 70 | 258 |
Eisenstein series | 16 | 0 | 16 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | \(5\) | \(7\) | Fricke | Dim |
---|---|---|---|---|
\(+\) | \(+\) | \(+\) | \(+\) | \(6\) |
\(+\) | \(+\) | \(-\) | \(-\) | \(8\) |
\(+\) | \(-\) | \(+\) | \(-\) | \(6\) |
\(+\) | \(-\) | \(-\) | \(+\) | \(8\) |
\(-\) | \(+\) | \(+\) | \(-\) | \(10\) |
\(-\) | \(+\) | \(-\) | \(+\) | \(11\) |
\(-\) | \(-\) | \(+\) | \(+\) | \(12\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(9\) |
Plus space | \(+\) | \(37\) | ||
Minus space | \(-\) | \(33\) |
Trace form
Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_0(315))\) into newform subspaces
Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_0(315))\) into lower level spaces
\( S_{8}^{\mathrm{old}}(\Gamma_0(315)) \simeq \) \(S_{8}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 8}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(35))\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(45))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(63))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(105))\)\(^{\oplus 2}\)