Properties

Label 315.8.a.q
Level $315$
Weight $8$
Character orbit 315.a
Self dual yes
Analytic conductor $98.401$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [315,8,Mod(1,315)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(315, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("315.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 315.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(98.4012830275\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{7} - 832x^{6} + 1124x^{5} + 214693x^{4} - 78223x^{3} - 18019982x^{2} - 2181234x + 146417544 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{7}\cdot 3^{4} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 + 1) q^{2} + (\beta_{2} + 81) q^{4} - 125 q^{5} + 343 q^{7} + ( - \beta_{3} - 2 \beta_{2} + \cdots - 26) q^{8} + (125 \beta_1 - 125) q^{10} + (\beta_{4} - \beta_{2} - 17 \beta_1 - 123) q^{11}+ \cdots + ( - 117649 \beta_1 + 117649) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 5 q^{2} + 651 q^{4} - 1000 q^{5} + 2744 q^{7} - 405 q^{8} - 625 q^{10} - 1040 q^{11} - 10412 q^{13} + 1715 q^{14} + 23555 q^{16} - 33600 q^{17} + 25508 q^{19} - 81375 q^{20} + 27440 q^{22} - 110100 q^{23}+ \cdots + 588245 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 3x^{7} - 832x^{6} + 1124x^{5} + 214693x^{4} - 78223x^{3} - 18019982x^{2} - 2181234x + 146417544 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2\nu - 208 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 5\nu^{2} - 313\nu + 645 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 639 \nu^{7} + 32908 \nu^{6} + 417668 \nu^{5} - 21685840 \nu^{4} - 95289051 \nu^{3} + \cdots - 64106712280 ) / 10948192 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 1555 \nu^{7} - 11548 \nu^{6} - 1239124 \nu^{5} + 5852672 \nu^{4} + 304847183 \nu^{3} + \cdots + 710236072 ) / 5474096 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 4171 \nu^{7} - 82020 \nu^{6} - 2473564 \nu^{5} + 44144648 \nu^{4} + 381192495 \nu^{3} + \cdots + 12880491576 ) / 10948192 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 556 \nu^{7} + 3469 \nu^{6} + 359669 \nu^{5} - 1512467 \nu^{4} - 57142863 \nu^{3} + \cdots - 2058185000 ) / 1368524 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2\beta _1 + 208 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 5\beta_{2} + 323\beta _1 + 395 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -2\beta_{7} - 2\beta_{6} - \beta_{5} - 4\beta_{4} + 7\beta_{3} + 459\beta_{2} + 1591\beta _1 + 67010 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -19\beta_{7} - 3\beta_{6} - 25\beta_{5} - 9\beta_{4} + 625\beta_{3} + 3838\beta_{2} + 121318\beta _1 + 320678 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( - 1431 \beta_{7} - 1379 \beta_{6} - 686 \beta_{5} - 2379 \beta_{4} + 5759 \beta_{3} + 207676 \beta_{2} + \cdots + 25111157 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( - 18240 \beta_{7} - 5104 \beta_{6} - 17732 \beta_{5} - 9784 \beta_{4} + 318419 \beta_{3} + \cdots + 200451213 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
22.2018
15.7627
12.3623
2.91759
−3.11340
−12.9246
−15.0418
−19.1647
−21.2018 0 321.518 −125.000 0 343.000 −4102.93 0 2650.23
1.2 −14.7627 0 89.9380 −125.000 0 343.000 561.898 0 1845.34
1.3 −11.3623 0 1.10101 −125.000 0 343.000 1441.86 0 1420.28
1.4 −1.91759 0 −124.323 −125.000 0 343.000 483.851 0 239.698
1.5 4.11340 0 −111.080 −125.000 0 343.000 −983.432 0 −514.175
1.6 13.9246 0 65.8934 −125.000 0 343.000 −864.807 0 −1740.57
1.7 16.0418 0 129.338 −125.000 0 343.000 21.4631 0 −2005.22
1.8 20.1647 0 278.615 −125.000 0 343.000 3037.10 0 −2520.59
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.8
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(5\) \( +1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 315.8.a.q yes 8
3.b odd 2 1 315.8.a.p 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
315.8.a.p 8 3.b odd 2 1
315.8.a.q yes 8 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{8} - 5 T_{2}^{7} - 825 T_{2}^{6} + 3875 T_{2}^{5} + 207798 T_{2}^{4} - 775100 T_{2}^{3} + \cdots + 126353088 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(315))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} - 5 T^{7} + \cdots + 126353088 \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( (T + 125)^{8} \) Copy content Toggle raw display
$7$ \( (T - 343)^{8} \) Copy content Toggle raw display
$11$ \( T^{8} + \cdots + 55\!\cdots\!00 \) Copy content Toggle raw display
$13$ \( T^{8} + \cdots - 19\!\cdots\!56 \) Copy content Toggle raw display
$17$ \( T^{8} + \cdots + 38\!\cdots\!52 \) Copy content Toggle raw display
$19$ \( T^{8} + \cdots + 94\!\cdots\!00 \) Copy content Toggle raw display
$23$ \( T^{8} + \cdots + 33\!\cdots\!00 \) Copy content Toggle raw display
$29$ \( T^{8} + \cdots + 78\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{8} + \cdots + 22\!\cdots\!24 \) Copy content Toggle raw display
$37$ \( T^{8} + \cdots - 10\!\cdots\!84 \) Copy content Toggle raw display
$41$ \( T^{8} + \cdots + 21\!\cdots\!32 \) Copy content Toggle raw display
$43$ \( T^{8} + \cdots + 11\!\cdots\!44 \) Copy content Toggle raw display
$47$ \( T^{8} + \cdots - 25\!\cdots\!88 \) Copy content Toggle raw display
$53$ \( T^{8} + \cdots + 34\!\cdots\!08 \) Copy content Toggle raw display
$59$ \( T^{8} + \cdots - 29\!\cdots\!68 \) Copy content Toggle raw display
$61$ \( T^{8} + \cdots + 65\!\cdots\!00 \) Copy content Toggle raw display
$67$ \( T^{8} + \cdots + 93\!\cdots\!36 \) Copy content Toggle raw display
$71$ \( T^{8} + \cdots - 25\!\cdots\!48 \) Copy content Toggle raw display
$73$ \( T^{8} + \cdots - 76\!\cdots\!96 \) Copy content Toggle raw display
$79$ \( T^{8} + \cdots + 91\!\cdots\!84 \) Copy content Toggle raw display
$83$ \( T^{8} + \cdots + 11\!\cdots\!00 \) Copy content Toggle raw display
$89$ \( T^{8} + \cdots - 99\!\cdots\!68 \) Copy content Toggle raw display
$97$ \( T^{8} + \cdots + 51\!\cdots\!24 \) Copy content Toggle raw display
show more
show less