Properties

Label 315.2.l.c.151.10
Level $315$
Weight $2$
Character 315.151
Analytic conductor $2.515$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [315,2,Mod(121,315)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(315, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 0, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("315.121"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 315.l (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [36] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.51528766367\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 151.10
Character \(\chi\) \(=\) 315.151
Dual form 315.2.l.c.121.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.0255806 q^{2} +(0.676102 + 1.59464i) q^{3} -1.99935 q^{4} +(-0.500000 + 0.866025i) q^{5} +(0.0172951 + 0.0407920i) q^{6} +(-2.37158 + 1.17286i) q^{7} -0.102306 q^{8} +(-2.08577 + 2.15628i) q^{9} +(-0.0127903 + 0.0221535i) q^{10} +(-1.89007 - 3.27369i) q^{11} +(-1.35176 - 3.18824i) q^{12} +(-2.77025 - 4.79822i) q^{13} +(-0.0606666 + 0.0300025i) q^{14} +(-1.71905 - 0.211800i) q^{15} +3.99607 q^{16} +(-0.271942 + 0.471017i) q^{17} +(-0.0533554 + 0.0551591i) q^{18} +(3.62126 + 6.27220i) q^{19} +(0.999673 - 1.73148i) q^{20} +(-3.47372 - 2.98886i) q^{21} +(-0.0483491 - 0.0837432i) q^{22} +(-3.62796 + 6.28380i) q^{23} +(-0.0691692 - 0.163141i) q^{24} +(-0.500000 - 0.866025i) q^{25} +(-0.0708649 - 0.122742i) q^{26} +(-4.84870 - 1.86819i) q^{27} +(4.74161 - 2.34495i) q^{28} +(-4.04878 + 7.01269i) q^{29} +(-0.0439745 - 0.00541797i) q^{30} +1.74165 q^{31} +0.306834 q^{32} +(3.94249 - 5.22733i) q^{33} +(-0.00695644 + 0.0120489i) q^{34} +(0.170066 - 2.64028i) q^{35} +(4.17018 - 4.31116i) q^{36} +(1.67242 + 2.89671i) q^{37} +(0.0926341 + 0.160447i) q^{38} +(5.77847 - 7.66166i) q^{39} +(0.0511529 - 0.0885994i) q^{40} +(0.238169 + 0.412522i) q^{41} +(-0.0888600 - 0.0764568i) q^{42} +(-0.279323 + 0.483802i) q^{43} +(3.77890 + 6.54524i) q^{44} +(-0.824510 - 2.88447i) q^{45} +(-0.0928054 + 0.160744i) q^{46} -8.57725 q^{47} +(2.70175 + 6.37231i) q^{48} +(4.24881 - 5.56306i) q^{49} +(-0.0127903 - 0.0221535i) q^{50} +(-0.934964 - 0.115194i) q^{51} +(5.53870 + 9.59330i) q^{52} +(-4.26510 + 7.38738i) q^{53} +(-0.124033 - 0.0477896i) q^{54} +3.78014 q^{55} +(0.242627 - 0.119990i) q^{56} +(-7.55358 + 10.0153i) q^{57} +(-0.103570 + 0.179389i) q^{58} +1.40842 q^{59} +(3.43698 + 0.423461i) q^{60} +1.75402 q^{61} +0.0445526 q^{62} +(2.41757 - 7.56012i) q^{63} -7.98430 q^{64} +5.54051 q^{65} +(0.100851 - 0.133719i) q^{66} +12.3831 q^{67} +(0.543705 - 0.941725i) q^{68} +(-12.4733 - 1.53680i) q^{69} +(0.00435040 - 0.0675400i) q^{70} +10.3293 q^{71} +(0.213387 - 0.220600i) q^{72} +(2.91561 - 5.04998i) q^{73} +(0.0427814 + 0.0740996i) q^{74} +(1.04295 - 1.38284i) q^{75} +(-7.24015 - 12.5403i) q^{76} +(8.32203 + 5.54705i) q^{77} +(0.147817 - 0.195990i) q^{78} +2.96664 q^{79} +(-1.99804 + 3.46070i) q^{80} +(-0.299114 - 8.99503i) q^{81} +(0.00609253 + 0.0105526i) q^{82} +(-3.97711 + 6.88856i) q^{83} +(6.94517 + 5.97575i) q^{84} +(-0.271942 - 0.471017i) q^{85} +(-0.00714526 + 0.0123760i) q^{86} +(-13.9201 - 1.71506i) q^{87} +(0.193365 + 0.334918i) q^{88} +(-9.02021 - 15.6235i) q^{89} +(-0.0210915 - 0.0737866i) q^{90} +(12.1975 + 8.13026i) q^{91} +(7.25354 - 12.5635i) q^{92} +(1.17754 + 2.77731i) q^{93} -0.219411 q^{94} -7.24252 q^{95} +(0.207451 + 0.489290i) q^{96} +(-3.81553 + 6.60869i) q^{97} +(0.108687 - 0.142307i) q^{98} +(11.0013 + 2.75266i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q - q^{3} + 44 q^{4} - 18 q^{5} - 4 q^{6} - q^{7} - 9 q^{9} + q^{11} + 8 q^{12} + 2 q^{13} + 9 q^{14} - q^{15} + 60 q^{16} - 5 q^{17} - 21 q^{18} - 2 q^{19} - 22 q^{20} - 23 q^{21} - 19 q^{22} - 3 q^{23}+ \cdots - 89 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/315\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(136\) \(281\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0255806 0.0180882 0.00904412 0.999959i \(-0.497121\pi\)
0.00904412 + 0.999959i \(0.497121\pi\)
\(3\) 0.676102 + 1.59464i 0.390348 + 0.920667i
\(4\) −1.99935 −0.999673
\(5\) −0.500000 + 0.866025i −0.223607 + 0.387298i
\(6\) 0.0172951 + 0.0407920i 0.00706071 + 0.0166533i
\(7\) −2.37158 + 1.17286i −0.896374 + 0.443299i
\(8\) −0.102306 −0.0361706
\(9\) −2.08577 + 2.15628i −0.695257 + 0.718761i
\(10\) −0.0127903 + 0.0221535i −0.00404465 + 0.00700555i
\(11\) −1.89007 3.27369i −0.569877 0.987056i −0.996578 0.0826628i \(-0.973658\pi\)
0.426701 0.904393i \(-0.359676\pi\)
\(12\) −1.35176 3.18824i −0.390220 0.920366i
\(13\) −2.77025 4.79822i −0.768330 1.33079i −0.938468 0.345367i \(-0.887754\pi\)
0.170137 0.985420i \(-0.445579\pi\)
\(14\) −0.0606666 + 0.0300025i −0.0162138 + 0.00801849i
\(15\) −1.71905 0.211800i −0.443857 0.0546865i
\(16\) 3.99607 0.999019
\(17\) −0.271942 + 0.471017i −0.0659555 + 0.114238i −0.897117 0.441792i \(-0.854343\pi\)
0.831162 + 0.556030i \(0.187676\pi\)
\(18\) −0.0533554 + 0.0551591i −0.0125760 + 0.0130011i
\(19\) 3.62126 + 6.27220i 0.830774 + 1.43894i 0.897425 + 0.441166i \(0.145435\pi\)
−0.0666517 + 0.997776i \(0.521232\pi\)
\(20\) 0.999673 1.73148i 0.223534 0.387172i
\(21\) −3.47372 2.98886i −0.758028 0.652222i
\(22\) −0.0483491 0.0837432i −0.0103081 0.0178541i
\(23\) −3.62796 + 6.28380i −0.756481 + 1.31026i 0.188154 + 0.982140i \(0.439750\pi\)
−0.944635 + 0.328124i \(0.893584\pi\)
\(24\) −0.0691692 0.163141i −0.0141191 0.0333011i
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) −0.0708649 0.122742i −0.0138977 0.0240716i
\(27\) −4.84870 1.86819i −0.933132 0.359534i
\(28\) 4.74161 2.34495i 0.896081 0.443154i
\(29\) −4.04878 + 7.01269i −0.751839 + 1.30222i 0.195092 + 0.980785i \(0.437500\pi\)
−0.946931 + 0.321438i \(0.895834\pi\)
\(30\) −0.0439745 0.00541797i −0.00802860 0.000989182i
\(31\) 1.74165 0.312810 0.156405 0.987693i \(-0.450009\pi\)
0.156405 + 0.987693i \(0.450009\pi\)
\(32\) 0.306834 0.0542411
\(33\) 3.94249 5.22733i 0.686300 0.909962i
\(34\) −0.00695644 + 0.0120489i −0.00119302 + 0.00206637i
\(35\) 0.170066 2.64028i 0.0287465 0.446289i
\(36\) 4.17018 4.31116i 0.695030 0.718526i
\(37\) 1.67242 + 2.89671i 0.274943 + 0.476216i 0.970121 0.242622i \(-0.0780076\pi\)
−0.695177 + 0.718838i \(0.744674\pi\)
\(38\) 0.0926341 + 0.160447i 0.0150272 + 0.0260279i
\(39\) 5.77847 7.66166i 0.925296 1.22685i
\(40\) 0.0511529 0.0885994i 0.00808798 0.0140088i
\(41\) 0.238169 + 0.412522i 0.0371958 + 0.0644250i 0.884024 0.467441i \(-0.154824\pi\)
−0.846828 + 0.531867i \(0.821491\pi\)
\(42\) −0.0888600 0.0764568i −0.0137114 0.0117975i
\(43\) −0.279323 + 0.483802i −0.0425964 + 0.0737791i −0.886538 0.462657i \(-0.846896\pi\)
0.843941 + 0.536436i \(0.180230\pi\)
\(44\) 3.77890 + 6.54524i 0.569690 + 0.986733i
\(45\) −0.824510 2.88447i −0.122911 0.429992i
\(46\) −0.0928054 + 0.160744i −0.0136834 + 0.0237004i
\(47\) −8.57725 −1.25112 −0.625560 0.780176i \(-0.715129\pi\)
−0.625560 + 0.780176i \(0.715129\pi\)
\(48\) 2.70175 + 6.37231i 0.389965 + 0.919764i
\(49\) 4.24881 5.56306i 0.606972 0.794723i
\(50\) −0.0127903 0.0221535i −0.00180882 0.00313298i
\(51\) −0.934964 0.115194i −0.130921 0.0161304i
\(52\) 5.53870 + 9.59330i 0.768079 + 1.33035i
\(53\) −4.26510 + 7.38738i −0.585857 + 1.01473i 0.408911 + 0.912574i \(0.365909\pi\)
−0.994768 + 0.102160i \(0.967425\pi\)
\(54\) −0.124033 0.0477896i −0.0168787 0.00650334i
\(55\) 3.78014 0.509713
\(56\) 0.242627 0.119990i 0.0324224 0.0160344i
\(57\) −7.55358 + 10.0153i −1.00050 + 1.32655i
\(58\) −0.103570 + 0.179389i −0.0135994 + 0.0235549i
\(59\) 1.40842 0.183360 0.0916801 0.995789i \(-0.470776\pi\)
0.0916801 + 0.995789i \(0.470776\pi\)
\(60\) 3.43698 + 0.423461i 0.443712 + 0.0546686i
\(61\) 1.75402 0.224579 0.112289 0.993676i \(-0.464182\pi\)
0.112289 + 0.993676i \(0.464182\pi\)
\(62\) 0.0445526 0.00565818
\(63\) 2.41757 7.56012i 0.304585 0.952485i
\(64\) −7.98430 −0.998037
\(65\) 5.54051 0.687216
\(66\) 0.100851 0.133719i 0.0124140 0.0164596i
\(67\) 12.3831 1.51284 0.756421 0.654085i \(-0.226946\pi\)
0.756421 + 0.654085i \(0.226946\pi\)
\(68\) 0.543705 0.941725i 0.0659340 0.114201i
\(69\) −12.4733 1.53680i −1.50161 0.185009i
\(70\) 0.00435040 0.0675400i 0.000519973 0.00807258i
\(71\) 10.3293 1.22587 0.612934 0.790134i \(-0.289989\pi\)
0.612934 + 0.790134i \(0.289989\pi\)
\(72\) 0.213387 0.220600i 0.0251478 0.0259980i
\(73\) 2.91561 5.04998i 0.341246 0.591055i −0.643418 0.765515i \(-0.722484\pi\)
0.984664 + 0.174459i \(0.0558178\pi\)
\(74\) 0.0427814 + 0.0740996i 0.00497324 + 0.00861391i
\(75\) 1.04295 1.38284i 0.120430 0.159677i
\(76\) −7.24015 12.5403i −0.830502 1.43847i
\(77\) 8.32203 + 5.54705i 0.948383 + 0.632145i
\(78\) 0.147817 0.195990i 0.0167370 0.0221915i
\(79\) 2.96664 0.333773 0.166886 0.985976i \(-0.446629\pi\)
0.166886 + 0.985976i \(0.446629\pi\)
\(80\) −1.99804 + 3.46070i −0.223387 + 0.386918i
\(81\) −0.299114 8.99503i −0.0332349 0.999448i
\(82\) 0.00609253 + 0.0105526i 0.000672807 + 0.00116534i
\(83\) −3.97711 + 6.88856i −0.436544 + 0.756117i −0.997420 0.0717828i \(-0.977131\pi\)
0.560876 + 0.827900i \(0.310465\pi\)
\(84\) 6.94517 + 5.97575i 0.757780 + 0.652008i
\(85\) −0.271942 0.471017i −0.0294962 0.0510889i
\(86\) −0.00714526 + 0.0123760i −0.000770493 + 0.00133453i
\(87\) −13.9201 1.71506i −1.49239 0.183874i
\(88\) 0.193365 + 0.334918i 0.0206128 + 0.0357024i
\(89\) −9.02021 15.6235i −0.956141 1.65608i −0.731736 0.681588i \(-0.761290\pi\)
−0.224405 0.974496i \(-0.572044\pi\)
\(90\) −0.0210915 0.0737866i −0.00222324 0.00777780i
\(91\) 12.1975 + 8.13026i 1.27865 + 0.852283i
\(92\) 7.25354 12.5635i 0.756233 1.30983i
\(93\) 1.17754 + 2.77731i 0.122105 + 0.287994i
\(94\) −0.219411 −0.0226306
\(95\) −7.24252 −0.743067
\(96\) 0.207451 + 0.489290i 0.0211729 + 0.0499380i
\(97\) −3.81553 + 6.60869i −0.387408 + 0.671011i −0.992100 0.125449i \(-0.959963\pi\)
0.604692 + 0.796460i \(0.293296\pi\)
\(98\) 0.108687 0.142307i 0.0109791 0.0143751i
\(99\) 11.0013 + 2.75266i 1.10567 + 0.276652i
\(100\) 0.999673 + 1.73148i 0.0999673 + 0.173148i
\(101\) 1.71240 + 2.96596i 0.170390 + 0.295124i 0.938556 0.345126i \(-0.112164\pi\)
−0.768166 + 0.640250i \(0.778831\pi\)
\(102\) −0.0239170 0.00294674i −0.00236813 0.000291771i
\(103\) −4.71527 + 8.16709i −0.464610 + 0.804728i −0.999184 0.0403940i \(-0.987139\pi\)
0.534574 + 0.845122i \(0.320472\pi\)
\(104\) 0.283413 + 0.490886i 0.0277909 + 0.0481353i
\(105\) 4.32529 1.51390i 0.422105 0.147742i
\(106\) −0.109104 + 0.188974i −0.0105971 + 0.0183548i
\(107\) 0.0944380 + 0.163571i 0.00912967 + 0.0158131i 0.870554 0.492073i \(-0.163761\pi\)
−0.861424 + 0.507886i \(0.830427\pi\)
\(108\) 9.69422 + 3.73516i 0.932827 + 0.359416i
\(109\) 4.40407 7.62807i 0.421833 0.730636i −0.574286 0.818655i \(-0.694720\pi\)
0.996119 + 0.0880186i \(0.0280535\pi\)
\(110\) 0.0966983 0.00921982
\(111\) −3.48849 + 4.62538i −0.331113 + 0.439021i
\(112\) −9.47702 + 4.68683i −0.895494 + 0.442864i
\(113\) −5.83704 10.1101i −0.549103 0.951074i −0.998336 0.0576593i \(-0.981636\pi\)
0.449234 0.893414i \(-0.351697\pi\)
\(114\) −0.193226 + 0.256197i −0.0180972 + 0.0239950i
\(115\) −3.62796 6.28380i −0.338309 0.585968i
\(116\) 8.09490 14.0208i 0.751593 1.30180i
\(117\) 16.1244 + 4.03454i 1.49071 + 0.372993i
\(118\) 0.0360282 0.00331666
\(119\) 0.0924962 1.43600i 0.00847912 0.131638i
\(120\) 0.175869 + 0.0216683i 0.0160546 + 0.00197804i
\(121\) −1.64471 + 2.84872i −0.149519 + 0.258975i
\(122\) 0.0448689 0.00406224
\(123\) −0.496798 + 0.658702i −0.0447947 + 0.0593932i
\(124\) −3.48216 −0.312708
\(125\) 1.00000 0.0894427
\(126\) 0.0618429 0.193393i 0.00550940 0.0172288i
\(127\) 1.14668 0.101751 0.0508756 0.998705i \(-0.483799\pi\)
0.0508756 + 0.998705i \(0.483799\pi\)
\(128\) −0.817911 −0.0722938
\(129\) −0.960342 0.118321i −0.0845534 0.0104176i
\(130\) 0.141730 0.0124305
\(131\) 3.18123 5.51006i 0.277946 0.481416i −0.692928 0.721006i \(-0.743680\pi\)
0.970874 + 0.239590i \(0.0770131\pi\)
\(132\) −7.88241 + 10.4512i −0.686075 + 0.909664i
\(133\) −15.9445 10.6278i −1.38257 0.921550i
\(134\) 0.316769 0.0273646
\(135\) 4.04225 3.26500i 0.347902 0.281006i
\(136\) 0.0278212 0.0481878i 0.00238565 0.00413207i
\(137\) 4.27981 + 7.41285i 0.365649 + 0.633322i 0.988880 0.148715i \(-0.0475138\pi\)
−0.623231 + 0.782038i \(0.714180\pi\)
\(138\) −0.319075 0.0393123i −0.0271614 0.00334649i
\(139\) −3.08779 5.34821i −0.261903 0.453630i 0.704844 0.709362i \(-0.251017\pi\)
−0.966748 + 0.255732i \(0.917683\pi\)
\(140\) −0.340021 + 5.27883i −0.0287370 + 0.446143i
\(141\) −5.79910 13.6776i −0.488372 1.15187i
\(142\) 0.264231 0.0221738
\(143\) −10.4719 + 18.1379i −0.875707 + 1.51677i
\(144\) −8.33490 + 8.61667i −0.694575 + 0.718056i
\(145\) −4.04878 7.01269i −0.336233 0.582372i
\(146\) 0.0745831 0.129182i 0.00617254 0.0106912i
\(147\) 11.7437 + 3.01413i 0.968606 + 0.248602i
\(148\) −3.34374 5.79152i −0.274853 0.476060i
\(149\) −2.34647 + 4.06421i −0.192231 + 0.332953i −0.945989 0.324198i \(-0.894906\pi\)
0.753758 + 0.657152i \(0.228239\pi\)
\(150\) 0.0266793 0.0353740i 0.00217836 0.00288828i
\(151\) 7.80627 + 13.5208i 0.635265 + 1.10031i 0.986459 + 0.164008i \(0.0524424\pi\)
−0.351194 + 0.936303i \(0.614224\pi\)
\(152\) −0.370476 0.641683i −0.0300496 0.0520474i
\(153\) −0.448437 1.56882i −0.0362540 0.126831i
\(154\) 0.212883 + 0.141897i 0.0171546 + 0.0114344i
\(155\) −0.870826 + 1.50832i −0.0699464 + 0.121151i
\(156\) −11.5532 + 15.3183i −0.924994 + 1.22645i
\(157\) −18.5691 −1.48197 −0.740986 0.671520i \(-0.765642\pi\)
−0.740986 + 0.671520i \(0.765642\pi\)
\(158\) 0.0758884 0.00603736
\(159\) −14.6639 1.80670i −1.16292 0.143280i
\(160\) −0.153417 + 0.265726i −0.0121287 + 0.0210075i
\(161\) 1.23399 19.1576i 0.0972517 1.50983i
\(162\) −0.00765153 0.230099i −0.000601161 0.0180782i
\(163\) −0.655557 1.13546i −0.0513472 0.0889359i 0.839209 0.543808i \(-0.183018\pi\)
−0.890557 + 0.454872i \(0.849685\pi\)
\(164\) −0.476183 0.824773i −0.0371836 0.0644040i
\(165\) 2.55576 + 6.02797i 0.198965 + 0.469277i
\(166\) −0.101737 + 0.176214i −0.00789632 + 0.0136768i
\(167\) 5.56450 + 9.63799i 0.430594 + 0.745810i 0.996925 0.0783678i \(-0.0249709\pi\)
−0.566331 + 0.824178i \(0.691638\pi\)
\(168\) 0.355382 + 0.305777i 0.0274183 + 0.0235912i
\(169\) −8.84862 + 15.3263i −0.680663 + 1.17894i
\(170\) −0.00695644 0.0120489i −0.000533535 0.000924109i
\(171\) −21.0778 5.27393i −1.61186 0.403307i
\(172\) 0.558463 0.967287i 0.0425824 0.0737549i
\(173\) −1.42470 −0.108318 −0.0541592 0.998532i \(-0.517248\pi\)
−0.0541592 + 0.998532i \(0.517248\pi\)
\(174\) −0.356085 0.0438723i −0.0269948 0.00332595i
\(175\) 2.20152 + 1.46742i 0.166419 + 0.110927i
\(176\) −7.55285 13.0819i −0.569318 0.986087i
\(177\) 0.952233 + 2.24592i 0.0715742 + 0.168814i
\(178\) −0.230743 0.399658i −0.0172949 0.0299557i
\(179\) −6.28599 + 10.8877i −0.469837 + 0.813782i −0.999405 0.0344857i \(-0.989021\pi\)
0.529568 + 0.848267i \(0.322354\pi\)
\(180\) 1.64848 + 5.76706i 0.122871 + 0.429851i
\(181\) −14.1730 −1.05347 −0.526735 0.850029i \(-0.676584\pi\)
−0.526735 + 0.850029i \(0.676584\pi\)
\(182\) 0.312020 + 0.207977i 0.0231285 + 0.0154163i
\(183\) 1.18589 + 2.79703i 0.0876639 + 0.206762i
\(184\) 0.371161 0.642869i 0.0273623 0.0473930i
\(185\) −3.34483 −0.245917
\(186\) 0.0301221 + 0.0710454i 0.00220866 + 0.00520930i
\(187\) 2.05595 0.150346
\(188\) 17.1489 1.25071
\(189\) 13.6902 1.25626i 0.995816 0.0913794i
\(190\) −0.185268 −0.0134408
\(191\) 10.1805 0.736632 0.368316 0.929701i \(-0.379934\pi\)
0.368316 + 0.929701i \(0.379934\pi\)
\(192\) −5.39820 12.7321i −0.389582 0.918861i
\(193\) −6.85150 −0.493182 −0.246591 0.969120i \(-0.579310\pi\)
−0.246591 + 0.969120i \(0.579310\pi\)
\(194\) −0.0976037 + 0.169055i −0.00700754 + 0.0121374i
\(195\) 3.74595 + 8.83513i 0.268253 + 0.632697i
\(196\) −8.49483 + 11.1225i −0.606774 + 0.794463i
\(197\) −20.0167 −1.42613 −0.713065 0.701098i \(-0.752693\pi\)
−0.713065 + 0.701098i \(0.752693\pi\)
\(198\) 0.281419 + 0.0704147i 0.0199996 + 0.00500415i
\(199\) 6.47405 11.2134i 0.458933 0.794896i −0.539972 0.841683i \(-0.681565\pi\)
0.998905 + 0.0467876i \(0.0148984\pi\)
\(200\) 0.0511529 + 0.0885994i 0.00361706 + 0.00626493i
\(201\) 8.37227 + 19.7467i 0.590534 + 1.39282i
\(202\) 0.0438042 + 0.0758711i 0.00308205 + 0.00533827i
\(203\) 1.37712 21.3798i 0.0966549 1.50057i
\(204\) 1.86932 + 0.230313i 0.130878 + 0.0161252i
\(205\) −0.476339 −0.0332689
\(206\) −0.120620 + 0.208919i −0.00840397 + 0.0145561i
\(207\) −5.98257 20.9295i −0.415817 1.45470i
\(208\) −11.0701 19.1740i −0.767576 1.32948i
\(209\) 13.6888 23.7098i 0.946878 1.64004i
\(210\) 0.110644 0.0387266i 0.00763513 0.00267239i
\(211\) 6.43285 + 11.1420i 0.442856 + 0.767048i 0.997900 0.0647723i \(-0.0206321\pi\)
−0.555045 + 0.831821i \(0.687299\pi\)
\(212\) 8.52742 14.7699i 0.585666 1.01440i
\(213\) 6.98369 + 16.4716i 0.478515 + 1.12862i
\(214\) 0.00241579 + 0.00418426i 0.000165140 + 0.000286030i
\(215\) −0.279323 0.483802i −0.0190497 0.0329950i
\(216\) 0.496050 + 0.191127i 0.0337519 + 0.0130045i
\(217\) −4.13047 + 2.04271i −0.280395 + 0.138668i
\(218\) 0.112659 0.195131i 0.00763022 0.0132159i
\(219\) 10.0242 + 1.23505i 0.677370 + 0.0834569i
\(220\) −7.55780 −0.509547
\(221\) 3.01339 0.202703
\(222\) −0.0892378 + 0.118320i −0.00598925 + 0.00794112i
\(223\) 6.20544 10.7481i 0.415547 0.719749i −0.579939 0.814660i \(-0.696923\pi\)
0.995486 + 0.0949115i \(0.0302568\pi\)
\(224\) −0.727682 + 0.359872i −0.0486203 + 0.0240450i
\(225\) 2.91028 + 0.728190i 0.194019 + 0.0485460i
\(226\) −0.149315 0.258622i −0.00993230 0.0172032i
\(227\) −4.43111 7.67490i −0.294103 0.509401i 0.680673 0.732587i \(-0.261687\pi\)
−0.974776 + 0.223186i \(0.928354\pi\)
\(228\) 15.1022 20.0240i 1.00017 1.32612i
\(229\) −13.1585 + 22.7911i −0.869536 + 1.50608i −0.00706468 + 0.999975i \(0.502249\pi\)
−0.862471 + 0.506106i \(0.831085\pi\)
\(230\) −0.0928054 0.160744i −0.00611941 0.0105991i
\(231\) −3.21902 + 17.0210i −0.211796 + 1.11990i
\(232\) 0.414213 0.717438i 0.0271944 0.0471021i
\(233\) 13.0236 + 22.5576i 0.853208 + 1.47780i 0.878298 + 0.478114i \(0.158679\pi\)
−0.0250903 + 0.999685i \(0.507987\pi\)
\(234\) 0.412473 + 0.103206i 0.0269642 + 0.00674680i
\(235\) 4.28862 7.42811i 0.279759 0.484557i
\(236\) −2.81591 −0.183300
\(237\) 2.00575 + 4.73073i 0.130287 + 0.307294i
\(238\) 0.00236611 0.0367339i 0.000153372 0.00238111i
\(239\) 9.50084 + 16.4559i 0.614558 + 1.06445i 0.990462 + 0.137787i \(0.0439990\pi\)
−0.375904 + 0.926659i \(0.622668\pi\)
\(240\) −6.86946 0.846367i −0.443422 0.0546328i
\(241\) 7.14145 + 12.3693i 0.460021 + 0.796780i 0.998961 0.0455641i \(-0.0145085\pi\)
−0.538940 + 0.842344i \(0.681175\pi\)
\(242\) −0.0420728 + 0.0728722i −0.00270454 + 0.00468440i
\(243\) 14.1416 6.55854i 0.907186 0.420730i
\(244\) −3.50689 −0.224505
\(245\) 2.69335 + 6.46111i 0.172072 + 0.412785i
\(246\) −0.0127084 + 0.0168500i −0.000810258 + 0.00107432i
\(247\) 20.0636 34.7512i 1.27662 2.21117i
\(248\) −0.178181 −0.0113145
\(249\) −13.6737 1.68470i −0.866537 0.106764i
\(250\) 0.0255806 0.00161786
\(251\) −2.23618 −0.141146 −0.0705731 0.997507i \(-0.522483\pi\)
−0.0705731 + 0.997507i \(0.522483\pi\)
\(252\) −4.83355 + 15.1153i −0.304485 + 0.952174i
\(253\) 27.4283 1.72440
\(254\) 0.0293327 0.00184050
\(255\) 0.567243 0.752105i 0.0355221 0.0470987i
\(256\) 15.9477 0.996730
\(257\) 7.88236 13.6527i 0.491688 0.851629i −0.508266 0.861200i \(-0.669713\pi\)
0.999954 + 0.00957101i \(0.00304659\pi\)
\(258\) −0.0245662 0.00302673i −0.00152942 0.000188436i
\(259\) −7.36370 4.90828i −0.457558 0.304985i
\(260\) −11.0774 −0.686991
\(261\) −6.67651 23.3572i −0.413266 1.44577i
\(262\) 0.0813780 0.140951i 0.00502755 0.00870797i
\(263\) 6.38973 + 11.0673i 0.394008 + 0.682441i 0.992974 0.118333i \(-0.0377550\pi\)
−0.598966 + 0.800774i \(0.704422\pi\)
\(264\) −0.403340 + 0.534787i −0.0248239 + 0.0329138i
\(265\) −4.26510 7.38738i −0.262003 0.453803i
\(266\) −0.407871 0.271867i −0.0250082 0.0166692i
\(267\) 18.8153 24.9471i 1.15148 1.52674i
\(268\) −24.7582 −1.51235
\(269\) 9.82818 17.0229i 0.599235 1.03790i −0.393700 0.919239i \(-0.628805\pi\)
0.992934 0.118666i \(-0.0378617\pi\)
\(270\) 0.103403 0.0835207i 0.00629293 0.00508291i
\(271\) −1.02524 1.77577i −0.0622791 0.107871i 0.833205 0.552965i \(-0.186504\pi\)
−0.895484 + 0.445094i \(0.853170\pi\)
\(272\) −1.08670 + 1.88222i −0.0658908 + 0.114126i
\(273\) −4.71809 + 24.9476i −0.285552 + 1.50990i
\(274\) 0.109480 + 0.189625i 0.00661394 + 0.0114557i
\(275\) −1.89007 + 3.27369i −0.113975 + 0.197411i
\(276\) 24.9384 + 3.07259i 1.50112 + 0.184948i
\(277\) −3.21007 5.56000i −0.192874 0.334068i 0.753327 0.657646i \(-0.228448\pi\)
−0.946202 + 0.323578i \(0.895114\pi\)
\(278\) −0.0789877 0.136811i −0.00473737 0.00820536i
\(279\) −3.63269 + 3.75550i −0.217483 + 0.224836i
\(280\) −0.0173988 + 0.270116i −0.00103978 + 0.0161425i
\(281\) −15.3102 + 26.5180i −0.913327 + 1.58193i −0.103995 + 0.994578i \(0.533163\pi\)
−0.809332 + 0.587351i \(0.800171\pi\)
\(282\) −0.148345 0.349883i −0.00883379 0.0208352i
\(283\) 9.72939 0.578352 0.289176 0.957276i \(-0.406619\pi\)
0.289176 + 0.957276i \(0.406619\pi\)
\(284\) −20.6519 −1.22547
\(285\) −4.89668 11.5492i −0.290054 0.684117i
\(286\) −0.267879 + 0.463980i −0.0158400 + 0.0274357i
\(287\) −1.04867 0.698990i −0.0619009 0.0412601i
\(288\) −0.639985 + 0.661620i −0.0377115 + 0.0389864i
\(289\) 8.35210 + 14.4663i 0.491300 + 0.850956i
\(290\) −0.103570 0.179389i −0.00608185 0.0105341i
\(291\) −13.1182 1.61626i −0.769002 0.0947466i
\(292\) −5.82931 + 10.0967i −0.341134 + 0.590862i
\(293\) −5.32802 9.22840i −0.311266 0.539129i 0.667371 0.744726i \(-0.267420\pi\)
−0.978637 + 0.205597i \(0.934086\pi\)
\(294\) 0.300412 + 0.0771034i 0.0175204 + 0.00449676i
\(295\) −0.704208 + 1.21972i −0.0410006 + 0.0710151i
\(296\) −0.171098 0.296350i −0.00994486 0.0172250i
\(297\) 3.04847 + 19.4042i 0.176890 + 1.12594i
\(298\) −0.0600243 + 0.103965i −0.00347712 + 0.00602254i
\(299\) 40.2014 2.32491
\(300\) −2.08522 + 2.76478i −0.120390 + 0.159625i
\(301\) 0.0950069 1.47498i 0.00547611 0.0850166i
\(302\) 0.199689 + 0.345872i 0.0114908 + 0.0199027i
\(303\) −3.57189 + 4.73595i −0.205200 + 0.272073i
\(304\) 14.4708 + 25.0642i 0.829958 + 1.43753i
\(305\) −0.877009 + 1.51902i −0.0502174 + 0.0869790i
\(306\) −0.0114713 0.0401313i −0.000655771 0.00229416i
\(307\) 3.58038 0.204343 0.102171 0.994767i \(-0.467421\pi\)
0.102171 + 0.994767i \(0.467421\pi\)
\(308\) −16.6386 11.0905i −0.948073 0.631938i
\(309\) −16.2116 1.99739i −0.922246 0.113627i
\(310\) −0.0222763 + 0.0385837i −0.00126521 + 0.00219140i
\(311\) 16.3157 0.925180 0.462590 0.886572i \(-0.346920\pi\)
0.462590 + 0.886572i \(0.346920\pi\)
\(312\) −0.591171 + 0.783832i −0.0334685 + 0.0443757i
\(313\) −6.87643 −0.388679 −0.194339 0.980934i \(-0.562256\pi\)
−0.194339 + 0.980934i \(0.562256\pi\)
\(314\) −0.475008 −0.0268063
\(315\) 5.33847 + 5.87373i 0.300789 + 0.330947i
\(316\) −5.93133 −0.333663
\(317\) −19.9474 −1.12036 −0.560178 0.828372i \(-0.689267\pi\)
−0.560178 + 0.828372i \(0.689267\pi\)
\(318\) −0.375111 0.0462164i −0.0210352 0.00259169i
\(319\) 30.6098 1.71382
\(320\) 3.99215 6.91461i 0.223168 0.386538i
\(321\) −0.196988 + 0.261186i −0.0109948 + 0.0145780i
\(322\) 0.0315661 0.490064i 0.00175911 0.0273102i
\(323\) −3.93908 −0.219177
\(324\) 0.598032 + 17.9842i 0.0332240 + 0.999121i
\(325\) −2.77025 + 4.79822i −0.153666 + 0.266157i
\(326\) −0.0167696 0.0290457i −0.000928780 0.00160869i
\(327\) 15.1416 + 1.86556i 0.837335 + 0.103166i
\(328\) −0.0243661 0.0422033i −0.00134539 0.00233029i
\(329\) 20.3416 10.0599i 1.12147 0.554620i
\(330\) 0.0653779 + 0.154199i 0.00359894 + 0.00848839i
\(331\) −10.8613 −0.596991 −0.298495 0.954411i \(-0.596485\pi\)
−0.298495 + 0.954411i \(0.596485\pi\)
\(332\) 7.95162 13.7726i 0.436402 0.755870i
\(333\) −9.73440 2.43567i −0.533442 0.133474i
\(334\) 0.142343 + 0.246546i 0.00778868 + 0.0134904i
\(335\) −6.19157 + 10.7241i −0.338282 + 0.585921i
\(336\) −13.8813 11.9437i −0.757284 0.651582i
\(337\) −0.137238 0.237703i −0.00747582 0.0129485i 0.862263 0.506460i \(-0.169046\pi\)
−0.869739 + 0.493512i \(0.835713\pi\)
\(338\) −0.226353 + 0.392055i −0.0123120 + 0.0213250i
\(339\) 12.1755 16.1434i 0.661282 0.876790i
\(340\) 0.543705 + 0.941725i 0.0294866 + 0.0510722i
\(341\) −3.29184 5.70164i −0.178263 0.308761i
\(342\) −0.539183 0.134910i −0.0291557 0.00729512i
\(343\) −3.55172 + 18.1765i −0.191775 + 0.981439i
\(344\) 0.0285764 0.0494957i 0.00154073 0.00266863i
\(345\) 7.56755 10.0338i 0.407423 0.540201i
\(346\) −0.0364449 −0.00195929
\(347\) 3.78826 0.203365 0.101682 0.994817i \(-0.467577\pi\)
0.101682 + 0.994817i \(0.467577\pi\)
\(348\) 27.8311 + 3.42900i 1.49190 + 0.183813i
\(349\) 14.3243 24.8104i 0.766763 1.32807i −0.172547 0.985001i \(-0.555200\pi\)
0.939310 0.343070i \(-0.111467\pi\)
\(350\) 0.0563162 + 0.0375376i 0.00301023 + 0.00200647i
\(351\) 4.46812 + 28.4405i 0.238491 + 1.51804i
\(352\) −0.579937 1.00448i −0.0309107 0.0535389i
\(353\) −2.15744 3.73679i −0.114829 0.198889i 0.802883 0.596137i \(-0.203299\pi\)
−0.917711 + 0.397248i \(0.869965\pi\)
\(354\) 0.0243587 + 0.0574521i 0.00129465 + 0.00305354i
\(355\) −5.16467 + 8.94548i −0.274112 + 0.474777i
\(356\) 18.0345 + 31.2367i 0.955828 + 1.65554i
\(357\) 2.35245 0.823387i 0.124505 0.0435783i
\(358\) −0.160800 + 0.278513i −0.00849853 + 0.0147199i
\(359\) −13.5903 23.5390i −0.717267 1.24234i −0.962079 0.272772i \(-0.912059\pi\)
0.244811 0.969571i \(-0.421274\pi\)
\(360\) 0.0843522 + 0.295098i 0.00444575 + 0.0155530i
\(361\) −16.7270 + 28.9721i −0.880370 + 1.52485i
\(362\) −0.362554 −0.0190554
\(363\) −5.65469 0.696699i −0.296794 0.0365672i
\(364\) −24.3871 16.2552i −1.27823 0.852004i
\(365\) 2.91561 + 5.04998i 0.152610 + 0.264328i
\(366\) 0.0303359 + 0.0715498i 0.00158569 + 0.00373997i
\(367\) −6.00761 10.4055i −0.313595 0.543162i 0.665543 0.746359i \(-0.268200\pi\)
−0.979138 + 0.203197i \(0.934867\pi\)
\(368\) −14.4976 + 25.1105i −0.755738 + 1.30898i
\(369\) −1.38628 0.346865i −0.0721669 0.0180571i
\(370\) −0.0855629 −0.00444820
\(371\) 1.45070 22.5221i 0.0753167 1.16929i
\(372\) −2.35430 5.55281i −0.122065 0.287900i
\(373\) 4.34193 7.52044i 0.224816 0.389394i −0.731448 0.681897i \(-0.761155\pi\)
0.956264 + 0.292504i \(0.0944884\pi\)
\(374\) 0.0525926 0.00271950
\(375\) 0.676102 + 1.59464i 0.0349138 + 0.0823470i
\(376\) 0.877502 0.0452537
\(377\) 44.8646 2.31064
\(378\) 0.350204 0.0321359i 0.0180126 0.00165289i
\(379\) 12.7019 0.652454 0.326227 0.945291i \(-0.394223\pi\)
0.326227 + 0.945291i \(0.394223\pi\)
\(380\) 14.4803 0.742824
\(381\) 0.775271 + 1.82854i 0.0397183 + 0.0936790i
\(382\) 0.260423 0.0133244
\(383\) −12.5605 + 21.7554i −0.641812 + 1.11165i 0.343216 + 0.939256i \(0.388484\pi\)
−0.985028 + 0.172394i \(0.944850\pi\)
\(384\) −0.552991 1.30428i −0.0282197 0.0665585i
\(385\) −8.96490 + 4.43356i −0.456894 + 0.225955i
\(386\) −0.175266 −0.00892079
\(387\) −0.460609 1.61140i −0.0234141 0.0819120i
\(388\) 7.62856 13.2131i 0.387282 0.670791i
\(389\) −9.57121 16.5778i −0.485280 0.840529i 0.514577 0.857444i \(-0.327949\pi\)
−0.999857 + 0.0169151i \(0.994615\pi\)
\(390\) 0.0958238 + 0.226008i 0.00485223 + 0.0114444i
\(391\) −1.97318 3.41766i −0.0997882 0.172838i
\(392\) −0.434678 + 0.569133i −0.0219545 + 0.0287456i
\(393\) 10.9374 + 1.34757i 0.551720 + 0.0679759i
\(394\) −0.512039 −0.0257962
\(395\) −1.48332 + 2.56918i −0.0746338 + 0.129270i
\(396\) −21.9953 5.50351i −1.10531 0.276562i
\(397\) −1.80451 3.12551i −0.0905659 0.156865i 0.817184 0.576378i \(-0.195534\pi\)
−0.907749 + 0.419513i \(0.862201\pi\)
\(398\) 0.165610 0.286845i 0.00830129 0.0143783i
\(399\) 6.16746 32.6113i 0.308759 1.63261i
\(400\) −1.99804 3.46070i −0.0999019 0.173035i
\(401\) −1.68008 + 2.90998i −0.0838989 + 0.145317i −0.904922 0.425579i \(-0.860071\pi\)
0.821023 + 0.570896i \(0.193404\pi\)
\(402\) 0.214168 + 0.505133i 0.0106817 + 0.0251937i
\(403\) −4.82482 8.35683i −0.240341 0.416284i
\(404\) −3.42367 5.92998i −0.170334 0.295027i
\(405\) 7.93948 + 4.23847i 0.394516 + 0.210611i
\(406\) 0.0352276 0.546909i 0.00174832 0.0271426i
\(407\) 6.32196 10.9499i 0.313368 0.542769i
\(408\) 0.0956522 + 0.0117850i 0.00473549 + 0.000583447i
\(409\) 2.38228 0.117796 0.0588980 0.998264i \(-0.481241\pi\)
0.0588980 + 0.998264i \(0.481241\pi\)
\(410\) −0.0121851 −0.000601777
\(411\) −8.92725 + 11.8366i −0.440349 + 0.583857i
\(412\) 9.42746 16.3288i 0.464458 0.804464i
\(413\) −3.34017 + 1.65187i −0.164359 + 0.0812833i
\(414\) −0.153038 0.535389i −0.00752141 0.0263129i
\(415\) −3.97711 6.88856i −0.195229 0.338146i
\(416\) −0.850008 1.47226i −0.0416750 0.0721833i
\(417\) 6.44083 8.53987i 0.315409 0.418199i
\(418\) 0.350169 0.606511i 0.0171273 0.0296654i
\(419\) −1.56715 2.71438i −0.0765602 0.132606i 0.825203 0.564836i \(-0.191060\pi\)
−0.901764 + 0.432229i \(0.857727\pi\)
\(420\) −8.64774 + 3.02682i −0.421967 + 0.147694i
\(421\) 6.68047 11.5709i 0.325586 0.563932i −0.656044 0.754722i \(-0.727772\pi\)
0.981631 + 0.190790i \(0.0611050\pi\)
\(422\) 0.164556 + 0.285020i 0.00801048 + 0.0138746i
\(423\) 17.8902 18.4950i 0.869850 0.899256i
\(424\) 0.436345 0.755772i 0.0211908 0.0367035i
\(425\) 0.543883 0.0263822
\(426\) 0.178647 + 0.421354i 0.00865549 + 0.0204147i
\(427\) −4.15980 + 2.05721i −0.201307 + 0.0995555i
\(428\) −0.188814 0.327036i −0.00912668 0.0158079i
\(429\) −36.0036 4.43591i −1.73827 0.214168i
\(430\) −0.00714526 0.0123760i −0.000344575 0.000596822i
\(431\) −11.9751 + 20.7415i −0.576821 + 0.999082i 0.419021 + 0.907977i \(0.362373\pi\)
−0.995841 + 0.0911058i \(0.970960\pi\)
\(432\) −19.3758 7.46544i −0.932216 0.359181i
\(433\) −15.3737 −0.738813 −0.369406 0.929268i \(-0.620439\pi\)
−0.369406 + 0.929268i \(0.620439\pi\)
\(434\) −0.105660 + 0.0522539i −0.00507185 + 0.00250827i
\(435\) 8.44534 11.1976i 0.404923 0.536886i
\(436\) −8.80525 + 15.2511i −0.421695 + 0.730397i
\(437\) −52.5511 −2.51386
\(438\) 0.256424 + 0.0315933i 0.0122524 + 0.00150959i
\(439\) 8.50008 0.405687 0.202843 0.979211i \(-0.434982\pi\)
0.202843 + 0.979211i \(0.434982\pi\)
\(440\) −0.386730 −0.0184366
\(441\) 3.13349 + 20.7649i 0.149214 + 0.988805i
\(442\) 0.0770844 0.00366653
\(443\) −30.9324 −1.46964 −0.734822 0.678260i \(-0.762734\pi\)
−0.734822 + 0.678260i \(0.762734\pi\)
\(444\) 6.97470 9.24773i 0.331005 0.438878i
\(445\) 18.0404 0.855198
\(446\) 0.158739 0.274944i 0.00751652 0.0130190i
\(447\) −8.06743 0.993965i −0.381576 0.0470129i
\(448\) 18.9354 9.36445i 0.894615 0.442429i
\(449\) 4.23659 0.199937 0.0999686 0.994991i \(-0.468126\pi\)
0.0999686 + 0.994991i \(0.468126\pi\)
\(450\) 0.0744469 + 0.0186276i 0.00350946 + 0.000878111i
\(451\) 0.900313 1.55939i 0.0423941 0.0734287i
\(452\) 11.6703 + 20.2135i 0.548923 + 0.950762i
\(453\) −16.2831 + 21.5897i −0.765046 + 1.01437i
\(454\) −0.113350 0.196329i −0.00531980 0.00921417i
\(455\) −13.1398 + 6.49823i −0.616002 + 0.304642i
\(456\) 0.772776 1.02462i 0.0361885 0.0479822i
\(457\) 39.3982 1.84297 0.921485 0.388414i \(-0.126977\pi\)
0.921485 + 0.388414i \(0.126977\pi\)
\(458\) −0.336602 + 0.583012i −0.0157284 + 0.0272424i
\(459\) 2.19851 1.77578i 0.102618 0.0828862i
\(460\) 7.25354 + 12.5635i 0.338198 + 0.585776i
\(461\) −2.86184 + 4.95686i −0.133289 + 0.230864i −0.924943 0.380107i \(-0.875887\pi\)
0.791653 + 0.610971i \(0.209221\pi\)
\(462\) −0.0823447 + 0.435409i −0.00383102 + 0.0202571i
\(463\) 9.45324 + 16.3735i 0.439329 + 0.760941i 0.997638 0.0686927i \(-0.0218828\pi\)
−0.558309 + 0.829633i \(0.688549\pi\)
\(464\) −16.1792 + 28.0232i −0.751101 + 1.30094i
\(465\) −2.99399 0.368881i −0.138843 0.0171065i
\(466\) 0.333153 + 0.577038i 0.0154330 + 0.0267308i
\(467\) 11.2057 + 19.4088i 0.518536 + 0.898131i 0.999768 + 0.0215379i \(0.00685627\pi\)
−0.481232 + 0.876593i \(0.659810\pi\)
\(468\) −32.2383 8.06644i −1.49022 0.372871i
\(469\) −29.3676 + 14.5237i −1.35607 + 0.670641i
\(470\) 0.109706 0.190016i 0.00506035 0.00876478i
\(471\) −12.5546 29.6110i −0.578485 1.36440i
\(472\) −0.144089 −0.00663224
\(473\) 2.11176 0.0970987
\(474\) 0.0513083 + 0.121015i 0.00235667 + 0.00555840i
\(475\) 3.62126 6.27220i 0.166155 0.287788i
\(476\) −0.184932 + 2.87107i −0.00847634 + 0.131595i
\(477\) −7.03324 24.6052i −0.322030 1.12659i
\(478\) 0.243038 + 0.420953i 0.0111163 + 0.0192540i
\(479\) 15.0652 + 26.0938i 0.688349 + 1.19226i 0.972372 + 0.233438i \(0.0749975\pi\)
−0.284023 + 0.958817i \(0.591669\pi\)
\(480\) −0.527463 0.0649873i −0.0240753 0.00296625i
\(481\) 9.26603 16.0492i 0.422495 0.731782i
\(482\) 0.182683 + 0.316416i 0.00832097 + 0.0144123i
\(483\) 31.3839 10.9848i 1.42802 0.499824i
\(484\) 3.28835 5.69559i 0.149470 0.258890i
\(485\) −3.81553 6.60869i −0.173254 0.300085i
\(486\) 0.361752 0.167772i 0.0164094 0.00761027i
\(487\) −17.0000 + 29.4448i −0.770343 + 1.33427i 0.167032 + 0.985951i \(0.446582\pi\)
−0.937375 + 0.348322i \(0.886752\pi\)
\(488\) −0.179446 −0.00812315
\(489\) 1.36743 1.81306i 0.0618372 0.0819896i
\(490\) 0.0688975 + 0.165279i 0.00311247 + 0.00746655i
\(491\) −7.47750 12.9514i −0.337455 0.584489i 0.646498 0.762915i \(-0.276233\pi\)
−0.983953 + 0.178426i \(0.942899\pi\)
\(492\) 0.993270 1.31697i 0.0447801 0.0593737i
\(493\) −2.20206 3.81408i −0.0991759 0.171778i
\(494\) 0.513240 0.888958i 0.0230918 0.0399961i
\(495\) −7.88450 + 8.15104i −0.354382 + 0.366362i
\(496\) 6.95977 0.312503
\(497\) −24.4969 + 12.1149i −1.09884 + 0.543426i
\(498\) −0.349782 0.0430957i −0.0156741 0.00193117i
\(499\) −0.409572 + 0.709399i −0.0183349 + 0.0317570i −0.875047 0.484037i \(-0.839170\pi\)
0.856712 + 0.515794i \(0.172503\pi\)
\(500\) −1.99935 −0.0894135
\(501\) −11.6070 + 15.3897i −0.518562 + 0.687559i
\(502\) −0.0572028 −0.00255309
\(503\) 13.5639 0.604783 0.302392 0.953184i \(-0.402215\pi\)
0.302392 + 0.953184i \(0.402215\pi\)
\(504\) −0.247331 + 0.773444i −0.0110170 + 0.0344519i
\(505\) −3.42479 −0.152401
\(506\) 0.701634 0.0311914
\(507\) −30.4225 3.74827i −1.35111 0.166467i
\(508\) −2.29260 −0.101718
\(509\) −17.4596 + 30.2408i −0.773881 + 1.34040i 0.161540 + 0.986866i \(0.448354\pi\)
−0.935421 + 0.353536i \(0.884979\pi\)
\(510\) 0.0145104 0.0192393i 0.000642533 0.000851932i
\(511\) −0.991693 + 15.3960i −0.0438699 + 0.681080i
\(512\) 2.04377 0.0903229
\(513\) −5.84070 37.1772i −0.257873 1.64141i
\(514\) 0.201636 0.349244i 0.00889378 0.0154045i
\(515\) −4.71527 8.16709i −0.207780 0.359885i
\(516\) 1.92006 + 0.236565i 0.0845257 + 0.0104142i
\(517\) 16.2116 + 28.0793i 0.712984 + 1.23493i
\(518\) −0.188368 0.125557i −0.00827642 0.00551665i
\(519\) −0.963246 2.27190i −0.0422818 0.0997251i
\(520\) −0.566826 −0.0248570
\(521\) 1.55141 2.68713i 0.0679687 0.117725i −0.830038 0.557706i \(-0.811682\pi\)
0.898007 + 0.439981i \(0.145015\pi\)
\(522\) −0.170789 0.597491i −0.00747525 0.0261515i
\(523\) −5.99060 10.3760i −0.261951 0.453712i 0.704810 0.709396i \(-0.251032\pi\)
−0.966760 + 0.255685i \(0.917699\pi\)
\(524\) −6.36039 + 11.0165i −0.277855 + 0.481259i
\(525\) −0.851563 + 4.50276i −0.0371653 + 0.196517i
\(526\) 0.163453 + 0.283110i 0.00712691 + 0.0123442i
\(527\) −0.473628 + 0.820348i −0.0206316 + 0.0357349i
\(528\) 15.7545 20.8888i 0.685626 0.909069i
\(529\) −14.8241 25.6761i −0.644527 1.11635i
\(530\) −0.109104 0.188974i −0.00473918 0.00820850i
\(531\) −2.93763 + 3.03694i −0.127482 + 0.131792i
\(532\) 31.8786 + 21.2487i 1.38211 + 0.921248i
\(533\) 1.31958 2.28558i 0.0571574 0.0989994i
\(534\) 0.481306 0.638162i 0.0208282 0.0276160i
\(535\) −0.188876 −0.00816583
\(536\) −1.26687 −0.0547203
\(537\) −21.6119 2.66274i −0.932622 0.114906i
\(538\) 0.251411 0.435457i 0.0108391 0.0187739i
\(539\) −26.2423 3.39473i −1.13034 0.146221i
\(540\) −8.08186 + 6.52786i −0.347788 + 0.280914i
\(541\) 0.566880 + 0.981865i 0.0243721 + 0.0422137i 0.877954 0.478745i \(-0.158908\pi\)
−0.853582 + 0.520958i \(0.825575\pi\)
\(542\) −0.0262264 0.0454254i −0.00112652 0.00195119i
\(543\) −9.58240 22.6009i −0.411220 0.969896i
\(544\) −0.0834409 + 0.144524i −0.00357750 + 0.00619641i
\(545\) 4.40407 + 7.62807i 0.188650 + 0.326751i
\(546\) −0.120692 + 0.638175i −0.00516513 + 0.0273114i
\(547\) −3.51151 + 6.08211i −0.150141 + 0.260052i −0.931279 0.364306i \(-0.881306\pi\)
0.781138 + 0.624358i \(0.214640\pi\)
\(548\) −8.55682 14.8208i −0.365529 0.633115i
\(549\) −3.65848 + 3.78216i −0.156140 + 0.161419i
\(550\) −0.0483491 + 0.0837432i −0.00206161 + 0.00357082i
\(551\) −58.6467 −2.49843
\(552\) 1.27609 + 0.157224i 0.0543140 + 0.00669188i
\(553\) −7.03562 + 3.47944i −0.299185 + 0.147961i
\(554\) −0.0821155 0.142228i −0.00348875 0.00604270i
\(555\) −2.26145 5.33381i −0.0959931 0.226408i
\(556\) 6.17357 + 10.6929i 0.261818 + 0.453481i
\(557\) −6.94094 + 12.0221i −0.294097 + 0.509391i −0.974774 0.223192i \(-0.928352\pi\)
0.680677 + 0.732583i \(0.261686\pi\)
\(558\) −0.0929265 + 0.0960680i −0.00393389 + 0.00406688i
\(559\) 3.09518 0.130912
\(560\) 0.679598 10.5508i 0.0287182 0.445851i
\(561\) 1.39003 + 3.27851i 0.0586873 + 0.138419i
\(562\) −0.391643 + 0.678346i −0.0165205 + 0.0286143i
\(563\) 22.2662 0.938408 0.469204 0.883090i \(-0.344541\pi\)
0.469204 + 0.883090i \(0.344541\pi\)
\(564\) 11.5944 + 27.3463i 0.488212 + 1.15149i
\(565\) 11.6741 0.491132
\(566\) 0.248884 0.0104614
\(567\) 11.2593 + 20.9816i 0.472845 + 0.881146i
\(568\) −1.05675 −0.0443403
\(569\) 0.0987691 0.00414062 0.00207031 0.999998i \(-0.499341\pi\)
0.00207031 + 0.999998i \(0.499341\pi\)
\(570\) −0.125260 0.295437i −0.00524657 0.0123745i
\(571\) 34.9761 1.46370 0.731852 0.681463i \(-0.238656\pi\)
0.731852 + 0.681463i \(0.238656\pi\)
\(572\) 20.9370 36.2640i 0.875421 1.51627i
\(573\) 6.88303 + 16.2342i 0.287543 + 0.678193i
\(574\) −0.0268256 0.0178806i −0.00111968 0.000746322i
\(575\) 7.25591 0.302592
\(576\) 16.6534 17.2164i 0.693893 0.717350i
\(577\) 9.85646 17.0719i 0.410330 0.710712i −0.584596 0.811325i \(-0.698747\pi\)
0.994926 + 0.100612i \(0.0320802\pi\)
\(578\) 0.213652 + 0.370056i 0.00888675 + 0.0153923i
\(579\) −4.63232 10.9257i −0.192512 0.454057i
\(580\) 8.09490 + 14.0208i 0.336123 + 0.582181i
\(581\) 1.35274 21.0014i 0.0561213 0.871283i
\(582\) −0.335572 0.0413449i −0.0139099 0.00171380i
\(583\) 32.2453 1.33547
\(584\) −0.298283 + 0.516642i −0.0123431 + 0.0213788i
\(585\) −11.5562 + 11.9469i −0.477792 + 0.493944i
\(586\) −0.136294 0.236068i −0.00563026 0.00975189i
\(587\) 13.3822 23.1787i 0.552344 0.956687i −0.445761 0.895152i \(-0.647067\pi\)
0.998105 0.0615355i \(-0.0195997\pi\)
\(588\) −23.4798 6.02629i −0.968289 0.248520i
\(589\) 6.30697 + 10.9240i 0.259874 + 0.450116i
\(590\) −0.0180141 + 0.0312013i −0.000741628 + 0.00128454i
\(591\) −13.5333 31.9195i −0.556687 1.31299i
\(592\) 6.68310 + 11.5755i 0.274674 + 0.475749i
\(593\) 2.17116 + 3.76056i 0.0891589 + 0.154428i 0.907156 0.420795i \(-0.138249\pi\)
−0.817997 + 0.575223i \(0.804915\pi\)
\(594\) 0.0779819 + 0.496371i 0.00319964 + 0.0203663i
\(595\) 1.19737 + 0.798106i 0.0490873 + 0.0327192i
\(596\) 4.69141 8.12577i 0.192168 0.332844i
\(597\) 22.2585 + 2.74240i 0.910978 + 0.112239i
\(598\) 1.02838 0.0420535
\(599\) −38.5844 −1.57652 −0.788258 0.615345i \(-0.789017\pi\)
−0.788258 + 0.615345i \(0.789017\pi\)
\(600\) −0.106700 + 0.141473i −0.00435600 + 0.00577561i
\(601\) 22.6721 39.2693i 0.924815 1.60183i 0.132957 0.991122i \(-0.457553\pi\)
0.791858 0.610705i \(-0.209114\pi\)
\(602\) 0.00243034 0.0377310i 9.90531e−5 0.00153780i
\(603\) −25.8284 + 26.7016i −1.05181 + 1.08737i
\(604\) −15.6074 27.0328i −0.635057 1.09995i
\(605\) −1.64471 2.84872i −0.0668670 0.115817i
\(606\) −0.0913712 + 0.121149i −0.00371170 + 0.00492133i
\(607\) −5.35336 + 9.27229i −0.217286 + 0.376351i −0.953977 0.299879i \(-0.903054\pi\)
0.736691 + 0.676229i \(0.236387\pi\)
\(608\) 1.11112 + 1.92452i 0.0450620 + 0.0780498i
\(609\) 35.0242 12.2589i 1.41925 0.496756i
\(610\) −0.0224344 + 0.0388576i −0.000908344 + 0.00157330i
\(611\) 23.7612 + 41.1555i 0.961274 + 1.66497i
\(612\) 0.896581 + 3.13661i 0.0362422 + 0.126790i
\(613\) −14.1382 + 24.4882i −0.571038 + 0.989067i 0.425421 + 0.904995i \(0.360126\pi\)
−0.996460 + 0.0840720i \(0.973207\pi\)
\(614\) 0.0915883 0.00369620
\(615\) −0.322054 0.759590i −0.0129865 0.0306296i
\(616\) −0.851392 0.567496i −0.0343036 0.0228651i
\(617\) 18.3974 + 31.8653i 0.740653 + 1.28285i 0.952198 + 0.305480i \(0.0988170\pi\)
−0.211546 + 0.977368i \(0.567850\pi\)
\(618\) −0.414703 0.0510944i −0.0166818 0.00205532i
\(619\) −3.26092 5.64807i −0.131067 0.227015i 0.793021 0.609194i \(-0.208507\pi\)
−0.924088 + 0.382179i \(0.875174\pi\)
\(620\) 1.74108 3.01564i 0.0699236 0.121111i
\(621\) 29.3302 23.6905i 1.17698 0.950668i
\(622\) 0.417367 0.0167349
\(623\) 39.7163 + 26.4729i 1.59120 + 1.06061i
\(624\) 23.0912 30.6165i 0.924388 1.22564i
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) −0.175903 −0.00703051
\(627\) 47.0637 + 5.79859i 1.87954 + 0.231573i
\(628\) 37.1260 1.48149
\(629\) −1.81920 −0.0725362
\(630\) 0.136561 + 0.150254i 0.00544074 + 0.00598625i
\(631\) 2.81008 0.111867 0.0559337 0.998434i \(-0.482186\pi\)
0.0559337 + 0.998434i \(0.482186\pi\)
\(632\) −0.303504 −0.0120727
\(633\) −13.4183 + 17.7912i −0.533329 + 0.707138i
\(634\) −0.510266 −0.0202653
\(635\) −0.573339 + 0.993052i −0.0227523 + 0.0394081i
\(636\) 29.3182 + 3.61221i 1.16254 + 0.143233i
\(637\) −38.4631 4.97563i −1.52396 0.197142i
\(638\) 0.783019 0.0310000
\(639\) −21.5447 + 22.2730i −0.852293 + 0.881106i
\(640\) 0.408955 0.708332i 0.0161654 0.0279993i
\(641\) 0.856808 + 1.48403i 0.0338419 + 0.0586159i 0.882450 0.470406i \(-0.155892\pi\)
−0.848608 + 0.529022i \(0.822559\pi\)
\(642\) −0.00503909 + 0.00668130i −0.000198877 + 0.000263690i
\(643\) −10.4993 18.1854i −0.414054 0.717162i 0.581275 0.813707i \(-0.302554\pi\)
−0.995329 + 0.0965451i \(0.969221\pi\)
\(644\) −2.46716 + 38.3027i −0.0972199 + 1.50934i
\(645\) 0.582640 0.772520i 0.0229414 0.0304179i
\(646\) −0.100764 −0.00396452
\(647\) −1.23228 + 2.13437i −0.0484458 + 0.0839105i −0.889231 0.457458i \(-0.848760\pi\)
0.840786 + 0.541368i \(0.182093\pi\)
\(648\) 0.0306011 + 0.920244i 0.00120212 + 0.0361506i
\(649\) −2.66200 4.61072i −0.104493 0.180987i
\(650\) −0.0708649 + 0.122742i −0.00277955 + 0.00481432i
\(651\) −6.05002 5.20555i −0.237119 0.204021i
\(652\) 1.31068 + 2.27017i 0.0513304 + 0.0889068i
\(653\) 16.7740 29.0534i 0.656416 1.13695i −0.325121 0.945672i \(-0.605405\pi\)
0.981537 0.191273i \(-0.0612616\pi\)
\(654\) 0.387333 + 0.0477222i 0.0151459 + 0.00186609i
\(655\) 3.18123 + 5.51006i 0.124301 + 0.215296i
\(656\) 0.951743 + 1.64847i 0.0371593 + 0.0643618i
\(657\) 4.80789 + 16.8200i 0.187574 + 0.656210i
\(658\) 0.520352 0.257338i 0.0202854 0.0100321i
\(659\) 5.81556 10.0728i 0.226542 0.392382i −0.730239 0.683192i \(-0.760591\pi\)
0.956781 + 0.290809i \(0.0939246\pi\)
\(660\) −5.10984 12.0520i −0.198900 0.469123i
\(661\) −42.0861 −1.63696 −0.818479 0.574537i \(-0.805182\pi\)
−0.818479 + 0.574537i \(0.805182\pi\)
\(662\) −0.277839 −0.0107985
\(663\) 2.03736 + 4.80528i 0.0791245 + 0.186622i
\(664\) 0.406881 0.704739i 0.0157901 0.0273492i
\(665\) 17.1762 8.49445i 0.666066 0.329401i
\(666\) −0.249012 0.0623060i −0.00964902 0.00241431i
\(667\) −29.3776 50.8834i −1.13750 1.97021i
\(668\) −11.1254 19.2697i −0.430453 0.745566i
\(669\) 21.3350 + 2.62862i 0.824857 + 0.101628i
\(670\) −0.158384 + 0.274330i −0.00611892 + 0.0105983i
\(671\) −3.31521 5.74211i −0.127982 0.221672i
\(672\) −1.06586 0.917082i −0.0411163 0.0353772i
\(673\) −4.35702 + 7.54659i −0.167951 + 0.290899i −0.937699 0.347448i \(-0.887048\pi\)
0.769748 + 0.638347i \(0.220382\pi\)
\(674\) −0.00351063 0.00608059i −0.000135224 0.000234216i
\(675\) 0.806446 + 5.13319i 0.0310401 + 0.197577i
\(676\) 17.6915 30.6425i 0.680440 1.17856i
\(677\) 11.4712 0.440875 0.220437 0.975401i \(-0.429252\pi\)
0.220437 + 0.975401i \(0.429252\pi\)
\(678\) 0.311457 0.412959i 0.0119614 0.0158596i
\(679\) 1.29779 20.1481i 0.0498045 0.773214i
\(680\) 0.0278212 + 0.0481878i 0.00106689 + 0.00184792i
\(681\) 9.24284 12.2550i 0.354187 0.469614i
\(682\) −0.0842074 0.145851i −0.00322447 0.00558494i
\(683\) 17.5055 30.3205i 0.669831 1.16018i −0.308120 0.951347i \(-0.599700\pi\)
0.977951 0.208834i \(-0.0669667\pi\)
\(684\) 42.1417 + 10.5444i 1.61133 + 0.403175i
\(685\) −8.55962 −0.327046
\(686\) −0.0908552 + 0.464967i −0.00346887 + 0.0177525i
\(687\) −45.2402 5.57392i −1.72602 0.212658i
\(688\) −1.11620 + 1.93331i −0.0425546 + 0.0737067i
\(689\) 47.2617 1.80053
\(690\) 0.193583 0.256671i 0.00736957 0.00977128i
\(691\) 3.84678 0.146338 0.0731692 0.997320i \(-0.476689\pi\)
0.0731692 + 0.997320i \(0.476689\pi\)
\(692\) 2.84848 0.108283
\(693\) −29.3189 + 6.37477i −1.11373 + 0.242157i
\(694\) 0.0969062 0.00367851
\(695\) 6.17559 0.234253
\(696\) 1.42411 + 0.175460i 0.0539807 + 0.00665081i
\(697\) −0.259073 −0.00981308
\(698\) 0.366425 0.634666i 0.0138694 0.0240225i
\(699\) −27.1660 + 36.0193i −1.02751 + 1.36238i
\(700\) −4.40159 2.93388i −0.166365 0.110890i
\(701\) 6.90316 0.260729 0.130364 0.991466i \(-0.458385\pi\)
0.130364 + 0.991466i \(0.458385\pi\)
\(702\) 0.114297 + 0.727526i 0.00431388 + 0.0274587i
\(703\) −12.1125 + 20.9795i −0.456832 + 0.791255i
\(704\) 15.0909 + 26.1381i 0.568758 + 0.985119i
\(705\) 14.7447 + 1.81666i 0.555319 + 0.0684193i
\(706\) −0.0551886 0.0955895i −0.00207705 0.00359756i
\(707\) −7.53974 5.02562i −0.283561 0.189008i
\(708\) −1.90384 4.49037i −0.0715508 0.168758i
\(709\) 10.5427 0.395938 0.197969 0.980208i \(-0.436565\pi\)
0.197969 + 0.980208i \(0.436565\pi\)
\(710\) −0.132116 + 0.228831i −0.00495821 + 0.00858787i
\(711\) −6.18773 + 6.39691i −0.232058 + 0.239903i
\(712\) 0.922820 + 1.59837i 0.0345841 + 0.0599015i
\(713\) −6.31864 + 10.9442i −0.236635 + 0.409863i
\(714\) 0.0601772 0.0210628i 0.00225207 0.000788254i
\(715\) −10.4719 18.1379i −0.391628 0.678320i
\(716\) 12.5679 21.7682i 0.469683 0.813515i
\(717\) −19.8178 + 26.2763i −0.740109 + 0.981308i
\(718\) −0.347648 0.602144i −0.0129741 0.0224718i
\(719\) −17.8806 30.9701i −0.666835 1.15499i −0.978784 0.204893i \(-0.934315\pi\)
0.311950 0.950099i \(-0.399018\pi\)
\(720\) −3.29480 11.5266i −0.122790 0.429570i
\(721\) 1.60382 24.8993i 0.0597293 0.927298i
\(722\) −0.427888 + 0.741124i −0.0159243 + 0.0275818i
\(723\) −14.8963 + 19.7510i −0.554001 + 0.734548i
\(724\) 28.3367 1.05313
\(725\) 8.09755 0.300736
\(726\) −0.144651 0.0178220i −0.00536849 0.000661437i
\(727\) −19.2427 + 33.3294i −0.713674 + 1.23612i 0.249795 + 0.968299i \(0.419637\pi\)
−0.963469 + 0.267820i \(0.913697\pi\)
\(728\) −1.24788 0.831773i −0.0462494 0.0308276i
\(729\) 20.0197 + 18.1166i 0.741471 + 0.670985i
\(730\) 0.0745831 + 0.129182i 0.00276044 + 0.00478123i
\(731\) −0.151919 0.263132i −0.00561893 0.00973228i
\(732\) −2.37101 5.59223i −0.0876352 0.206695i
\(733\) −20.8214 + 36.0637i −0.769056 + 1.33204i 0.169020 + 0.985613i \(0.445940\pi\)
−0.938075 + 0.346431i \(0.887393\pi\)
\(734\) −0.153678 0.266179i −0.00567238 0.00982484i
\(735\) −8.48218 + 8.66329i −0.312870 + 0.319550i
\(736\) −1.11318 + 1.92808i −0.0410323 + 0.0710701i
\(737\) −23.4050 40.5386i −0.862133 1.49326i
\(738\) −0.0354619 0.00887303i −0.00130537 0.000326621i
\(739\) −22.4915 + 38.9565i −0.827364 + 1.43304i 0.0727349 + 0.997351i \(0.476827\pi\)
−0.900099 + 0.435685i \(0.856506\pi\)
\(740\) 6.68747 0.245836
\(741\) 68.9808 + 8.49894i 2.53407 + 0.312216i
\(742\) 0.0371099 0.576131i 0.00136235 0.0211504i
\(743\) −2.24629 3.89069i −0.0824083 0.142735i 0.821876 0.569667i \(-0.192928\pi\)
−0.904284 + 0.426932i \(0.859595\pi\)
\(744\) −0.120469 0.284135i −0.00441660 0.0104169i
\(745\) −2.34647 4.06421i −0.0859682 0.148901i
\(746\) 0.111069 0.192378i 0.00406653 0.00704344i
\(747\) −6.55833 22.9437i −0.239957 0.839467i
\(748\) −4.11056 −0.150297
\(749\) −0.415814 0.277161i −0.0151935 0.0101272i
\(750\) 0.0172951 + 0.0407920i 0.000631529 + 0.00148951i
\(751\) −21.1330 + 36.6034i −0.771154 + 1.33568i 0.165778 + 0.986163i \(0.446987\pi\)
−0.936931 + 0.349514i \(0.886347\pi\)
\(752\) −34.2753 −1.24989
\(753\) −1.51188 3.56590i −0.0550961 0.129949i
\(754\) 1.14766 0.0417955
\(755\) −15.6125 −0.568198
\(756\) −27.3715 + 2.51170i −0.995490 + 0.0913495i
\(757\) −25.4479 −0.924918 −0.462459 0.886641i \(-0.653033\pi\)
−0.462459 + 0.886641i \(0.653033\pi\)
\(758\) 0.324923 0.0118017
\(759\) 18.5444 + 43.7384i 0.673117 + 1.58760i
\(760\) 0.740952 0.0268771
\(761\) 14.9151 25.8338i 0.540673 0.936473i −0.458193 0.888853i \(-0.651503\pi\)
0.998866 0.0476201i \(-0.0151637\pi\)
\(762\) 0.0198319 + 0.0467752i 0.000718435 + 0.00169449i
\(763\) −1.49797 + 23.2559i −0.0542300 + 0.841922i
\(764\) −20.3543 −0.736391
\(765\) 1.58285 + 0.396050i 0.0572282 + 0.0143192i
\(766\) −0.321306 + 0.556518i −0.0116092 + 0.0201078i
\(767\) −3.90167 6.75789i −0.140881 0.244013i
\(768\) 10.7823 + 25.4308i 0.389071 + 0.917657i
\(769\) 9.71584 + 16.8283i 0.350362 + 0.606845i 0.986313 0.164885i \(-0.0527252\pi\)
−0.635951 + 0.771730i \(0.719392\pi\)
\(770\) −0.229328 + 0.113413i −0.00826440 + 0.00408713i
\(771\) 27.1004 + 3.33896i 0.975997 + 0.120250i
\(772\) 13.6985 0.493021
\(773\) 16.1602 27.9902i 0.581241 1.00674i −0.414092 0.910235i \(-0.635901\pi\)
0.995333 0.0965036i \(-0.0307659\pi\)
\(774\) −0.0117827 0.0412206i −0.000423520 0.00148164i
\(775\) −0.870826 1.50832i −0.0312810 0.0541803i
\(776\) 0.390351 0.676107i 0.0140128 0.0242708i
\(777\) 2.84834 15.0610i 0.102183 0.540309i
\(778\) −0.244838 0.424071i −0.00877785 0.0152037i
\(779\) −1.72495 + 2.98769i −0.0618026 + 0.107045i
\(780\) −7.48945 17.6645i −0.268165 0.632490i
\(781\) −19.5232 33.8151i −0.698594 1.21000i
\(782\) −0.0504753 0.0874258i −0.00180499 0.00312634i
\(783\) 32.7323 26.4385i 1.16976 0.944834i
\(784\) 16.9785 22.2304i 0.606377 0.793943i
\(785\) 9.28453 16.0813i 0.331379 0.573965i
\(786\) 0.279786 + 0.0344717i 0.00997964 + 0.00122956i
\(787\) 26.1901 0.933577 0.466788 0.884369i \(-0.345411\pi\)
0.466788 + 0.884369i \(0.345411\pi\)
\(788\) 40.0203 1.42566
\(789\) −13.3283 + 17.6720i −0.474502 + 0.629140i
\(790\) −0.0379442 + 0.0657213i −0.00134999 + 0.00233826i
\(791\) 25.7007 + 17.1308i 0.913811 + 0.609101i
\(792\) −1.12549 0.281613i −0.0399926 0.0100067i
\(793\) −4.85907 8.41616i −0.172551 0.298867i
\(794\) −0.0461606 0.0799525i −0.00163818 0.00283741i
\(795\) 8.89658 11.7959i 0.315529 0.418359i
\(796\) −12.9439 + 22.4194i −0.458783 + 0.794636i
\(797\) 9.92568 + 17.1918i 0.351586 + 0.608964i 0.986527 0.163596i \(-0.0523092\pi\)
−0.634942 + 0.772560i \(0.718976\pi\)
\(798\) 0.157768 0.834218i 0.00558491 0.0295310i
\(799\) 2.33251 4.04003i 0.0825183 0.142926i
\(800\) −0.153417 0.265726i −0.00542411 0.00939483i
\(801\) 52.5027 + 13.1369i 1.85509 + 0.464168i
\(802\) −0.0429774 + 0.0744390i −0.00151758 + 0.00262853i
\(803\) −22.0428 −0.777873
\(804\) −16.7391 39.4805i −0.590341 1.39237i
\(805\) 15.9740 + 10.6475i 0.563010 + 0.375274i
\(806\) −0.123422 0.213773i −0.00434735 0.00752984i
\(807\) 33.7903 + 4.16321i 1.18948 + 0.146552i
\(808\) −0.175188 0.303435i −0.00616310 0.0106748i
\(809\) −1.09725 + 1.90050i −0.0385774 + 0.0668180i −0.884669 0.466219i \(-0.845616\pi\)
0.846092 + 0.533037i \(0.178949\pi\)
\(810\) 0.203097 + 0.108423i 0.00713610 + 0.00380959i
\(811\) −21.8077 −0.765773 −0.382887 0.923795i \(-0.625070\pi\)
−0.382887 + 0.923795i \(0.625070\pi\)
\(812\) −2.75334 + 42.7456i −0.0966233 + 1.50008i
\(813\) 2.13855 2.83550i 0.0750024 0.0994454i
\(814\) 0.161720 0.280107i 0.00566827 0.00981773i
\(815\) 1.31111 0.0459263
\(816\) −3.73619 0.460325i −0.130793 0.0161146i
\(817\) −4.04600 −0.141552
\(818\) 0.0609402 0.00213072
\(819\) −42.9724 + 9.34344i −1.50158 + 0.326486i
\(820\) 0.952366 0.0332581
\(821\) 44.1340 1.54029 0.770144 0.637870i \(-0.220184\pi\)
0.770144 + 0.637870i \(0.220184\pi\)
\(822\) −0.228365 + 0.302788i −0.00796514 + 0.0105609i
\(823\) 33.5573 1.16973 0.584867 0.811129i \(-0.301147\pi\)
0.584867 + 0.811129i \(0.301147\pi\)
\(824\) 0.482400 0.835541i 0.0168052 0.0291074i
\(825\) −6.49825 0.800632i −0.226240 0.0278744i
\(826\) −0.0854438 + 0.0422559i −0.00297297 + 0.00147027i
\(827\) −4.29754 −0.149440 −0.0747201 0.997205i \(-0.523806\pi\)
−0.0747201 + 0.997205i \(0.523806\pi\)
\(828\) 11.9612 + 41.8453i 0.415681 + 1.45422i
\(829\) −11.9899 + 20.7671i −0.416427 + 0.721273i −0.995577 0.0939481i \(-0.970051\pi\)
0.579150 + 0.815221i \(0.303385\pi\)
\(830\) −0.101737 0.176214i −0.00353134 0.00611646i
\(831\) 6.69588 8.87803i 0.232277 0.307976i
\(832\) 22.1185 + 38.3104i 0.766822 + 1.32818i
\(833\) 1.46487 + 3.51409i 0.0507546 + 0.121756i
\(834\) 0.164760 0.218455i 0.00570519 0.00756449i
\(835\) −11.1290 −0.385135
\(836\) −27.3687 + 47.4041i −0.946568 + 1.63950i
\(837\) −8.44474 3.25374i −0.291893 0.112466i
\(838\) −0.0400887 0.0694356i −0.00138484 0.00239861i
\(839\) 24.2851 42.0630i 0.838414 1.45218i −0.0528059 0.998605i \(-0.516816\pi\)
0.891220 0.453571i \(-0.149850\pi\)
\(840\) −0.442502 + 0.154881i −0.0152678 + 0.00534391i
\(841\) −18.2852 31.6708i −0.630523 1.09210i
\(842\) 0.170891 0.295992i 0.00588929 0.0102005i
\(843\) −52.6379 6.48537i −1.81295 0.223368i
\(844\) −12.8615 22.2768i −0.442711 0.766797i
\(845\) −8.84862 15.3263i −0.304402 0.527239i
\(846\) 0.457642 0.473113i 0.0157341 0.0162660i
\(847\) 0.559420 8.68500i 0.0192219 0.298420i
\(848\) −17.0437 + 29.5205i −0.585282 + 1.01374i
\(849\) 6.57806 + 15.5149i 0.225759 + 0.532470i
\(850\) 0.0139129 0.000477208
\(851\) −24.2698 −0.831958
\(852\) −13.9628 32.9325i −0.478358 1.12825i
\(853\) −8.37813 + 14.5113i −0.286862 + 0.496859i −0.973059 0.230556i \(-0.925945\pi\)
0.686197 + 0.727416i \(0.259279\pi\)
\(854\) −0.106410 + 0.0526248i −0.00364128 + 0.00180078i
\(855\) 15.1062 15.6169i 0.516622 0.534087i
\(856\) −0.00966156 0.0167343i −0.000330225 0.000571967i
\(857\) 5.22760 + 9.05447i 0.178571 + 0.309295i 0.941391 0.337316i \(-0.109519\pi\)
−0.762820 + 0.646611i \(0.776186\pi\)
\(858\) −0.920995 0.113473i −0.0314423 0.00387392i
\(859\) −6.71601 + 11.6325i −0.229147 + 0.396895i −0.957556 0.288248i \(-0.906927\pi\)
0.728408 + 0.685143i \(0.240260\pi\)
\(860\) 0.558463 + 0.967287i 0.0190434 + 0.0329842i
\(861\) 0.405633 2.14484i 0.0138239 0.0730959i
\(862\) −0.306331 + 0.530581i −0.0104337 + 0.0180716i
\(863\) 15.5326 + 26.9033i 0.528737 + 0.915799i 0.999439 + 0.0335063i \(0.0106674\pi\)
−0.470702 + 0.882292i \(0.655999\pi\)
\(864\) −1.48774 0.573225i −0.0506141 0.0195015i
\(865\) 0.712352 1.23383i 0.0242207 0.0419515i
\(866\) −0.393269 −0.0133638
\(867\) −17.4216 + 23.0993i −0.591670 + 0.784493i
\(868\) 8.25824 4.08409i 0.280303 0.138623i
\(869\) −5.60714 9.71186i −0.190209 0.329452i
\(870\) 0.216037 0.286443i 0.00732435 0.00971132i
\(871\) −34.3045 59.4171i −1.16236 2.01327i
\(872\) −0.450562 + 0.780396i −0.0152579 + 0.0264275i
\(873\) −6.29189 22.0116i −0.212948 0.744979i
\(874\) −1.34429 −0.0454713
\(875\) −2.37158 + 1.17286i −0.0801741 + 0.0396498i
\(876\) −20.0418 2.46929i −0.677148 0.0834296i
\(877\) 5.32274 9.21925i 0.179736 0.311312i −0.762054 0.647513i \(-0.775809\pi\)
0.941790 + 0.336201i \(0.109142\pi\)
\(878\) 0.217437 0.00733816
\(879\) 11.1137 14.7356i 0.374856 0.497020i
\(880\) 15.1057 0.509213
\(881\) −37.4454 −1.26157 −0.630785 0.775958i \(-0.717267\pi\)
−0.630785 + 0.775958i \(0.717267\pi\)
\(882\) 0.0801567 + 0.531179i 0.00269902 + 0.0178857i
\(883\) −1.93626 −0.0651605 −0.0325802 0.999469i \(-0.510372\pi\)
−0.0325802 + 0.999469i \(0.510372\pi\)
\(884\) −6.02481 −0.202636
\(885\) −2.42114 0.298302i −0.0813858 0.0100273i
\(886\) −0.791271 −0.0265833
\(887\) −13.5842 + 23.5285i −0.456112 + 0.790009i −0.998751 0.0499568i \(-0.984092\pi\)
0.542640 + 0.839966i \(0.317425\pi\)
\(888\) 0.356893 0.473203i 0.0119765 0.0158796i
\(889\) −2.71944 + 1.34489i −0.0912071 + 0.0451062i
\(890\) 0.461486 0.0154690
\(891\) −28.8816 + 17.9804i −0.967571 + 0.602367i
\(892\) −12.4068 + 21.4892i −0.415411 + 0.719513i
\(893\) −31.0604 53.7982i −1.03940 1.80029i
\(894\) −0.206370 0.0254263i −0.00690204 0.000850382i
\(895\) −6.28599 10.8877i −0.210118 0.363934i
\(896\) 1.93974 0.959293i 0.0648023 0.0320477i
\(897\) 27.1803 + 64.1069i 0.907523 + 2.14047i
\(898\) 0.108375 0.00361651
\(899\) −7.05156 + 12.2137i −0.235183 + 0.407348i
\(900\) −5.81866 1.45590i −0.193955 0.0485301i
\(901\) −2.31972 4.01787i −0.0772811 0.133855i
\(902\) 0.0230306 0.0398901i 0.000766834 0.00132820i
\(903\) 2.41630 0.845737i 0.0804096 0.0281444i
\(904\) 0.597163 + 1.03432i 0.0198614 + 0.0344009i
\(905\) 7.08650 12.2742i 0.235563 0.408008i
\(906\) −0.416532 + 0.552278i −0.0138383 + 0.0183482i
\(907\) −27.9594 48.4271i −0.928376 1.60799i −0.786040 0.618176i \(-0.787872\pi\)
−0.142337 0.989818i \(-0.545462\pi\)
\(908\) 8.85931 + 15.3448i 0.294007 + 0.509234i
\(909\) −9.96712 2.49390i −0.330588 0.0827174i
\(910\) −0.336124 + 0.166229i −0.0111424 + 0.00551043i
\(911\) 4.38364 7.59269i 0.145237 0.251557i −0.784225 0.620477i \(-0.786939\pi\)
0.929461 + 0.368920i \(0.120272\pi\)
\(912\) −30.1847 + 40.0217i −0.999515 + 1.32525i
\(913\) 30.0680 0.995106
\(914\) 1.00783 0.0333361
\(915\) −3.01525 0.371500i −0.0996810 0.0122814i
\(916\) 26.3083 45.5674i 0.869252 1.50559i
\(917\) −1.08204 + 16.7987i −0.0357322 + 0.554742i
\(918\) 0.0562394 0.0454255i 0.00185618 0.00149927i
\(919\) 5.14755 + 8.91582i 0.169802 + 0.294106i 0.938350 0.345686i \(-0.112354\pi\)
−0.768548 + 0.639792i \(0.779021\pi\)
\(920\) 0.371161 + 0.642869i 0.0122368 + 0.0211948i
\(921\) 2.42070 + 5.70942i 0.0797648 + 0.188132i
\(922\) −0.0732078 + 0.126800i −0.00241097 + 0.00417592i
\(923\) −28.6149 49.5625i −0.941871 1.63137i
\(924\) 6.43594 34.0309i 0.211727 1.11954i
\(925\) 1.67242 2.89671i 0.0549887 0.0952432i
\(926\) 0.241820 + 0.418844i 0.00794669 + 0.0137641i
\(927\) −7.77558 27.2022i −0.255384 0.893436i
\(928\) −1.24230 + 2.15173i −0.0407805 + 0.0706339i
\(929\) 37.4361 1.22824 0.614119 0.789214i \(-0.289512\pi\)
0.614119 + 0.789214i \(0.289512\pi\)
\(930\) −0.0765882 0.00943622i −0.00251143 0.000309426i
\(931\) 50.2787 + 6.50411i 1.64782 + 0.213164i
\(932\) −26.0388 45.1005i −0.852928 1.47732i
\(933\) 11.0311 + 26.0178i 0.361142 + 0.851783i
\(934\) 0.286648 + 0.496489i 0.00937941 + 0.0162456i
\(935\) −1.02798 + 1.78051i −0.0336184 + 0.0582288i
\(936\) −1.64962 0.412757i −0.0539196 0.0134914i
\(937\) −20.0462 −0.654882 −0.327441 0.944872i \(-0.606186\pi\)
−0.327441 + 0.944872i \(0.606186\pi\)
\(938\) −0.751243 + 0.371525i −0.0245290 + 0.0121307i
\(939\) −4.64917 10.9654i −0.151720 0.357844i
\(940\) −8.57444 + 14.8514i −0.279667 + 0.484398i
\(941\) −9.65806 −0.314844 −0.157422 0.987531i \(-0.550318\pi\)
−0.157422 + 0.987531i \(0.550318\pi\)
\(942\) −0.321154 0.757469i −0.0104638 0.0246797i
\(943\) −3.45627 −0.112552
\(944\) 5.62813 0.183180
\(945\) −5.75715 + 12.4842i −0.187280 + 0.406111i
\(946\) 0.0540201 0.00175635
\(947\) 16.5667 0.538345 0.269172 0.963092i \(-0.413250\pi\)
0.269172 + 0.963092i \(0.413250\pi\)
\(948\) −4.01019 9.45835i −0.130245 0.307193i
\(949\) −32.3079 −1.04876
\(950\) 0.0926341 0.160447i 0.00300545 0.00520559i
\(951\) −13.4865 31.8089i −0.437328 1.03147i
\(952\) −0.00946290 + 0.146912i −0.000306694 + 0.00476143i
\(953\) 22.6180 0.732669 0.366335 0.930483i \(-0.380613\pi\)
0.366335 + 0.930483i \(0.380613\pi\)
\(954\) −0.179915 0.629416i −0.00582496 0.0203781i
\(955\) −5.09023 + 8.81654i −0.164716 + 0.285296i
\(956\) −18.9955 32.9011i −0.614357 1.06410i
\(957\) 20.6954 + 48.8118i 0.668987 + 1.57786i
\(958\) 0.385379 + 0.667495i 0.0124510 + 0.0215658i
\(959\) −18.8441 12.5606i −0.608509 0.405602i
\(960\) 13.7254 + 1.69107i 0.442986 + 0.0545791i
\(961\) −27.9666 −0.902150
\(962\) 0.237031 0.410550i 0.00764219 0.0132367i
\(963\) −0.549683 0.137538i −0.0177133 0.00443209i
\(964\) −14.2782 24.7306i −0.459871 0.796519i
\(965\) 3.42575 5.93357i 0.110279 0.191009i
\(966\) 0.802820 0.280997i 0.0258303 0.00904093i
\(967\) −16.1629 27.9950i −0.519764 0.900258i −0.999736 0.0229741i \(-0.992686\pi\)
0.479972 0.877284i \(-0.340647\pi\)
\(968\) 0.168264 0.291441i 0.00540820 0.00936727i
\(969\) −2.66322 6.28143i −0.0855551 0.201789i
\(970\) −0.0976037 0.169055i −0.00313386 0.00542801i
\(971\) 19.6527 + 34.0395i 0.630686 + 1.09238i 0.987412 + 0.158171i \(0.0505597\pi\)
−0.356726 + 0.934209i \(0.616107\pi\)
\(972\) −28.2740 + 13.1128i −0.906889 + 0.420593i
\(973\) 13.5957 + 9.06219i 0.435857 + 0.290520i
\(974\) −0.434870 + 0.753218i −0.0139341 + 0.0241347i
\(975\) −9.52443 1.17348i −0.305026 0.0375814i
\(976\) 7.00918 0.224358
\(977\) 29.9325 0.957626 0.478813 0.877917i \(-0.341067\pi\)
0.478813 + 0.877917i \(0.341067\pi\)
\(978\) 0.0349796 0.0463794i 0.00111853 0.00148305i
\(979\) −34.0976 + 59.0588i −1.08976 + 1.88753i
\(980\) −5.38493 12.9180i −0.172015 0.412650i
\(981\) 7.26240 + 25.4068i 0.231870 + 0.811177i
\(982\) −0.191279 0.331305i −0.00610396 0.0105724i
\(983\) −0.284451 0.492683i −0.00907257 0.0157142i 0.861453 0.507836i \(-0.169555\pi\)
−0.870526 + 0.492122i \(0.836221\pi\)
\(984\) 0.0508253 0.0673890i 0.00162025 0.00214828i
\(985\) 10.0083 17.3350i 0.318892 0.552338i
\(986\) −0.0563301 0.0975667i −0.00179392 0.00310716i
\(987\) 29.7950 + 25.6361i 0.948384 + 0.816008i
\(988\) −40.1141 + 69.4797i −1.27620 + 2.21044i
\(989\) −2.02674 3.51042i −0.0644467 0.111625i
\(990\) −0.201690 + 0.208509i −0.00641014 + 0.00662685i
\(991\) −6.46835 + 11.2035i −0.205474 + 0.355891i −0.950284 0.311386i \(-0.899207\pi\)
0.744810 + 0.667277i \(0.232540\pi\)
\(992\) 0.534398 0.0169671
\(993\) −7.34334 17.3199i −0.233034 0.549630i
\(994\) −0.626646 + 0.309906i −0.0198760 + 0.00982961i
\(995\) 6.47405 + 11.2134i 0.205241 + 0.355488i
\(996\) 27.3385 + 3.36830i 0.866253 + 0.106729i
\(997\) −5.38312 9.32384i −0.170485 0.295289i 0.768104 0.640325i \(-0.221200\pi\)
−0.938590 + 0.345036i \(0.887867\pi\)
\(998\) −0.0104771 + 0.0181469i −0.000331647 + 0.000574429i
\(999\) −2.69742 17.1697i −0.0853427 0.543224i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 315.2.l.c.151.10 yes 36
3.2 odd 2 945.2.l.c.46.9 36
7.2 even 3 315.2.k.c.16.9 36
9.4 even 3 315.2.k.c.256.9 yes 36
9.5 odd 6 945.2.k.c.361.10 36
21.2 odd 6 945.2.k.c.856.10 36
63.23 odd 6 945.2.l.c.226.9 36
63.58 even 3 inner 315.2.l.c.121.10 yes 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
315.2.k.c.16.9 36 7.2 even 3
315.2.k.c.256.9 yes 36 9.4 even 3
315.2.l.c.121.10 yes 36 63.58 even 3 inner
315.2.l.c.151.10 yes 36 1.1 even 1 trivial
945.2.k.c.361.10 36 9.5 odd 6
945.2.k.c.856.10 36 21.2 odd 6
945.2.l.c.46.9 36 3.2 odd 2
945.2.l.c.226.9 36 63.23 odd 6