Properties

Label 315.2.l
Level $315$
Weight $2$
Character orbit 315.l
Rep. character $\chi_{315}(121,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $64$
Newform subspaces $3$
Sturm bound $96$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 315.l (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 63 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 3 \)
Sturm bound: \(96\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(315, [\chi])\).

Total New Old
Modular forms 104 64 40
Cusp forms 88 64 24
Eisenstein series 16 0 16

Trace form

\( 64 q + 64 q^{4} - 4 q^{5} - 4 q^{6} - 2 q^{7} - 6 q^{9} + 2 q^{11} + 10 q^{12} + 2 q^{13} + 12 q^{14} - 2 q^{15} + 64 q^{16} - 16 q^{17} - 6 q^{18} - 4 q^{19} - 12 q^{20} - 22 q^{21} - 6 q^{23} - 32 q^{24}+ \cdots - 90 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(315, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
315.2.l.a 315.l 63.h $4$ $2.515$ \(\Q(\sqrt{-3}, \sqrt{13})\) None 315.2.k.a \(-2\) \(6\) \(2\) \(10\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\beta _{3})q^{2}+(1-\beta _{2})q^{3}+(2-\beta _{3})q^{4}+\cdots\)
315.2.l.b 315.l 63.h $24$ $2.515$ None 315.2.k.b \(2\) \(-5\) \(12\) \(-11\) $\mathrm{SU}(2)[C_{3}]$
315.2.l.c 315.l 63.h $36$ $2.515$ None 315.2.k.c \(0\) \(-1\) \(-18\) \(-1\) $\mathrm{SU}(2)[C_{3}]$

Decomposition of \(S_{2}^{\mathrm{old}}(315, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(315, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 2}\)