Properties

Label 945.2.k.c.856.10
Level $945$
Weight $2$
Character 945.856
Analytic conductor $7.546$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [945,2,Mod(361,945)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(945, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("945.361"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 945 = 3^{3} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 945.k (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [36] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.54586299101\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 315)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 856.10
Character \(\chi\) \(=\) 945.856
Dual form 945.2.k.c.361.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0127903 + 0.0221535i) q^{2} +(0.999673 - 1.73148i) q^{4} -1.00000 q^{5} +(0.170066 + 2.64028i) q^{7} +0.102306 q^{8} +(-0.0127903 - 0.0221535i) q^{10} -3.78014 q^{11} +(-2.77025 - 4.79822i) q^{13} +(-0.0563162 + 0.0375376i) q^{14} +(-1.99804 - 3.46070i) q^{16} +(0.271942 + 0.471017i) q^{17} +(3.62126 - 6.27220i) q^{19} +(-0.999673 + 1.73148i) q^{20} +(-0.0483491 - 0.0837432i) q^{22} -7.25591 q^{23} +1.00000 q^{25} +(0.0708649 - 0.122742i) q^{26} +(4.74161 + 2.34495i) q^{28} +(4.04878 - 7.01269i) q^{29} +(-0.870826 + 1.50832i) q^{31} +(0.153417 - 0.265726i) q^{32} +(-0.00695644 + 0.0120489i) q^{34} +(-0.170066 - 2.64028i) q^{35} +(1.67242 - 2.89671i) q^{37} +0.185268 q^{38} -0.102306 q^{40} +(-0.238169 - 0.412522i) q^{41} +(-0.279323 + 0.483802i) q^{43} +(-3.77890 + 6.54524i) q^{44} +(-0.0928054 - 0.160744i) q^{46} +(-4.28862 - 7.42811i) q^{47} +(-6.94215 + 0.898045i) q^{49} +(0.0127903 + 0.0221535i) q^{50} -11.0774 q^{52} +(4.26510 + 7.38738i) q^{53} +3.78014 q^{55} +(0.0173988 + 0.270116i) q^{56} +0.207141 q^{58} +(0.704208 - 1.21972i) q^{59} +(-0.877009 - 1.51902i) q^{61} -0.0445526 q^{62} -7.98430 q^{64} +(2.77025 + 4.79822i) q^{65} +(-6.19157 + 10.7241i) q^{67} +1.08741 q^{68} +(0.0563162 - 0.0375376i) q^{70} -10.3293 q^{71} +(2.91561 + 5.04998i) q^{73} +0.0855629 q^{74} +(-7.24015 - 12.5403i) q^{76} +(-0.642874 - 9.98062i) q^{77} +(-1.48332 - 2.56918i) q^{79} +(1.99804 + 3.46070i) q^{80} +(0.00609253 - 0.0105526i) q^{82} +(3.97711 - 6.88856i) q^{83} +(-0.271942 - 0.471017i) q^{85} -0.0142905 q^{86} -0.386730 q^{88} +(9.02021 - 15.6235i) q^{89} +(12.1975 - 8.13026i) q^{91} +(-7.25354 + 12.5635i) q^{92} +(0.109706 - 0.190016i) q^{94} +(-3.62126 + 6.27220i) q^{95} +(-3.81553 + 6.60869i) q^{97} +(-0.108687 - 0.142307i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q - 22 q^{4} - 36 q^{5} - q^{7} + 2 q^{11} + 2 q^{13} + 6 q^{14} - 30 q^{16} + 5 q^{17} - 2 q^{19} + 22 q^{20} - 19 q^{22} - 6 q^{23} + 36 q^{25} + 4 q^{26} + 5 q^{28} + 8 q^{29} - 10 q^{32} + 10 q^{34}+ \cdots - 16 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/945\mathbb{Z}\right)^\times\).

\(n\) \(136\) \(596\) \(757\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0127903 + 0.0221535i 0.00904412 + 0.0156649i 0.870512 0.492147i \(-0.163788\pi\)
−0.861468 + 0.507812i \(0.830454\pi\)
\(3\) 0 0
\(4\) 0.999673 1.73148i 0.499836 0.865742i
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) 0.170066 + 2.64028i 0.0642790 + 0.997932i
\(8\) 0.102306 0.0361706
\(9\) 0 0
\(10\) −0.0127903 0.0221535i −0.00404465 0.00700555i
\(11\) −3.78014 −1.13975 −0.569877 0.821730i \(-0.693009\pi\)
−0.569877 + 0.821730i \(0.693009\pi\)
\(12\) 0 0
\(13\) −2.77025 4.79822i −0.768330 1.33079i −0.938468 0.345367i \(-0.887754\pi\)
0.170137 0.985420i \(-0.445579\pi\)
\(14\) −0.0563162 + 0.0375376i −0.0150511 + 0.0100323i
\(15\) 0 0
\(16\) −1.99804 3.46070i −0.499509 0.865175i
\(17\) 0.271942 + 0.471017i 0.0659555 + 0.114238i 0.897117 0.441792i \(-0.145657\pi\)
−0.831162 + 0.556030i \(0.812324\pi\)
\(18\) 0 0
\(19\) 3.62126 6.27220i 0.830774 1.43894i −0.0666517 0.997776i \(-0.521232\pi\)
0.897425 0.441166i \(-0.145435\pi\)
\(20\) −0.999673 + 1.73148i −0.223534 + 0.387172i
\(21\) 0 0
\(22\) −0.0483491 0.0837432i −0.0103081 0.0178541i
\(23\) −7.25591 −1.51296 −0.756481 0.654016i \(-0.773083\pi\)
−0.756481 + 0.654016i \(0.773083\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0.0708649 0.122742i 0.0138977 0.0240716i
\(27\) 0 0
\(28\) 4.74161 + 2.34495i 0.896081 + 0.443154i
\(29\) 4.04878 7.01269i 0.751839 1.30222i −0.195092 0.980785i \(-0.562500\pi\)
0.946931 0.321438i \(-0.104166\pi\)
\(30\) 0 0
\(31\) −0.870826 + 1.50832i −0.156405 + 0.270901i −0.933570 0.358396i \(-0.883324\pi\)
0.777165 + 0.629297i \(0.216657\pi\)
\(32\) 0.153417 0.265726i 0.0271205 0.0469741i
\(33\) 0 0
\(34\) −0.00695644 + 0.0120489i −0.00119302 + 0.00206637i
\(35\) −0.170066 2.64028i −0.0287465 0.446289i
\(36\) 0 0
\(37\) 1.67242 2.89671i 0.274943 0.476216i −0.695177 0.718838i \(-0.744674\pi\)
0.970121 + 0.242622i \(0.0780076\pi\)
\(38\) 0.185268 0.0300545
\(39\) 0 0
\(40\) −0.102306 −0.0161760
\(41\) −0.238169 0.412522i −0.0371958 0.0644250i 0.846828 0.531867i \(-0.178509\pi\)
−0.884024 + 0.467441i \(0.845176\pi\)
\(42\) 0 0
\(43\) −0.279323 + 0.483802i −0.0425964 + 0.0737791i −0.886538 0.462657i \(-0.846896\pi\)
0.843941 + 0.536436i \(0.180230\pi\)
\(44\) −3.77890 + 6.54524i −0.569690 + 0.986733i
\(45\) 0 0
\(46\) −0.0928054 0.160744i −0.0136834 0.0237004i
\(47\) −4.28862 7.42811i −0.625560 1.08350i −0.988432 0.151663i \(-0.951537\pi\)
0.362872 0.931839i \(-0.381796\pi\)
\(48\) 0 0
\(49\) −6.94215 + 0.898045i −0.991736 + 0.128292i
\(50\) 0.0127903 + 0.0221535i 0.00180882 + 0.00313298i
\(51\) 0 0
\(52\) −11.0774 −1.53616
\(53\) 4.26510 + 7.38738i 0.585857 + 1.01473i 0.994768 + 0.102160i \(0.0325754\pi\)
−0.408911 + 0.912574i \(0.634091\pi\)
\(54\) 0 0
\(55\) 3.78014 0.509713
\(56\) 0.0173988 + 0.270116i 0.00232501 + 0.0360958i
\(57\) 0 0
\(58\) 0.207141 0.0271989
\(59\) 0.704208 1.21972i 0.0916801 0.158795i −0.816538 0.577292i \(-0.804110\pi\)
0.908218 + 0.418497i \(0.137443\pi\)
\(60\) 0 0
\(61\) −0.877009 1.51902i −0.112289 0.194491i 0.804404 0.594083i \(-0.202485\pi\)
−0.916693 + 0.399592i \(0.869152\pi\)
\(62\) −0.0445526 −0.00565818
\(63\) 0 0
\(64\) −7.98430 −0.998037
\(65\) 2.77025 + 4.79822i 0.343608 + 0.595146i
\(66\) 0 0
\(67\) −6.19157 + 10.7241i −0.756421 + 1.31016i 0.188244 + 0.982122i \(0.439720\pi\)
−0.944665 + 0.328037i \(0.893613\pi\)
\(68\) 1.08741 0.131868
\(69\) 0 0
\(70\) 0.0563162 0.0375376i 0.00673107 0.00448660i
\(71\) −10.3293 −1.22587 −0.612934 0.790134i \(-0.710011\pi\)
−0.612934 + 0.790134i \(0.710011\pi\)
\(72\) 0 0
\(73\) 2.91561 + 5.04998i 0.341246 + 0.591055i 0.984664 0.174459i \(-0.0558178\pi\)
−0.643418 + 0.765515i \(0.722484\pi\)
\(74\) 0.0855629 0.00994648
\(75\) 0 0
\(76\) −7.24015 12.5403i −0.830502 1.43847i
\(77\) −0.642874 9.98062i −0.0732622 1.13740i
\(78\) 0 0
\(79\) −1.48332 2.56918i −0.166886 0.289056i 0.770437 0.637516i \(-0.220038\pi\)
−0.937324 + 0.348460i \(0.886705\pi\)
\(80\) 1.99804 + 3.46070i 0.223387 + 0.386918i
\(81\) 0 0
\(82\) 0.00609253 0.0105526i 0.000672807 0.00116534i
\(83\) 3.97711 6.88856i 0.436544 0.756117i −0.560876 0.827900i \(-0.689535\pi\)
0.997420 + 0.0717828i \(0.0228688\pi\)
\(84\) 0 0
\(85\) −0.271942 0.471017i −0.0294962 0.0510889i
\(86\) −0.0142905 −0.00154099
\(87\) 0 0
\(88\) −0.386730 −0.0412255
\(89\) 9.02021 15.6235i 0.956141 1.65608i 0.224405 0.974496i \(-0.427956\pi\)
0.731736 0.681588i \(-0.238710\pi\)
\(90\) 0 0
\(91\) 12.1975 8.13026i 1.27865 0.852283i
\(92\) −7.25354 + 12.5635i −0.756233 + 1.30983i
\(93\) 0 0
\(94\) 0.109706 0.190016i 0.0113153 0.0195986i
\(95\) −3.62126 + 6.27220i −0.371533 + 0.643515i
\(96\) 0 0
\(97\) −3.81553 + 6.60869i −0.387408 + 0.671011i −0.992100 0.125449i \(-0.959963\pi\)
0.604692 + 0.796460i \(0.293296\pi\)
\(98\) −0.108687 0.142307i −0.0109791 0.0143751i
\(99\) 0 0
\(100\) 0.999673 1.73148i 0.0999673 0.173148i
\(101\) 3.42479 0.340780 0.170390 0.985377i \(-0.445497\pi\)
0.170390 + 0.985377i \(0.445497\pi\)
\(102\) 0 0
\(103\) 9.43055 0.929219 0.464610 0.885516i \(-0.346195\pi\)
0.464610 + 0.885516i \(0.346195\pi\)
\(104\) −0.283413 0.490886i −0.0277909 0.0481353i
\(105\) 0 0
\(106\) −0.109104 + 0.188974i −0.0105971 + 0.0183548i
\(107\) −0.0944380 + 0.163571i −0.00912967 + 0.0158131i −0.870554 0.492073i \(-0.836239\pi\)
0.861424 + 0.507886i \(0.169573\pi\)
\(108\) 0 0
\(109\) 4.40407 + 7.62807i 0.421833 + 0.730636i 0.996119 0.0880186i \(-0.0280535\pi\)
−0.574286 + 0.818655i \(0.694720\pi\)
\(110\) 0.0483491 + 0.0837432i 0.00460991 + 0.00798460i
\(111\) 0 0
\(112\) 8.79742 5.86393i 0.831278 0.554089i
\(113\) 5.83704 + 10.1101i 0.549103 + 0.951074i 0.998336 + 0.0576593i \(0.0183637\pi\)
−0.449234 + 0.893414i \(0.648303\pi\)
\(114\) 0 0
\(115\) 7.25591 0.676617
\(116\) −8.09490 14.0208i −0.751593 1.30180i
\(117\) 0 0
\(118\) 0.0360282 0.00331666
\(119\) −1.19737 + 0.798106i −0.109763 + 0.0731623i
\(120\) 0 0
\(121\) 3.28942 0.299039
\(122\) 0.0224344 0.0388576i 0.00203112 0.00351800i
\(123\) 0 0
\(124\) 1.74108 + 3.01564i 0.156354 + 0.270813i
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 1.14668 0.101751 0.0508756 0.998705i \(-0.483799\pi\)
0.0508756 + 0.998705i \(0.483799\pi\)
\(128\) −0.408955 0.708332i −0.0361469 0.0626083i
\(129\) 0 0
\(130\) −0.0708649 + 0.122742i −0.00621526 + 0.0107651i
\(131\) 6.36247 0.555891 0.277946 0.960597i \(-0.410346\pi\)
0.277946 + 0.960597i \(0.410346\pi\)
\(132\) 0 0
\(133\) 17.1762 + 8.49445i 1.48937 + 0.736562i
\(134\) −0.316769 −0.0273646
\(135\) 0 0
\(136\) 0.0278212 + 0.0481878i 0.00238565 + 0.00413207i
\(137\) 8.55962 0.731297 0.365649 0.930753i \(-0.380847\pi\)
0.365649 + 0.930753i \(0.380847\pi\)
\(138\) 0 0
\(139\) −3.08779 5.34821i −0.261903 0.453630i 0.704844 0.709362i \(-0.251017\pi\)
−0.966748 + 0.255732i \(0.917683\pi\)
\(140\) −4.74161 2.34495i −0.400739 0.198184i
\(141\) 0 0
\(142\) −0.132116 0.228831i −0.0110869 0.0192031i
\(143\) 10.4719 + 18.1379i 0.875707 + 1.51677i
\(144\) 0 0
\(145\) −4.04878 + 7.01269i −0.336233 + 0.582372i
\(146\) −0.0745831 + 0.129182i −0.00617254 + 0.0106912i
\(147\) 0 0
\(148\) −3.34374 5.79152i −0.274853 0.476060i
\(149\) −4.69295 −0.384461 −0.192231 0.981350i \(-0.561572\pi\)
−0.192231 + 0.981350i \(0.561572\pi\)
\(150\) 0 0
\(151\) −15.6125 −1.27053 −0.635265 0.772294i \(-0.719109\pi\)
−0.635265 + 0.772294i \(0.719109\pi\)
\(152\) 0.370476 0.641683i 0.0300496 0.0520474i
\(153\) 0 0
\(154\) 0.212883 0.141897i 0.0171546 0.0114344i
\(155\) 0.870826 1.50832i 0.0699464 0.121151i
\(156\) 0 0
\(157\) 9.28453 16.0813i 0.740986 1.28343i −0.211061 0.977473i \(-0.567692\pi\)
0.952047 0.305953i \(-0.0989749\pi\)
\(158\) 0.0379442 0.0657213i 0.00301868 0.00522851i
\(159\) 0 0
\(160\) −0.153417 + 0.265726i −0.0121287 + 0.0210075i
\(161\) −1.23399 19.1576i −0.0972517 1.50983i
\(162\) 0 0
\(163\) −0.655557 + 1.13546i −0.0513472 + 0.0889359i −0.890557 0.454872i \(-0.849685\pi\)
0.839209 + 0.543808i \(0.183018\pi\)
\(164\) −0.952366 −0.0743673
\(165\) 0 0
\(166\) 0.203474 0.0157926
\(167\) −5.56450 9.63799i −0.430594 0.745810i 0.566331 0.824178i \(-0.308362\pi\)
−0.996925 + 0.0783678i \(0.975029\pi\)
\(168\) 0 0
\(169\) −8.84862 + 15.3263i −0.680663 + 1.17894i
\(170\) 0.00695644 0.0120489i 0.000533535 0.000924109i
\(171\) 0 0
\(172\) 0.558463 + 0.967287i 0.0425824 + 0.0737549i
\(173\) −0.712352 1.23383i −0.0541592 0.0938064i 0.837675 0.546169i \(-0.183915\pi\)
−0.891834 + 0.452363i \(0.850581\pi\)
\(174\) 0 0
\(175\) 0.170066 + 2.64028i 0.0128558 + 0.199586i
\(176\) 7.55285 + 13.0819i 0.569318 + 0.986087i
\(177\) 0 0
\(178\) 0.461486 0.0345898
\(179\) 6.28599 + 10.8877i 0.469837 + 0.813782i 0.999405 0.0344857i \(-0.0109793\pi\)
−0.529568 + 0.848267i \(0.677646\pi\)
\(180\) 0 0
\(181\) −14.1730 −1.05347 −0.526735 0.850029i \(-0.676584\pi\)
−0.526735 + 0.850029i \(0.676584\pi\)
\(182\) 0.336124 + 0.166229i 0.0249152 + 0.0123217i
\(183\) 0 0
\(184\) −0.742322 −0.0547247
\(185\) −1.67242 + 2.89671i −0.122958 + 0.212970i
\(186\) 0 0
\(187\) −1.02798 1.78051i −0.0751731 0.130204i
\(188\) −17.1489 −1.25071
\(189\) 0 0
\(190\) −0.185268 −0.0134408
\(191\) 5.09023 + 8.81654i 0.368316 + 0.637942i 0.989302 0.145879i \(-0.0466011\pi\)
−0.620986 + 0.783821i \(0.713268\pi\)
\(192\) 0 0
\(193\) 3.42575 5.93357i 0.246591 0.427108i −0.715987 0.698114i \(-0.754023\pi\)
0.962578 + 0.271006i \(0.0873563\pi\)
\(194\) −0.195207 −0.0140151
\(195\) 0 0
\(196\) −5.38493 + 12.9180i −0.384638 + 0.922713i
\(197\) 20.0167 1.42613 0.713065 0.701098i \(-0.247307\pi\)
0.713065 + 0.701098i \(0.247307\pi\)
\(198\) 0 0
\(199\) 6.47405 + 11.2134i 0.458933 + 0.794896i 0.998905 0.0467876i \(-0.0148984\pi\)
−0.539972 + 0.841683i \(0.681565\pi\)
\(200\) 0.102306 0.00723411
\(201\) 0 0
\(202\) 0.0438042 + 0.0758711i 0.00308205 + 0.00533827i
\(203\) 19.2040 + 9.49728i 1.34786 + 0.666578i
\(204\) 0 0
\(205\) 0.238169 + 0.412522i 0.0166345 + 0.0288118i
\(206\) 0.120620 + 0.208919i 0.00840397 + 0.0145561i
\(207\) 0 0
\(208\) −11.0701 + 19.1740i −0.767576 + 1.32948i
\(209\) −13.6888 + 23.7098i −0.946878 + 1.64004i
\(210\) 0 0
\(211\) 6.43285 + 11.1420i 0.442856 + 0.767048i 0.997900 0.0647723i \(-0.0206321\pi\)
−0.555045 + 0.831821i \(0.687299\pi\)
\(212\) 17.0548 1.17133
\(213\) 0 0
\(214\) −0.00483157 −0.000330279
\(215\) 0.279323 0.483802i 0.0190497 0.0329950i
\(216\) 0 0
\(217\) −4.13047 2.04271i −0.280395 0.138668i
\(218\) −0.112659 + 0.195131i −0.00763022 + 0.0132159i
\(219\) 0 0
\(220\) 3.77890 6.54524i 0.254773 0.441280i
\(221\) 1.50670 2.60967i 0.101351 0.175546i
\(222\) 0 0
\(223\) 6.20544 10.7481i 0.415547 0.719749i −0.579939 0.814660i \(-0.696923\pi\)
0.995486 + 0.0949115i \(0.0302568\pi\)
\(224\) 0.727682 + 0.359872i 0.0486203 + 0.0240450i
\(225\) 0 0
\(226\) −0.149315 + 0.258622i −0.00993230 + 0.0172032i
\(227\) −8.86221 −0.588206 −0.294103 0.955774i \(-0.595021\pi\)
−0.294103 + 0.955774i \(0.595021\pi\)
\(228\) 0 0
\(229\) 26.3169 1.73907 0.869536 0.493869i \(-0.164418\pi\)
0.869536 + 0.493869i \(0.164418\pi\)
\(230\) 0.0928054 + 0.160744i 0.00611941 + 0.0105991i
\(231\) 0 0
\(232\) 0.414213 0.717438i 0.0271944 0.0471021i
\(233\) −13.0236 + 22.5576i −0.853208 + 1.47780i 0.0250903 + 0.999685i \(0.492013\pi\)
−0.878298 + 0.478114i \(0.841321\pi\)
\(234\) 0 0
\(235\) 4.28862 + 7.42811i 0.279759 + 0.484557i
\(236\) −1.40796 2.43865i −0.0916501 0.158743i
\(237\) 0 0
\(238\) −0.0329955 0.0163178i −0.00213878 0.00105773i
\(239\) −9.50084 16.4559i −0.614558 1.06445i −0.990462 0.137787i \(-0.956001\pi\)
0.375904 0.926659i \(-0.377332\pi\)
\(240\) 0 0
\(241\) −14.2829 −0.920042 −0.460021 0.887908i \(-0.652158\pi\)
−0.460021 + 0.887908i \(0.652158\pi\)
\(242\) 0.0420728 + 0.0728722i 0.00270454 + 0.00468440i
\(243\) 0 0
\(244\) −3.50689 −0.224505
\(245\) 6.94215 0.898045i 0.443518 0.0573740i
\(246\) 0 0
\(247\) −40.1272 −2.55323
\(248\) −0.0890906 + 0.154309i −0.00565726 + 0.00979866i
\(249\) 0 0
\(250\) −0.0127903 0.0221535i −0.000808931 0.00140111i
\(251\) 2.23618 0.141146 0.0705731 0.997507i \(-0.477517\pi\)
0.0705731 + 0.997507i \(0.477517\pi\)
\(252\) 0 0
\(253\) 27.4283 1.72440
\(254\) 0.0146664 + 0.0254029i 0.000920250 + 0.00159392i
\(255\) 0 0
\(256\) −7.97384 + 13.8111i −0.498365 + 0.863193i
\(257\) 15.7647 0.983377 0.491688 0.870771i \(-0.336380\pi\)
0.491688 + 0.870771i \(0.336380\pi\)
\(258\) 0 0
\(259\) 7.93254 + 3.92301i 0.492904 + 0.243764i
\(260\) 11.0774 0.686991
\(261\) 0 0
\(262\) 0.0813780 + 0.140951i 0.00502755 + 0.00870797i
\(263\) 12.7795 0.788015 0.394008 0.919107i \(-0.371088\pi\)
0.394008 + 0.919107i \(0.371088\pi\)
\(264\) 0 0
\(265\) −4.26510 7.38738i −0.262003 0.453803i
\(266\) 0.0315079 + 0.489160i 0.00193187 + 0.0299923i
\(267\) 0 0
\(268\) 12.3791 + 21.4412i 0.756173 + 1.30973i
\(269\) −9.82818 17.0229i −0.599235 1.03790i −0.992934 0.118666i \(-0.962138\pi\)
0.393700 0.919239i \(-0.371195\pi\)
\(270\) 0 0
\(271\) −1.02524 + 1.77577i −0.0622791 + 0.107871i −0.895484 0.445094i \(-0.853170\pi\)
0.833205 + 0.552965i \(0.186504\pi\)
\(272\) 1.08670 1.88222i 0.0658908 0.114126i
\(273\) 0 0
\(274\) 0.109480 + 0.189625i 0.00661394 + 0.0114557i
\(275\) −3.78014 −0.227951
\(276\) 0 0
\(277\) 6.42013 0.385748 0.192874 0.981224i \(-0.438219\pi\)
0.192874 + 0.981224i \(0.438219\pi\)
\(278\) 0.0789877 0.136811i 0.00473737 0.00820536i
\(279\) 0 0
\(280\) −0.0173988 0.270116i −0.00103978 0.0161425i
\(281\) 15.3102 26.5180i 0.913327 1.58193i 0.103995 0.994578i \(-0.466837\pi\)
0.809332 0.587351i \(-0.199829\pi\)
\(282\) 0 0
\(283\) −4.86470 + 8.42590i −0.289176 + 0.500868i −0.973613 0.228204i \(-0.926715\pi\)
0.684437 + 0.729072i \(0.260048\pi\)
\(284\) −10.3260 + 17.8851i −0.612733 + 1.06129i
\(285\) 0 0
\(286\) −0.267879 + 0.463980i −0.0158400 + 0.0274357i
\(287\) 1.04867 0.698990i 0.0619009 0.0412601i
\(288\) 0 0
\(289\) 8.35210 14.4663i 0.491300 0.850956i
\(290\) −0.207141 −0.0121637
\(291\) 0 0
\(292\) 11.6586 0.682269
\(293\) 5.32802 + 9.22840i 0.311266 + 0.539129i 0.978637 0.205597i \(-0.0659136\pi\)
−0.667371 + 0.744726i \(0.732580\pi\)
\(294\) 0 0
\(295\) −0.704208 + 1.21972i −0.0410006 + 0.0710151i
\(296\) 0.171098 0.296350i 0.00994486 0.0172250i
\(297\) 0 0
\(298\) −0.0600243 0.103965i −0.00347712 0.00602254i
\(299\) 20.1007 + 34.8155i 1.16245 + 2.01343i
\(300\) 0 0
\(301\) −1.32488 0.655213i −0.0763646 0.0377658i
\(302\) −0.199689 0.345872i −0.0114908 0.0199027i
\(303\) 0 0
\(304\) −28.9416 −1.65992
\(305\) 0.877009 + 1.51902i 0.0502174 + 0.0869790i
\(306\) 0 0
\(307\) 3.58038 0.204343 0.102171 0.994767i \(-0.467421\pi\)
0.102171 + 0.994767i \(0.467421\pi\)
\(308\) −17.9239 8.86422i −1.02131 0.505086i
\(309\) 0 0
\(310\) 0.0445526 0.00253042
\(311\) 8.15786 14.1298i 0.462590 0.801229i −0.536499 0.843901i \(-0.680254\pi\)
0.999089 + 0.0426715i \(0.0135869\pi\)
\(312\) 0 0
\(313\) 3.43821 + 5.95516i 0.194339 + 0.336606i 0.946684 0.322164i \(-0.104410\pi\)
−0.752344 + 0.658770i \(0.771077\pi\)
\(314\) 0.475008 0.0268063
\(315\) 0 0
\(316\) −5.93133 −0.333663
\(317\) −9.97368 17.2749i −0.560178 0.970256i −0.997480 0.0709419i \(-0.977400\pi\)
0.437303 0.899314i \(-0.355934\pi\)
\(318\) 0 0
\(319\) −15.3049 + 26.5089i −0.856911 + 1.48421i
\(320\) 7.98430 0.446336
\(321\) 0 0
\(322\) 0.408625 0.272369i 0.0227718 0.0151785i
\(323\) 3.93908 0.219177
\(324\) 0 0
\(325\) −2.77025 4.79822i −0.153666 0.266157i
\(326\) −0.0335391 −0.00185756
\(327\) 0 0
\(328\) −0.0243661 0.0422033i −0.00134539 0.00233029i
\(329\) 18.8829 12.5864i 1.04105 0.693913i
\(330\) 0 0
\(331\) 5.43065 + 9.40615i 0.298495 + 0.517009i 0.975792 0.218701i \(-0.0701820\pi\)
−0.677297 + 0.735710i \(0.736849\pi\)
\(332\) −7.95162 13.7726i −0.436402 0.755870i
\(333\) 0 0
\(334\) 0.142343 0.246546i 0.00778868 0.0134904i
\(335\) 6.19157 10.7241i 0.338282 0.585921i
\(336\) 0 0
\(337\) −0.137238 0.237703i −0.00747582 0.0129485i 0.862263 0.506460i \(-0.169046\pi\)
−0.869739 + 0.493512i \(0.835713\pi\)
\(338\) −0.452707 −0.0246240
\(339\) 0 0
\(340\) −1.08741 −0.0589731
\(341\) 3.29184 5.70164i 0.178263 0.308761i
\(342\) 0 0
\(343\) −3.55172 18.1765i −0.191775 0.981439i
\(344\) −0.0285764 + 0.0494957i −0.00154073 + 0.00266863i
\(345\) 0 0
\(346\) 0.0182224 0.0315622i 0.000979644 0.00169679i
\(347\) 1.89413 3.28073i 0.101682 0.176119i −0.810696 0.585468i \(-0.800911\pi\)
0.912378 + 0.409349i \(0.134244\pi\)
\(348\) 0 0
\(349\) 14.3243 24.8104i 0.766763 1.32807i −0.172547 0.985001i \(-0.555200\pi\)
0.939310 0.343070i \(-0.111467\pi\)
\(350\) −0.0563162 + 0.0375376i −0.00301023 + 0.00200647i
\(351\) 0 0
\(352\) −0.579937 + 1.00448i −0.0309107 + 0.0535389i
\(353\) −4.31487 −0.229658 −0.114829 0.993385i \(-0.536632\pi\)
−0.114829 + 0.993385i \(0.536632\pi\)
\(354\) 0 0
\(355\) 10.3293 0.548225
\(356\) −18.0345 31.2367i −0.955828 1.65554i
\(357\) 0 0
\(358\) −0.160800 + 0.278513i −0.00849853 + 0.0147199i
\(359\) 13.5903 23.5390i 0.717267 1.24234i −0.244811 0.969571i \(-0.578726\pi\)
0.962079 0.272772i \(-0.0879406\pi\)
\(360\) 0 0
\(361\) −16.7270 28.9721i −0.880370 1.52485i
\(362\) −0.181277 0.313981i −0.00952772 0.0165025i
\(363\) 0 0
\(364\) −1.88389 29.2474i −0.0987427 1.53298i
\(365\) −2.91561 5.04998i −0.152610 0.264328i
\(366\) 0 0
\(367\) 12.0152 0.627189 0.313595 0.949557i \(-0.398467\pi\)
0.313595 + 0.949557i \(0.398467\pi\)
\(368\) 14.4976 + 25.1105i 0.755738 + 1.30898i
\(369\) 0 0
\(370\) −0.0855629 −0.00444820
\(371\) −18.7794 + 12.5174i −0.974978 + 0.649872i
\(372\) 0 0
\(373\) −8.68386 −0.449633 −0.224816 0.974401i \(-0.572178\pi\)
−0.224816 + 0.974401i \(0.572178\pi\)
\(374\) 0.0262963 0.0455465i 0.00135975 0.00235515i
\(375\) 0 0
\(376\) −0.438751 0.759939i −0.0226269 0.0391909i
\(377\) −44.8646 −2.31064
\(378\) 0 0
\(379\) 12.7019 0.652454 0.326227 0.945291i \(-0.394223\pi\)
0.326227 + 0.945291i \(0.394223\pi\)
\(380\) 7.24015 + 12.5403i 0.371412 + 0.643304i
\(381\) 0 0
\(382\) −0.130211 + 0.225533i −0.00666219 + 0.0115393i
\(383\) −25.1210 −1.28362 −0.641812 0.766862i \(-0.721817\pi\)
−0.641812 + 0.766862i \(0.721817\pi\)
\(384\) 0 0
\(385\) 0.642874 + 9.98062i 0.0327639 + 0.508659i
\(386\) 0.175266 0.00892079
\(387\) 0 0
\(388\) 7.62856 + 13.2131i 0.387282 + 0.670791i
\(389\) −19.1424 −0.970559 −0.485280 0.874359i \(-0.661282\pi\)
−0.485280 + 0.874359i \(0.661282\pi\)
\(390\) 0 0
\(391\) −1.97318 3.41766i −0.0997882 0.172838i
\(392\) −0.710223 + 0.0918752i −0.0358717 + 0.00464040i
\(393\) 0 0
\(394\) 0.256020 + 0.443439i 0.0128981 + 0.0223401i
\(395\) 1.48332 + 2.56918i 0.0746338 + 0.129270i
\(396\) 0 0
\(397\) −1.80451 + 3.12551i −0.0905659 + 0.156865i −0.907749 0.419513i \(-0.862201\pi\)
0.817184 + 0.576378i \(0.195534\pi\)
\(398\) −0.165610 + 0.286845i −0.00830129 + 0.0143783i
\(399\) 0 0
\(400\) −1.99804 3.46070i −0.0999019 0.173035i
\(401\) −3.36015 −0.167798 −0.0838989 0.996474i \(-0.526737\pi\)
−0.0838989 + 0.996474i \(0.526737\pi\)
\(402\) 0 0
\(403\) 9.64964 0.480683
\(404\) 3.42367 5.92998i 0.170334 0.295027i
\(405\) 0 0
\(406\) 0.0352276 + 0.546909i 0.00174832 + 0.0271426i
\(407\) −6.32196 + 10.9499i −0.313368 + 0.542769i
\(408\) 0 0
\(409\) −1.19114 + 2.06311i −0.0588980 + 0.102014i −0.893971 0.448125i \(-0.852092\pi\)
0.835073 + 0.550139i \(0.185425\pi\)
\(410\) −0.00609253 + 0.0105526i −0.000300888 + 0.000521154i
\(411\) 0 0
\(412\) 9.42746 16.3288i 0.464458 0.804464i
\(413\) 3.34017 + 1.65187i 0.164359 + 0.0812833i
\(414\) 0 0
\(415\) −3.97711 + 6.88856i −0.195229 + 0.338146i
\(416\) −1.70002 −0.0833501
\(417\) 0 0
\(418\) −0.700339 −0.0342547
\(419\) 1.56715 + 2.71438i 0.0765602 + 0.132606i 0.901764 0.432229i \(-0.142273\pi\)
−0.825203 + 0.564836i \(0.808940\pi\)
\(420\) 0 0
\(421\) 6.68047 11.5709i 0.325586 0.563932i −0.656044 0.754722i \(-0.727772\pi\)
0.981631 + 0.190790i \(0.0611050\pi\)
\(422\) −0.164556 + 0.285020i −0.00801048 + 0.0138746i
\(423\) 0 0
\(424\) 0.436345 + 0.755772i 0.0211908 + 0.0367035i
\(425\) 0.271942 + 0.471017i 0.0131911 + 0.0228477i
\(426\) 0 0
\(427\) 3.86150 2.57388i 0.186871 0.124559i
\(428\) 0.188814 + 0.327036i 0.00912668 + 0.0158079i
\(429\) 0 0
\(430\) 0.0142905 0.000689150
\(431\) 11.9751 + 20.7415i 0.576821 + 0.999082i 0.995841 + 0.0911058i \(0.0290401\pi\)
−0.419021 + 0.907977i \(0.637627\pi\)
\(432\) 0 0
\(433\) −15.3737 −0.738813 −0.369406 0.929268i \(-0.620439\pi\)
−0.369406 + 0.929268i \(0.620439\pi\)
\(434\) −0.00757689 0.117631i −0.000363702 0.00564648i
\(435\) 0 0
\(436\) 17.6105 0.843390
\(437\) −26.2755 + 45.5106i −1.25693 + 2.17706i
\(438\) 0 0
\(439\) −4.25004 7.36128i −0.202843 0.351335i 0.746600 0.665273i \(-0.231685\pi\)
−0.949443 + 0.313938i \(0.898352\pi\)
\(440\) 0.386730 0.0184366
\(441\) 0 0
\(442\) 0.0770844 0.00366653
\(443\) −15.4662 26.7883i −0.734822 1.27275i −0.954801 0.297245i \(-0.903932\pi\)
0.219979 0.975505i \(-0.429401\pi\)
\(444\) 0 0
\(445\) −9.02021 + 15.6235i −0.427599 + 0.740623i
\(446\) 0.317478 0.0150330
\(447\) 0 0
\(448\) −1.35786 21.0808i −0.0641529 0.995973i
\(449\) −4.23659 −0.199937 −0.0999686 0.994991i \(-0.531874\pi\)
−0.0999686 + 0.994991i \(0.531874\pi\)
\(450\) 0 0
\(451\) 0.900313 + 1.55939i 0.0423941 + 0.0734287i
\(452\) 23.3405 1.09785
\(453\) 0 0
\(454\) −0.113350 0.196329i −0.00531980 0.00921417i
\(455\) −12.1975 + 8.13026i −0.571829 + 0.381153i
\(456\) 0 0
\(457\) −19.6991 34.1198i −0.921485 1.59606i −0.797119 0.603823i \(-0.793644\pi\)
−0.124366 0.992236i \(-0.539690\pi\)
\(458\) 0.336602 + 0.583012i 0.0157284 + 0.0272424i
\(459\) 0 0
\(460\) 7.25354 12.5635i 0.338198 0.585776i
\(461\) 2.86184 4.95686i 0.133289 0.230864i −0.791653 0.610971i \(-0.790779\pi\)
0.924943 + 0.380107i \(0.124113\pi\)
\(462\) 0 0
\(463\) 9.45324 + 16.3735i 0.439329 + 0.760941i 0.997638 0.0686927i \(-0.0218828\pi\)
−0.558309 + 0.829633i \(0.688549\pi\)
\(464\) −32.3584 −1.50220
\(465\) 0 0
\(466\) −0.666306 −0.0308661
\(467\) −11.2057 + 19.4088i −0.518536 + 0.898131i 0.481232 + 0.876593i \(0.340190\pi\)
−0.999768 + 0.0215379i \(0.993144\pi\)
\(468\) 0 0
\(469\) −29.3676 14.5237i −1.35607 0.670641i
\(470\) −0.109706 + 0.190016i −0.00506035 + 0.00876478i
\(471\) 0 0
\(472\) 0.0720446 0.124785i 0.00331612 0.00574369i
\(473\) 1.05588 1.82884i 0.0485494 0.0840900i
\(474\) 0 0
\(475\) 3.62126 6.27220i 0.166155 0.287788i
\(476\) 0.184932 + 2.87107i 0.00847634 + 0.131595i
\(477\) 0 0
\(478\) 0.243038 0.420953i 0.0111163 0.0192540i
\(479\) 30.1305 1.37670 0.688349 0.725380i \(-0.258336\pi\)
0.688349 + 0.725380i \(0.258336\pi\)
\(480\) 0 0
\(481\) −18.5321 −0.844989
\(482\) −0.182683 0.316416i −0.00832097 0.0144123i
\(483\) 0 0
\(484\) 3.28835 5.69559i 0.149470 0.258890i
\(485\) 3.81553 6.60869i 0.173254 0.300085i
\(486\) 0 0
\(487\) −17.0000 29.4448i −0.770343 1.33427i −0.937375 0.348322i \(-0.886752\pi\)
0.167032 0.985951i \(-0.446582\pi\)
\(488\) −0.0897231 0.155405i −0.00406157 0.00703485i
\(489\) 0 0
\(490\) 0.108687 + 0.142307i 0.00490999 + 0.00642876i
\(491\) 7.47750 + 12.9514i 0.337455 + 0.584489i 0.983953 0.178426i \(-0.0571006\pi\)
−0.646498 + 0.762915i \(0.723767\pi\)
\(492\) 0 0
\(493\) 4.40412 0.198352
\(494\) −0.513240 0.888958i −0.0230918 0.0399961i
\(495\) 0 0
\(496\) 6.95977 0.312503
\(497\) −1.75667 27.2724i −0.0787976 1.22333i
\(498\) 0 0
\(499\) 0.819143 0.0366699 0.0183349 0.999832i \(-0.494163\pi\)
0.0183349 + 0.999832i \(0.494163\pi\)
\(500\) −0.999673 + 1.73148i −0.0447067 + 0.0774343i
\(501\) 0 0
\(502\) 0.0286014 + 0.0495391i 0.00127654 + 0.00221104i
\(503\) −13.5639 −0.604783 −0.302392 0.953184i \(-0.597785\pi\)
−0.302392 + 0.953184i \(0.597785\pi\)
\(504\) 0 0
\(505\) −3.42479 −0.152401
\(506\) 0.350817 + 0.607633i 0.0155957 + 0.0270126i
\(507\) 0 0
\(508\) 1.14630 1.98545i 0.0508589 0.0880903i
\(509\) −34.9191 −1.54776 −0.773881 0.633330i \(-0.781687\pi\)
−0.773881 + 0.633330i \(0.781687\pi\)
\(510\) 0 0
\(511\) −12.8375 + 8.55685i −0.567898 + 0.378533i
\(512\) −2.04377 −0.0903229
\(513\) 0 0
\(514\) 0.201636 + 0.349244i 0.00889378 + 0.0154045i
\(515\) −9.43055 −0.415560
\(516\) 0 0
\(517\) 16.2116 + 28.0793i 0.712984 + 1.23493i
\(518\) 0.0145514 + 0.225910i 0.000639350 + 0.00992591i
\(519\) 0 0
\(520\) 0.283413 + 0.490886i 0.0124285 + 0.0215268i
\(521\) −1.55141 2.68713i −0.0679687 0.117725i 0.830038 0.557706i \(-0.188318\pi\)
−0.898007 + 0.439981i \(0.854985\pi\)
\(522\) 0 0
\(523\) −5.99060 + 10.3760i −0.261951 + 0.453712i −0.966760 0.255685i \(-0.917699\pi\)
0.704810 + 0.709396i \(0.251032\pi\)
\(524\) 6.36039 11.0165i 0.277855 0.481259i
\(525\) 0 0
\(526\) 0.163453 + 0.283110i 0.00712691 + 0.0123442i
\(527\) −0.947256 −0.0412631
\(528\) 0 0
\(529\) 29.6482 1.28905
\(530\) 0.109104 0.188974i 0.00473918 0.00820850i
\(531\) 0 0
\(532\) 31.8786 21.2487i 1.38211 0.921248i
\(533\) −1.31958 + 2.28558i −0.0571574 + 0.0989994i
\(534\) 0 0
\(535\) 0.0944380 0.163571i 0.00408291 0.00707181i
\(536\) −0.633434 + 1.09714i −0.0273602 + 0.0473892i
\(537\) 0 0
\(538\) 0.251411 0.435457i 0.0108391 0.0187739i
\(539\) 26.2423 3.39473i 1.13034 0.146221i
\(540\) 0 0
\(541\) 0.566880 0.981865i 0.0243721 0.0422137i −0.853582 0.520958i \(-0.825575\pi\)
0.877954 + 0.478745i \(0.158908\pi\)
\(542\) −0.0524527 −0.00225304
\(543\) 0 0
\(544\) 0.166882 0.00715500
\(545\) −4.40407 7.62807i −0.188650 0.326751i
\(546\) 0 0
\(547\) −3.51151 + 6.08211i −0.150141 + 0.260052i −0.931279 0.364306i \(-0.881306\pi\)
0.781138 + 0.624358i \(0.214640\pi\)
\(548\) 8.55682 14.8208i 0.365529 0.633115i
\(549\) 0 0
\(550\) −0.0483491 0.0837432i −0.00206161 0.00357082i
\(551\) −29.3233 50.7895i −1.24922 2.16371i
\(552\) 0 0
\(553\) 6.53110 4.35331i 0.277731 0.185121i
\(554\) 0.0821155 + 0.142228i 0.00348875 + 0.00604270i
\(555\) 0 0
\(556\) −12.3471 −0.523635
\(557\) 6.94094 + 12.0221i 0.294097 + 0.509391i 0.974774 0.223192i \(-0.0716477\pi\)
−0.680677 + 0.732583i \(0.738314\pi\)
\(558\) 0 0
\(559\) 3.09518 0.130912
\(560\) −8.79742 + 5.86393i −0.371759 + 0.247796i
\(561\) 0 0
\(562\) 0.783287 0.0330410
\(563\) 11.1331 19.2831i 0.469204 0.812685i −0.530176 0.847887i \(-0.677874\pi\)
0.999380 + 0.0352025i \(0.0112076\pi\)
\(564\) 0 0
\(565\) −5.83704 10.1101i −0.245566 0.425333i
\(566\) −0.248884 −0.0104614
\(567\) 0 0
\(568\) −1.05675 −0.0443403
\(569\) 0.0493845 + 0.0855365i 0.00207031 + 0.00358588i 0.867059 0.498206i \(-0.166008\pi\)
−0.864988 + 0.501792i \(0.832674\pi\)
\(570\) 0 0
\(571\) −17.4881 + 30.2902i −0.731852 + 1.26761i 0.224238 + 0.974534i \(0.428011\pi\)
−0.956091 + 0.293071i \(0.905323\pi\)
\(572\) 41.8740 1.75084
\(573\) 0 0
\(574\) 0.0288979 + 0.0142913i 0.00120617 + 0.000596509i
\(575\) −7.25591 −0.302592
\(576\) 0 0
\(577\) 9.85646 + 17.0719i 0.410330 + 0.710712i 0.994926 0.100612i \(-0.0320802\pi\)
−0.584596 + 0.811325i \(0.698747\pi\)
\(578\) 0.427304 0.0177735
\(579\) 0 0
\(580\) 8.09490 + 14.0208i 0.336123 + 0.582181i
\(581\) 18.8641 + 9.32917i 0.782614 + 0.387039i
\(582\) 0 0
\(583\) −16.1227 27.9253i −0.667733 1.15655i
\(584\) 0.298283 + 0.516642i 0.0123431 + 0.0213788i
\(585\) 0 0
\(586\) −0.136294 + 0.236068i −0.00563026 + 0.00975189i
\(587\) −13.3822 + 23.1787i −0.552344 + 0.956687i 0.445761 + 0.895152i \(0.352933\pi\)
−0.998105 + 0.0615355i \(0.980400\pi\)
\(588\) 0 0
\(589\) 6.30697 + 10.9240i 0.259874 + 0.450116i
\(590\) −0.0360282 −0.00148326
\(591\) 0 0
\(592\) −13.3662 −0.549347
\(593\) −2.17116 + 3.76056i −0.0891589 + 0.154428i −0.907156 0.420795i \(-0.861751\pi\)
0.817997 + 0.575223i \(0.195085\pi\)
\(594\) 0 0
\(595\) 1.19737 0.798106i 0.0490873 0.0327192i
\(596\) −4.69141 + 8.12577i −0.192168 + 0.332844i
\(597\) 0 0
\(598\) −0.514189 + 0.890602i −0.0210268 + 0.0364194i
\(599\) −19.2922 + 33.4151i −0.788258 + 1.36530i 0.138775 + 0.990324i \(0.455683\pi\)
−0.927033 + 0.374979i \(0.877650\pi\)
\(600\) 0 0
\(601\) 22.6721 39.2693i 0.924815 1.60183i 0.132957 0.991122i \(-0.457553\pi\)
0.791858 0.610705i \(-0.209114\pi\)
\(602\) −0.00243034 0.0377310i −9.90531e−5 0.00153780i
\(603\) 0 0
\(604\) −15.6074 + 27.0328i −0.635057 + 1.09995i
\(605\) −3.28942 −0.133734
\(606\) 0 0
\(607\) 10.7067 0.434572 0.217286 0.976108i \(-0.430280\pi\)
0.217286 + 0.976108i \(0.430280\pi\)
\(608\) −1.11112 1.92452i −0.0450620 0.0780498i
\(609\) 0 0
\(610\) −0.0224344 + 0.0388576i −0.000908344 + 0.00157330i
\(611\) −23.7612 + 41.1555i −0.961274 + 1.66497i
\(612\) 0 0
\(613\) −14.1382 24.4882i −0.571038 0.989067i −0.996460 0.0840720i \(-0.973207\pi\)
0.425421 0.904995i \(-0.360126\pi\)
\(614\) 0.0457942 + 0.0793178i 0.00184810 + 0.00320101i
\(615\) 0 0
\(616\) −0.0657697 1.02107i −0.00264994 0.0411403i
\(617\) −18.3974 31.8653i −0.740653 1.28285i −0.952198 0.305480i \(-0.901183\pi\)
0.211546 0.977368i \(-0.432150\pi\)
\(618\) 0 0
\(619\) 6.52183 0.262135 0.131067 0.991373i \(-0.458160\pi\)
0.131067 + 0.991373i \(0.458160\pi\)
\(620\) −1.74108 3.01564i −0.0699236 0.121111i
\(621\) 0 0
\(622\) 0.417367 0.0167349
\(623\) 42.7844 + 21.1589i 1.71412 + 0.847712i
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) −0.0879517 + 0.152337i −0.00351526 + 0.00608860i
\(627\) 0 0
\(628\) −18.5630 32.1520i −0.740744 1.28301i
\(629\) 1.81920 0.0725362
\(630\) 0 0
\(631\) 2.81008 0.111867 0.0559337 0.998434i \(-0.482186\pi\)
0.0559337 + 0.998434i \(0.482186\pi\)
\(632\) −0.151752 0.262842i −0.00603637 0.0104553i
\(633\) 0 0
\(634\) 0.255133 0.441903i 0.0101326 0.0175502i
\(635\) −1.14668 −0.0455045
\(636\) 0 0
\(637\) 23.5406 + 30.8222i 0.932711 + 1.22122i
\(638\) −0.783019 −0.0310000
\(639\) 0 0
\(640\) 0.408955 + 0.708332i 0.0161654 + 0.0279993i
\(641\) 1.71362 0.0676838 0.0338419 0.999427i \(-0.489226\pi\)
0.0338419 + 0.999427i \(0.489226\pi\)
\(642\) 0 0
\(643\) −10.4993 18.1854i −0.414054 0.717162i 0.581275 0.813707i \(-0.302554\pi\)
−0.995329 + 0.0965451i \(0.969221\pi\)
\(644\) −34.4047 17.0147i −1.35574 0.670475i
\(645\) 0 0
\(646\) 0.0503821 + 0.0872644i 0.00198226 + 0.00343337i
\(647\) 1.23228 + 2.13437i 0.0484458 + 0.0839105i 0.889231 0.457458i \(-0.151240\pi\)
−0.840786 + 0.541368i \(0.817907\pi\)
\(648\) 0 0
\(649\) −2.66200 + 4.61072i −0.104493 + 0.180987i
\(650\) 0.0708649 0.122742i 0.00277955 0.00481432i
\(651\) 0 0
\(652\) 1.31068 + 2.27017i 0.0513304 + 0.0889068i
\(653\) 33.5479 1.31283 0.656416 0.754399i \(-0.272072\pi\)
0.656416 + 0.754399i \(0.272072\pi\)
\(654\) 0 0
\(655\) −6.36247 −0.248602
\(656\) −0.951743 + 1.64847i −0.0371593 + 0.0643618i
\(657\) 0 0
\(658\) 0.520352 + 0.257338i 0.0202854 + 0.0100321i
\(659\) −5.81556 + 10.0728i −0.226542 + 0.392382i −0.956781 0.290809i \(-0.906075\pi\)
0.730239 + 0.683192i \(0.239409\pi\)
\(660\) 0 0
\(661\) 21.0430 36.4476i 0.818479 1.41765i −0.0883238 0.996092i \(-0.528151\pi\)
0.906803 0.421555i \(-0.138516\pi\)
\(662\) −0.138919 + 0.240615i −0.00539925 + 0.00935178i
\(663\) 0 0
\(664\) 0.406881 0.704739i 0.0157901 0.0273492i
\(665\) −17.1762 8.49445i −0.666066 0.329401i
\(666\) 0 0
\(667\) −29.3776 + 50.8834i −1.13750 + 1.97021i
\(668\) −22.2507 −0.860906
\(669\) 0 0
\(670\) 0.316769 0.0122378
\(671\) 3.31521 + 5.74211i 0.127982 + 0.221672i
\(672\) 0 0
\(673\) −4.35702 + 7.54659i −0.167951 + 0.290899i −0.937699 0.347448i \(-0.887048\pi\)
0.769748 + 0.638347i \(0.220382\pi\)
\(674\) 0.00351063 0.00608059i 0.000135224 0.000234216i
\(675\) 0 0
\(676\) 17.6915 + 30.6425i 0.680440 + 1.17856i
\(677\) 5.73561 + 9.93437i 0.220437 + 0.381809i 0.954941 0.296796i \(-0.0959182\pi\)
−0.734503 + 0.678605i \(0.762585\pi\)
\(678\) 0 0
\(679\) −18.0977 8.95015i −0.694525 0.343475i
\(680\) −0.0278212 0.0481878i −0.00106689 0.00184792i
\(681\) 0 0
\(682\) 0.168415 0.00644893
\(683\) −17.5055 30.3205i −0.669831 1.16018i −0.977951 0.208834i \(-0.933033\pi\)
0.308120 0.951347i \(-0.400300\pi\)
\(684\) 0 0
\(685\) −8.55962 −0.327046
\(686\) 0.357245 0.311166i 0.0136397 0.0118804i
\(687\) 0 0
\(688\) 2.23239 0.0851091
\(689\) 23.6309 40.9298i 0.900264 1.55930i
\(690\) 0 0
\(691\) −1.92339 3.33141i −0.0731692 0.126733i 0.827119 0.562026i \(-0.189978\pi\)
−0.900289 + 0.435293i \(0.856645\pi\)
\(692\) −2.84848 −0.108283
\(693\) 0 0
\(694\) 0.0969062 0.00367851
\(695\) 3.08779 + 5.34821i 0.117127 + 0.202869i
\(696\) 0 0
\(697\) 0.129536 0.224364i 0.00490654 0.00849838i
\(698\) 0.732850 0.0277388
\(699\) 0 0
\(700\) 4.74161 + 2.34495i 0.179216 + 0.0886307i
\(701\) −6.90316 −0.260729 −0.130364 0.991466i \(-0.541615\pi\)
−0.130364 + 0.991466i \(0.541615\pi\)
\(702\) 0 0
\(703\) −12.1125 20.9795i −0.456832 0.791255i
\(704\) 30.1817 1.13752
\(705\) 0 0
\(706\) −0.0551886 0.0955895i −0.00207705 0.00359756i
\(707\) 0.582442 + 9.04242i 0.0219050 + 0.340075i
\(708\) 0 0
\(709\) −5.27133 9.13021i −0.197969 0.342892i 0.749901 0.661550i \(-0.230101\pi\)
−0.947870 + 0.318658i \(0.896768\pi\)
\(710\) 0.132116 + 0.228831i 0.00495821 + 0.00858787i
\(711\) 0 0
\(712\) 0.922820 1.59837i 0.0345841 0.0599015i
\(713\) 6.31864 10.9442i 0.236635 0.409863i
\(714\) 0 0
\(715\) −10.4719 18.1379i −0.391628 0.678320i
\(716\) 25.1357 0.939367
\(717\) 0 0
\(718\) 0.695296 0.0259482
\(719\) 17.8806 30.9701i 0.666835 1.15499i −0.311950 0.950099i \(-0.600982\pi\)
0.978784 0.204893i \(-0.0656846\pi\)
\(720\) 0 0
\(721\) 1.60382 + 24.8993i 0.0597293 + 0.927298i
\(722\) 0.427888 0.741124i 0.0159243 0.0275818i
\(723\) 0 0
\(724\) −14.1684 + 24.5403i −0.526563 + 0.912034i
\(725\) 4.04878 7.01269i 0.150368 0.260445i
\(726\) 0 0
\(727\) −19.2427 + 33.3294i −0.713674 + 1.23612i 0.249795 + 0.968299i \(0.419637\pi\)
−0.963469 + 0.267820i \(0.913697\pi\)
\(728\) 1.24788 0.831773i 0.0462494 0.0308276i
\(729\) 0 0
\(730\) 0.0745831 0.129182i 0.00276044 0.00478123i
\(731\) −0.303838 −0.0112379
\(732\) 0 0
\(733\) 41.6428 1.53811 0.769056 0.639182i \(-0.220727\pi\)
0.769056 + 0.639182i \(0.220727\pi\)
\(734\) 0.153678 + 0.266179i 0.00567238 + 0.00982484i
\(735\) 0 0
\(736\) −1.11318 + 1.92808i −0.0410323 + 0.0710701i
\(737\) 23.4050 40.5386i 0.862133 1.49326i
\(738\) 0 0
\(739\) −22.4915 38.9565i −0.827364 1.43304i −0.900099 0.435685i \(-0.856506\pi\)
0.0727349 0.997351i \(-0.476827\pi\)
\(740\) 3.34374 + 5.79152i 0.122918 + 0.212901i
\(741\) 0 0
\(742\) −0.517499 0.255927i −0.0189980 0.00939539i
\(743\) 2.24629 + 3.89069i 0.0824083 + 0.142735i 0.904284 0.426932i \(-0.140405\pi\)
−0.821876 + 0.569667i \(0.807072\pi\)
\(744\) 0 0
\(745\) 4.69295 0.171936
\(746\) −0.111069 0.192378i −0.00406653 0.00704344i
\(747\) 0 0
\(748\) −4.11056 −0.150297
\(749\) −0.447935 0.221525i −0.0163672 0.00809434i
\(750\) 0 0
\(751\) 42.2660 1.54231 0.771154 0.636649i \(-0.219680\pi\)
0.771154 + 0.636649i \(0.219680\pi\)
\(752\) −17.1377 + 29.6833i −0.624946 + 1.08244i
\(753\) 0 0
\(754\) −0.573832 0.993906i −0.0208977 0.0361959i
\(755\) 15.6125 0.568198
\(756\) 0 0
\(757\) −25.4479 −0.924918 −0.462459 0.886641i \(-0.653033\pi\)
−0.462459 + 0.886641i \(0.653033\pi\)
\(758\) 0.162462 + 0.281392i 0.00590087 + 0.0102206i
\(759\) 0 0
\(760\) −0.370476 + 0.641683i −0.0134386 + 0.0232763i
\(761\) 29.8303 1.08135 0.540673 0.841233i \(-0.318170\pi\)
0.540673 + 0.841233i \(0.318170\pi\)
\(762\) 0 0
\(763\) −19.3913 + 12.9252i −0.702010 + 0.467925i
\(764\) 20.3543 0.736391
\(765\) 0 0
\(766\) −0.321306 0.556518i −0.0116092 0.0201078i
\(767\) −7.80334 −0.281762
\(768\) 0 0
\(769\) 9.71584 + 16.8283i 0.350362 + 0.606845i 0.986313 0.164885i \(-0.0527252\pi\)
−0.635951 + 0.771730i \(0.719392\pi\)
\(770\) −0.212883 + 0.141897i −0.00767176 + 0.00511362i
\(771\) 0 0
\(772\) −6.84926 11.8633i −0.246510 0.426968i
\(773\) −16.1602 27.9902i −0.581241 1.00674i −0.995333 0.0965036i \(-0.969234\pi\)
0.414092 0.910235i \(-0.364099\pi\)
\(774\) 0 0
\(775\) −0.870826 + 1.50832i −0.0312810 + 0.0541803i
\(776\) −0.390351 + 0.676107i −0.0140128 + 0.0242708i
\(777\) 0 0
\(778\) −0.244838 0.424071i −0.00877785 0.0152037i
\(779\) −3.44989 −0.123605
\(780\) 0 0
\(781\) 39.0463 1.39719
\(782\) 0.0504753 0.0874258i 0.00180499 0.00312634i
\(783\) 0 0
\(784\) 16.9785 + 22.2304i 0.606377 + 0.793943i
\(785\) −9.28453 + 16.0813i −0.331379 + 0.573965i
\(786\) 0 0
\(787\) −13.0951 + 22.6813i −0.466788 + 0.808501i −0.999280 0.0379339i \(-0.987922\pi\)
0.532492 + 0.846435i \(0.321256\pi\)
\(788\) 20.0101 34.6586i 0.712831 1.23466i
\(789\) 0 0
\(790\) −0.0379442 + 0.0657213i −0.00134999 + 0.00233826i
\(791\) −25.7007 + 17.1308i −0.913811 + 0.609101i
\(792\) 0 0
\(793\) −4.85907 + 8.41616i −0.172551 + 0.298867i
\(794\) −0.0923211 −0.00327635
\(795\) 0 0
\(796\) 25.8877 0.917566
\(797\) −9.92568 17.1918i −0.351586 0.608964i 0.634942 0.772560i \(-0.281024\pi\)
−0.986527 + 0.163596i \(0.947691\pi\)
\(798\) 0 0
\(799\) 2.33251 4.04003i 0.0825183 0.142926i
\(800\) 0.153417 0.265726i 0.00542411 0.00939483i
\(801\) 0 0
\(802\) −0.0429774 0.0744390i −0.00151758 0.00262853i
\(803\) −11.0214 19.0896i −0.388936 0.673657i
\(804\) 0 0
\(805\) 1.23399 + 19.1576i 0.0434923 + 0.675218i
\(806\) 0.123422 + 0.213773i 0.00434735 + 0.00752984i
\(807\) 0 0
\(808\) 0.350376 0.0123262
\(809\) 1.09725 + 1.90050i 0.0385774 + 0.0668180i 0.884669 0.466219i \(-0.154384\pi\)
−0.846092 + 0.533037i \(0.821051\pi\)
\(810\) 0 0
\(811\) −21.8077 −0.765773 −0.382887 0.923795i \(-0.625070\pi\)
−0.382887 + 0.923795i \(0.625070\pi\)
\(812\) 35.6421 23.7573i 1.25079 0.833717i
\(813\) 0 0
\(814\) −0.323439 −0.0113365
\(815\) 0.655557 1.13546i 0.0229632 0.0397734i
\(816\) 0 0
\(817\) 2.02300 + 3.50394i 0.0707759 + 0.122587i
\(818\) −0.0609402 −0.00213072
\(819\) 0 0
\(820\) 0.952366 0.0332581
\(821\) 22.0670 + 38.2212i 0.770144 + 1.33393i 0.937484 + 0.348029i \(0.113149\pi\)
−0.167340 + 0.985899i \(0.553518\pi\)
\(822\) 0 0
\(823\) −16.7786 + 29.0615i −0.584867 + 1.01302i 0.410025 + 0.912074i \(0.365520\pi\)
−0.994892 + 0.100945i \(0.967813\pi\)
\(824\) 0.964800 0.0336104
\(825\) 0 0
\(826\) 0.00612718 + 0.0951245i 0.000213192 + 0.00330980i
\(827\) 4.29754 0.149440 0.0747201 0.997205i \(-0.476194\pi\)
0.0747201 + 0.997205i \(0.476194\pi\)
\(828\) 0 0
\(829\) −11.9899 20.7671i −0.416427 0.721273i 0.579150 0.815221i \(-0.303385\pi\)
−0.995577 + 0.0939481i \(0.970051\pi\)
\(830\) −0.203474 −0.00706268
\(831\) 0 0
\(832\) 22.1185 + 38.3104i 0.766822 + 1.32818i
\(833\) −2.31086 3.02566i −0.0800664 0.104833i
\(834\) 0 0
\(835\) 5.56450 + 9.63799i 0.192567 + 0.333536i
\(836\) 27.3687 + 47.4041i 0.946568 + 1.63950i
\(837\) 0 0
\(838\) −0.0400887 + 0.0694356i −0.00138484 + 0.00239861i
\(839\) −24.2851 + 42.0630i −0.838414 + 1.45218i 0.0528059 + 0.998605i \(0.483184\pi\)
−0.891220 + 0.453571i \(0.850150\pi\)
\(840\) 0 0
\(841\) −18.2852 31.6708i −0.630523 1.09210i
\(842\) 0.341782 0.0117786
\(843\) 0 0
\(844\) 25.7230 0.885421
\(845\) 8.84862 15.3263i 0.304402 0.527239i
\(846\) 0 0
\(847\) 0.559420 + 8.68500i 0.0192219 + 0.298420i
\(848\) 17.0437 29.5205i 0.585282 1.01374i
\(849\) 0 0
\(850\) −0.00695644 + 0.0120489i −0.000238604 + 0.000413274i
\(851\) −12.1349 + 21.0183i −0.415979 + 0.720496i
\(852\) 0 0
\(853\) −8.37813 + 14.5113i −0.286862 + 0.496859i −0.973059 0.230556i \(-0.925945\pi\)
0.686197 + 0.727416i \(0.259279\pi\)
\(854\) 0.106410 + 0.0526248i 0.00364128 + 0.00180078i
\(855\) 0 0
\(856\) −0.00966156 + 0.0167343i −0.000330225 + 0.000571967i
\(857\) 10.4552 0.357143 0.178571 0.983927i \(-0.442852\pi\)
0.178571 + 0.983927i \(0.442852\pi\)
\(858\) 0 0
\(859\) 13.4320 0.458295 0.229147 0.973392i \(-0.426406\pi\)
0.229147 + 0.973392i \(0.426406\pi\)
\(860\) −0.558463 0.967287i −0.0190434 0.0329842i
\(861\) 0 0
\(862\) −0.306331 + 0.530581i −0.0104337 + 0.0180716i
\(863\) −15.5326 + 26.9033i −0.528737 + 0.915799i 0.470702 + 0.882292i \(0.344001\pi\)
−0.999439 + 0.0335063i \(0.989333\pi\)
\(864\) 0 0
\(865\) 0.712352 + 1.23383i 0.0242207 + 0.0419515i
\(866\) −0.196635 0.340581i −0.00668191 0.0115734i
\(867\) 0 0
\(868\) −7.66604 + 5.10980i −0.260202 + 0.173438i
\(869\) 5.60714 + 9.71186i 0.190209 + 0.329452i
\(870\) 0 0
\(871\) 68.6089 2.32472
\(872\) 0.450562 + 0.780396i 0.0152579 + 0.0264275i
\(873\) 0 0
\(874\) −1.34429 −0.0454713
\(875\) −0.170066 2.64028i −0.00574929 0.0892577i
\(876\) 0 0
\(877\) −10.6455 −0.359472 −0.179736 0.983715i \(-0.557524\pi\)
−0.179736 + 0.983715i \(0.557524\pi\)
\(878\) 0.108719 0.188306i 0.00366908 0.00635503i
\(879\) 0 0
\(880\) −7.55285 13.0819i −0.254607 0.440991i
\(881\) 37.4454 1.26157 0.630785 0.775958i \(-0.282733\pi\)
0.630785 + 0.775958i \(0.282733\pi\)
\(882\) 0 0
\(883\) −1.93626 −0.0651605 −0.0325802 0.999469i \(-0.510372\pi\)
−0.0325802 + 0.999469i \(0.510372\pi\)
\(884\) −3.01240 5.21764i −0.101318 0.175488i
\(885\) 0 0
\(886\) 0.395636 0.685261i 0.0132916 0.0230218i
\(887\) −27.1683 −0.912224 −0.456112 0.889922i \(-0.650758\pi\)
−0.456112 + 0.889922i \(0.650758\pi\)
\(888\) 0 0
\(889\) 0.195011 + 3.02755i 0.00654046 + 0.101541i
\(890\) −0.461486 −0.0154690
\(891\) 0 0
\(892\) −12.4068 21.4892i −0.415411 0.719513i
\(893\) −62.1209 −2.07880
\(894\) 0 0
\(895\) −6.28599 10.8877i −0.210118 0.363934i
\(896\) 1.80064 1.20022i 0.0601553 0.0400965i
\(897\) 0 0
\(898\) −0.0541874 0.0938553i −0.00180826 0.00313199i
\(899\) 7.05156 + 12.2137i 0.235183 + 0.407348i
\(900\) 0 0
\(901\) −2.31972 + 4.01787i −0.0772811 + 0.133855i
\(902\) −0.0230306 + 0.0398901i −0.000766834 + 0.00132820i
\(903\) 0 0
\(904\) 0.597163 + 1.03432i 0.0198614 + 0.0344009i
\(905\) 14.1730 0.471127
\(906\) 0 0
\(907\) 55.9188 1.85675 0.928376 0.371642i \(-0.121205\pi\)
0.928376 + 0.371642i \(0.121205\pi\)
\(908\) −8.85931 + 15.3448i −0.294007 + 0.509234i
\(909\) 0 0
\(910\) −0.336124 0.166229i −0.0111424 0.00551043i
\(911\) −4.38364 + 7.59269i −0.145237 + 0.251557i −0.929461 0.368920i \(-0.879728\pi\)
0.784225 + 0.620477i \(0.213061\pi\)
\(912\) 0 0
\(913\) −15.0340 + 26.0397i −0.497553 + 0.861787i
\(914\) 0.503916 0.872807i 0.0166680 0.0288699i
\(915\) 0 0
\(916\) 26.3083 45.5674i 0.869252 1.50559i
\(917\) 1.08204 + 16.7987i 0.0357322 + 0.554742i
\(918\) 0 0
\(919\) 5.14755 8.91582i 0.169802 0.294106i −0.768548 0.639792i \(-0.779021\pi\)
0.938350 + 0.345686i \(0.112354\pi\)
\(920\) 0.742322 0.0244736
\(921\) 0 0
\(922\) 0.146416 0.00482194
\(923\) 28.6149 + 49.5625i 0.941871 + 1.63137i
\(924\) 0 0
\(925\) 1.67242 2.89671i 0.0549887 0.0952432i
\(926\) −0.241820 + 0.418844i −0.00794669 + 0.0137641i
\(927\) 0 0
\(928\) −1.24230 2.15173i −0.0407805 0.0706339i
\(929\) 18.7180 + 32.4206i 0.614119 + 1.06368i 0.990538 + 0.137235i \(0.0438217\pi\)
−0.376420 + 0.926449i \(0.622845\pi\)
\(930\) 0 0
\(931\) −19.5066 + 46.7947i −0.639304 + 1.53363i
\(932\) 26.0388 + 45.1005i 0.852928 + 1.47732i
\(933\) 0 0
\(934\) −0.573296 −0.0187588
\(935\) 1.02798 + 1.78051i 0.0336184 + 0.0582288i
\(936\) 0 0
\(937\) −20.0462 −0.654882 −0.327441 0.944872i \(-0.606186\pi\)
−0.327441 + 0.944872i \(0.606186\pi\)
\(938\) −0.0538717 0.836358i −0.00175897 0.0273081i
\(939\) 0 0
\(940\) 17.1489 0.559335
\(941\) −4.82903 + 8.36413i −0.157422 + 0.272663i −0.933938 0.357434i \(-0.883652\pi\)
0.776516 + 0.630097i \(0.216985\pi\)
\(942\) 0 0
\(943\) 1.72814 + 2.99322i 0.0562759 + 0.0974726i
\(944\) −5.62813 −0.183180
\(945\) 0 0
\(946\) 0.0540201 0.00175635
\(947\) 8.28334 + 14.3472i 0.269172 + 0.466220i 0.968648 0.248436i \(-0.0799165\pi\)
−0.699476 + 0.714656i \(0.746583\pi\)
\(948\) 0 0
\(949\) 16.1539 27.9795i 0.524379 0.908251i
\(950\) 0.185268 0.00601089
\(951\) 0 0
\(952\) −0.122498 + 0.0816509i −0.00397017 + 0.00264632i
\(953\) −22.6180 −0.732669 −0.366335 0.930483i \(-0.619387\pi\)
−0.366335 + 0.930483i \(0.619387\pi\)
\(954\) 0 0
\(955\) −5.09023 8.81654i −0.164716 0.285296i
\(956\) −37.9909 −1.22871
\(957\) 0 0
\(958\) 0.385379 + 0.667495i 0.0124510 + 0.0215658i
\(959\) 1.45570 + 22.5998i 0.0470071 + 0.729785i
\(960\) 0 0
\(961\) 13.9833 + 24.2198i 0.451075 + 0.781285i
\(962\) −0.237031 0.410550i −0.00764219 0.0132367i
\(963\) 0 0
\(964\) −14.2782 + 24.7306i −0.459871 + 0.796519i
\(965\) −3.42575 + 5.93357i −0.110279 + 0.191009i
\(966\) 0 0
\(967\) −16.1629 27.9950i −0.519764 0.900258i −0.999736 0.0229741i \(-0.992686\pi\)
0.479972 0.877284i \(-0.340647\pi\)
\(968\) 0.336527 0.0108164
\(969\) 0 0
\(970\) 0.195207 0.00626773
\(971\) −19.6527 + 34.0395i −0.630686 + 1.09238i 0.356726 + 0.934209i \(0.383893\pi\)
−0.987412 + 0.158171i \(0.949440\pi\)
\(972\) 0 0
\(973\) 13.5957 9.06219i 0.435857 0.290520i
\(974\) 0.434870 0.753218i 0.0139341 0.0241347i
\(975\) 0 0
\(976\) −3.50459 + 6.07013i −0.112179 + 0.194300i
\(977\) 14.9663 25.9223i 0.478813 0.829328i −0.520892 0.853623i \(-0.674401\pi\)
0.999705 + 0.0242942i \(0.00773386\pi\)
\(978\) 0 0
\(979\) −34.0976 + 59.0588i −1.08976 + 1.88753i
\(980\) 5.38493 12.9180i 0.172015 0.412650i
\(981\) 0 0
\(982\) −0.191279 + 0.331305i −0.00610396 + 0.0105724i
\(983\) −0.568902 −0.0181451 −0.00907257 0.999959i \(-0.502888\pi\)
−0.00907257 + 0.999959i \(0.502888\pi\)
\(984\) 0 0
\(985\) −20.0167 −0.637785
\(986\) 0.0563301 + 0.0975667i 0.00179392 + 0.00310716i
\(987\) 0 0
\(988\) −40.1141 + 69.4797i −1.27620 + 2.21044i
\(989\) 2.02674 3.51042i 0.0644467 0.111625i
\(990\) 0 0
\(991\) −6.46835 11.2035i −0.205474 0.355891i 0.744810 0.667277i \(-0.232540\pi\)
−0.950284 + 0.311386i \(0.899207\pi\)
\(992\) 0.267199 + 0.462802i 0.00848357 + 0.0146940i
\(993\) 0 0
\(994\) 0.581709 0.387739i 0.0184507 0.0122983i
\(995\) −6.47405 11.2134i −0.205241 0.355488i
\(996\) 0 0
\(997\) 10.7662 0.340970 0.170485 0.985360i \(-0.445466\pi\)
0.170485 + 0.985360i \(0.445466\pi\)
\(998\) 0.0104771 + 0.0181469i 0.000331647 + 0.000574429i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 945.2.k.c.856.10 36
3.2 odd 2 315.2.k.c.16.9 36
7.4 even 3 945.2.l.c.46.9 36
9.4 even 3 945.2.l.c.226.9 36
9.5 odd 6 315.2.l.c.121.10 yes 36
21.11 odd 6 315.2.l.c.151.10 yes 36
63.4 even 3 inner 945.2.k.c.361.10 36
63.32 odd 6 315.2.k.c.256.9 yes 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
315.2.k.c.16.9 36 3.2 odd 2
315.2.k.c.256.9 yes 36 63.32 odd 6
315.2.l.c.121.10 yes 36 9.5 odd 6
315.2.l.c.151.10 yes 36 21.11 odd 6
945.2.k.c.361.10 36 63.4 even 3 inner
945.2.k.c.856.10 36 1.1 even 1 trivial
945.2.l.c.46.9 36 7.4 even 3
945.2.l.c.226.9 36 9.4 even 3