Properties

Label 315.2.k.c.16.8
Level $315$
Weight $2$
Character 315.16
Analytic conductor $2.515$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [315,2,Mod(16,315)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(315, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 0, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("315.16"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 315.k (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [36] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.51528766367\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 16.8
Character \(\chi\) \(=\) 315.16
Dual form 315.2.k.c.256.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.349525 - 0.605394i) q^{2} +(1.42094 - 0.990413i) q^{3} +(0.755665 - 1.30885i) q^{4} +1.00000 q^{5} +(-1.09625 - 0.514057i) q^{6} +(-1.62523 - 2.08773i) q^{7} -2.45459 q^{8} +(1.03816 - 2.81464i) q^{9} +(-0.349525 - 0.605394i) q^{10} -3.83823 q^{11} +(-0.222545 - 2.60822i) q^{12} +(2.28027 + 3.94954i) q^{13} +(-0.695843 + 1.71362i) q^{14} +(1.42094 - 0.990413i) q^{15} +(-0.653390 - 1.13171i) q^{16} +(2.93173 + 5.07790i) q^{17} +(-2.06683 + 0.355289i) q^{18} +(0.386961 - 0.670236i) q^{19} +(0.755665 - 1.30885i) q^{20} +(-4.37708 - 1.35690i) q^{21} +(1.34156 + 2.32364i) q^{22} +6.90532 q^{23} +(-3.48784 + 2.43106i) q^{24} +1.00000 q^{25} +(1.59402 - 2.76092i) q^{26} +(-1.31249 - 5.02766i) q^{27} +(-3.96066 + 0.549558i) q^{28} +(-3.95301 + 6.84682i) q^{29} +(-1.09625 - 0.514057i) q^{30} +(2.01894 - 3.49691i) q^{31} +(-2.91134 + 5.04260i) q^{32} +(-5.45391 + 3.80144i) q^{33} +(2.04942 - 3.54970i) q^{34} +(-1.62523 - 2.08773i) q^{35} +(-2.89944 - 3.48573i) q^{36} +(4.23407 - 7.33362i) q^{37} -0.541010 q^{38} +(7.15181 + 3.35367i) q^{39} -2.45459 q^{40} +(-1.60838 - 2.78579i) q^{41} +(0.708437 + 3.12413i) q^{42} +(4.19469 - 7.26541i) q^{43} +(-2.90042 + 5.02367i) q^{44} +(1.03816 - 2.81464i) q^{45} +(-2.41358 - 4.18044i) q^{46} +(1.66963 + 2.89189i) q^{47} +(-2.04929 - 0.960963i) q^{48} +(-1.71725 + 6.78609i) q^{49} +(-0.349525 - 0.605394i) q^{50} +(9.19504 + 4.31179i) q^{51} +6.89248 q^{52} +(1.32630 + 2.29721i) q^{53} +(-2.58497 + 2.55186i) q^{54} -3.83823 q^{55} +(3.98928 + 5.12453i) q^{56} +(-0.113961 - 1.33562i) q^{57} +5.52670 q^{58} +(3.36978 - 5.83663i) q^{59} +(-0.222545 - 2.60822i) q^{60} +(-3.50639 - 6.07324i) q^{61} -2.82268 q^{62} +(-7.56348 + 2.40704i) q^{63} +1.45678 q^{64} +(2.28027 + 3.94954i) q^{65} +(4.20764 + 1.97307i) q^{66} +(-7.28514 + 12.6182i) q^{67} +8.86162 q^{68} +(9.81207 - 6.83912i) q^{69} +(-0.695843 + 1.71362i) q^{70} -9.67100 q^{71} +(-2.54827 + 6.90880i) q^{72} +(7.00941 + 12.1407i) q^{73} -5.91964 q^{74} +(1.42094 - 0.990413i) q^{75} +(-0.584826 - 1.01295i) q^{76} +(6.23801 + 8.01320i) q^{77} +(-0.469442 - 5.50185i) q^{78} +(6.69289 + 11.5924i) q^{79} +(-0.653390 - 1.13171i) q^{80} +(-6.84443 - 5.84412i) q^{81} +(-1.12433 + 1.94740i) q^{82} +(0.442527 - 0.766479i) q^{83} +(-5.08359 + 4.70358i) q^{84} +(2.93173 + 5.07790i) q^{85} -5.86458 q^{86} +(1.16417 + 13.6441i) q^{87} +9.42130 q^{88} +(0.950003 - 1.64545i) q^{89} +(-2.06683 + 0.355289i) q^{90} +(4.53962 - 11.1795i) q^{91} +(5.21811 - 9.03803i) q^{92} +(-0.594584 - 6.96851i) q^{93} +(1.16716 - 2.02157i) q^{94} +(0.386961 - 0.670236i) q^{95} +(0.857397 + 10.0487i) q^{96} +(-3.07725 + 5.32996i) q^{97} +(4.70848 - 1.33229i) q^{98} +(-3.98471 + 10.8033i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q - q^{3} - 22 q^{4} + 36 q^{5} - 4 q^{6} - q^{7} + 3 q^{9} - 2 q^{11} + 5 q^{12} + 2 q^{13} - 6 q^{14} - q^{15} - 30 q^{16} - 5 q^{17} + 3 q^{18} - 2 q^{19} - 22 q^{20} - 11 q^{21} - 19 q^{22} + 6 q^{23}+ \cdots - 89 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/315\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(136\) \(281\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.349525 0.605394i −0.247151 0.428078i 0.715583 0.698528i \(-0.246161\pi\)
−0.962734 + 0.270449i \(0.912828\pi\)
\(3\) 1.42094 0.990413i 0.820382 0.571815i
\(4\) 0.755665 1.30885i 0.377833 0.654425i
\(5\) 1.00000 0.447214
\(6\) −1.09625 0.514057i −0.447540 0.209863i
\(7\) −1.62523 2.08773i −0.614279 0.789089i
\(8\) −2.45459 −0.867829
\(9\) 1.03816 2.81464i 0.346054 0.938214i
\(10\) −0.349525 0.605394i −0.110529 0.191442i
\(11\) −3.83823 −1.15727 −0.578635 0.815586i \(-0.696415\pi\)
−0.578635 + 0.815586i \(0.696415\pi\)
\(12\) −0.222545 2.60822i −0.0642432 0.752929i
\(13\) 2.28027 + 3.94954i 0.632432 + 1.09541i 0.987053 + 0.160395i \(0.0512767\pi\)
−0.354621 + 0.935010i \(0.615390\pi\)
\(14\) −0.695843 + 1.71362i −0.185972 + 0.457984i
\(15\) 1.42094 0.990413i 0.366886 0.255724i
\(16\) −0.653390 1.13171i −0.163348 0.282926i
\(17\) 2.93173 + 5.07790i 0.711048 + 1.23157i 0.964464 + 0.264214i \(0.0851126\pi\)
−0.253416 + 0.967357i \(0.581554\pi\)
\(18\) −2.06683 + 0.355289i −0.487157 + 0.0837424i
\(19\) 0.386961 0.670236i 0.0887750 0.153763i −0.818219 0.574907i \(-0.805038\pi\)
0.906994 + 0.421144i \(0.138371\pi\)
\(20\) 0.755665 1.30885i 0.168972 0.292668i
\(21\) −4.37708 1.35690i −0.955157 0.296100i
\(22\) 1.34156 + 2.32364i 0.286021 + 0.495403i
\(23\) 6.90532 1.43986 0.719929 0.694048i \(-0.244174\pi\)
0.719929 + 0.694048i \(0.244174\pi\)
\(24\) −3.48784 + 2.43106i −0.711952 + 0.496238i
\(25\) 1.00000 0.200000
\(26\) 1.59402 2.76092i 0.312613 0.541461i
\(27\) −1.31249 5.02766i −0.252589 0.967574i
\(28\) −3.96066 + 0.549558i −0.748494 + 0.103857i
\(29\) −3.95301 + 6.84682i −0.734056 + 1.27142i 0.221080 + 0.975256i \(0.429042\pi\)
−0.955136 + 0.296167i \(0.904292\pi\)
\(30\) −1.09625 0.514057i −0.200146 0.0938536i
\(31\) 2.01894 3.49691i 0.362613 0.628064i −0.625777 0.780002i \(-0.715218\pi\)
0.988390 + 0.151938i \(0.0485513\pi\)
\(32\) −2.91134 + 5.04260i −0.514658 + 0.891413i
\(33\) −5.45391 + 3.80144i −0.949404 + 0.661745i
\(34\) 2.04942 3.54970i 0.351473 0.608769i
\(35\) −1.62523 2.08773i −0.274714 0.352891i
\(36\) −2.89944 3.48573i −0.483241 0.580955i
\(37\) 4.23407 7.33362i 0.696076 1.20564i −0.273740 0.961804i \(-0.588261\pi\)
0.969816 0.243836i \(-0.0784059\pi\)
\(38\) −0.541010 −0.0877634
\(39\) 7.15181 + 3.35367i 1.14521 + 0.537016i
\(40\) −2.45459 −0.388105
\(41\) −1.60838 2.78579i −0.251186 0.435067i 0.712667 0.701503i \(-0.247487\pi\)
−0.963853 + 0.266436i \(0.914154\pi\)
\(42\) 0.708437 + 3.12413i 0.109314 + 0.482063i
\(43\) 4.19469 7.26541i 0.639683 1.10796i −0.345819 0.938301i \(-0.612399\pi\)
0.985502 0.169663i \(-0.0542679\pi\)
\(44\) −2.90042 + 5.02367i −0.437255 + 0.757347i
\(45\) 1.03816 2.81464i 0.154760 0.419582i
\(46\) −2.41358 4.18044i −0.355863 0.616372i
\(47\) 1.66963 + 2.89189i 0.243541 + 0.421826i 0.961720 0.274032i \(-0.0883576\pi\)
−0.718179 + 0.695858i \(0.755024\pi\)
\(48\) −2.04929 0.960963i −0.295789 0.138703i
\(49\) −1.71725 + 6.78609i −0.245321 + 0.969442i
\(50\) −0.349525 0.605394i −0.0494302 0.0856157i
\(51\) 9.19504 + 4.31179i 1.28756 + 0.603771i
\(52\) 6.89248 0.955814
\(53\) 1.32630 + 2.29721i 0.182181 + 0.315546i 0.942623 0.333859i \(-0.108351\pi\)
−0.760442 + 0.649406i \(0.775018\pi\)
\(54\) −2.58497 + 2.55186i −0.351770 + 0.347265i
\(55\) −3.83823 −0.517547
\(56\) 3.98928 + 5.12453i 0.533090 + 0.684794i
\(57\) −0.113961 1.33562i −0.0150945 0.176907i
\(58\) 5.52670 0.725691
\(59\) 3.36978 5.83663i 0.438708 0.759864i −0.558882 0.829247i \(-0.688770\pi\)
0.997590 + 0.0693827i \(0.0221030\pi\)
\(60\) −0.222545 2.60822i −0.0287304 0.336720i
\(61\) −3.50639 6.07324i −0.448947 0.777599i 0.549371 0.835579i \(-0.314868\pi\)
−0.998318 + 0.0579795i \(0.981534\pi\)
\(62\) −2.82268 −0.358481
\(63\) −7.56348 + 2.40704i −0.952908 + 0.303258i
\(64\) 1.45678 0.182098
\(65\) 2.28027 + 3.94954i 0.282832 + 0.489880i
\(66\) 4.20764 + 1.97307i 0.517925 + 0.242868i
\(67\) −7.28514 + 12.6182i −0.890022 + 1.54156i −0.0501748 + 0.998740i \(0.515978\pi\)
−0.839847 + 0.542823i \(0.817356\pi\)
\(68\) 8.86162 1.07463
\(69\) 9.81207 6.83912i 1.18123 0.823333i
\(70\) −0.695843 + 1.71362i −0.0831691 + 0.204817i
\(71\) −9.67100 −1.14774 −0.573868 0.818948i \(-0.694558\pi\)
−0.573868 + 0.818948i \(0.694558\pi\)
\(72\) −2.54827 + 6.90880i −0.300316 + 0.814210i
\(73\) 7.00941 + 12.1407i 0.820389 + 1.42096i 0.905393 + 0.424575i \(0.139577\pi\)
−0.0850031 + 0.996381i \(0.527090\pi\)
\(74\) −5.91964 −0.688144
\(75\) 1.42094 0.990413i 0.164076 0.114363i
\(76\) −0.584826 1.01295i −0.0670842 0.116193i
\(77\) 6.23801 + 8.01320i 0.710888 + 0.913189i
\(78\) −0.469442 5.50185i −0.0531538 0.622962i
\(79\) 6.69289 + 11.5924i 0.753009 + 1.30425i 0.946358 + 0.323120i \(0.104732\pi\)
−0.193349 + 0.981130i \(0.561935\pi\)
\(80\) −0.653390 1.13171i −0.0730513 0.126529i
\(81\) −6.84443 5.84412i −0.760493 0.649346i
\(82\) −1.12433 + 1.94740i −0.124162 + 0.215055i
\(83\) 0.442527 0.766479i 0.0485736 0.0841320i −0.840716 0.541476i \(-0.817866\pi\)
0.889290 + 0.457344i \(0.151199\pi\)
\(84\) −5.08359 + 4.70358i −0.554665 + 0.513203i
\(85\) 2.93173 + 5.07790i 0.317990 + 0.550776i
\(86\) −5.86458 −0.632394
\(87\) 1.16417 + 13.6441i 0.124812 + 1.46280i
\(88\) 9.42130 1.00431
\(89\) 0.950003 1.64545i 0.100700 0.174418i −0.811273 0.584667i \(-0.801225\pi\)
0.911973 + 0.410250i \(0.134558\pi\)
\(90\) −2.06683 + 0.355289i −0.217863 + 0.0374507i
\(91\) 4.53962 11.1795i 0.475881 1.17193i
\(92\) 5.21811 9.03803i 0.544025 0.942279i
\(93\) −0.594584 6.96851i −0.0616554 0.722601i
\(94\) 1.16716 2.02157i 0.120383 0.208509i
\(95\) 0.386961 0.670236i 0.0397014 0.0687648i
\(96\) 0.857397 + 10.0487i 0.0875077 + 1.02559i
\(97\) −3.07725 + 5.32996i −0.312448 + 0.541176i −0.978892 0.204380i \(-0.934482\pi\)
0.666444 + 0.745555i \(0.267816\pi\)
\(98\) 4.70848 1.33229i 0.475629 0.134582i
\(99\) −3.98471 + 10.8033i −0.400479 + 1.08577i
\(100\) 0.755665 1.30885i 0.0755665 0.130885i
\(101\) −1.54494 −0.153727 −0.0768635 0.997042i \(-0.524491\pi\)
−0.0768635 + 0.997042i \(0.524491\pi\)
\(102\) −0.603559 7.07370i −0.0597613 0.700401i
\(103\) −11.8035 −1.16303 −0.581516 0.813535i \(-0.697540\pi\)
−0.581516 + 0.813535i \(0.697540\pi\)
\(104\) −5.59713 9.69451i −0.548843 0.950625i
\(105\) −4.37708 1.35690i −0.427159 0.132420i
\(106\) 0.927146 1.60586i 0.0900524 0.155975i
\(107\) −1.00776 + 1.74549i −0.0974239 + 0.168743i −0.910618 0.413250i \(-0.864394\pi\)
0.813194 + 0.581993i \(0.197727\pi\)
\(108\) −7.57226 2.08138i −0.728641 0.200281i
\(109\) −0.193245 0.334710i −0.0185095 0.0320594i 0.856622 0.515944i \(-0.172559\pi\)
−0.875132 + 0.483885i \(0.839225\pi\)
\(110\) 1.34156 + 2.32364i 0.127912 + 0.221551i
\(111\) −1.24694 14.6141i −0.118355 1.38711i
\(112\) −1.30079 + 3.20339i −0.122913 + 0.302692i
\(113\) 3.98925 + 6.90958i 0.375277 + 0.649998i 0.990368 0.138457i \(-0.0442144\pi\)
−0.615092 + 0.788456i \(0.710881\pi\)
\(114\) −0.768744 + 0.535823i −0.0719995 + 0.0501844i
\(115\) 6.90532 0.643924
\(116\) 5.97431 + 10.3478i 0.554701 + 0.960770i
\(117\) 13.4838 2.31787i 1.24658 0.214288i
\(118\) −4.71128 −0.433709
\(119\) 5.83656 14.3734i 0.535037 1.31761i
\(120\) −3.48784 + 2.43106i −0.318395 + 0.221924i
\(121\) 3.73203 0.339275
\(122\) −2.45114 + 4.24550i −0.221916 + 0.384369i
\(123\) −5.04450 2.36549i −0.454847 0.213289i
\(124\) −3.05129 5.28499i −0.274014 0.474606i
\(125\) 1.00000 0.0894427
\(126\) 4.10083 + 3.73757i 0.365331 + 0.332969i
\(127\) −1.89590 −0.168234 −0.0841170 0.996456i \(-0.526807\pi\)
−0.0841170 + 0.996456i \(0.526807\pi\)
\(128\) 5.31351 + 9.20326i 0.469652 + 0.813461i
\(129\) −1.23534 14.4782i −0.108766 1.27474i
\(130\) 1.59402 2.76092i 0.139805 0.242149i
\(131\) −7.33888 −0.641201 −0.320600 0.947215i \(-0.603885\pi\)
−0.320600 + 0.947215i \(0.603885\pi\)
\(132\) 0.854180 + 10.0110i 0.0743468 + 0.871343i
\(133\) −2.02818 + 0.281418i −0.175865 + 0.0244020i
\(134\) 10.1853 0.879880
\(135\) −1.31249 5.02766i −0.112961 0.432712i
\(136\) −7.19620 12.4642i −0.617069 1.06879i
\(137\) −9.45201 −0.807540 −0.403770 0.914861i \(-0.632300\pi\)
−0.403770 + 0.914861i \(0.632300\pi\)
\(138\) −7.56992 3.54973i −0.644394 0.302173i
\(139\) 3.28976 + 5.69803i 0.279034 + 0.483301i 0.971145 0.238490i \(-0.0766525\pi\)
−0.692111 + 0.721791i \(0.743319\pi\)
\(140\) −3.96066 + 0.549558i −0.334737 + 0.0464461i
\(141\) 5.23662 + 2.45559i 0.441003 + 0.206798i
\(142\) 3.38025 + 5.85477i 0.283664 + 0.491321i
\(143\) −8.75220 15.1593i −0.731896 1.26768i
\(144\) −3.86367 + 0.664166i −0.321973 + 0.0553472i
\(145\) −3.95301 + 6.84682i −0.328280 + 0.568597i
\(146\) 4.89992 8.48691i 0.405520 0.702382i
\(147\) 4.28092 + 11.3434i 0.353084 + 0.935591i
\(148\) −6.39908 11.0835i −0.526001 0.911060i
\(149\) −12.8568 −1.05327 −0.526634 0.850092i \(-0.676546\pi\)
−0.526634 + 0.850092i \(0.676546\pi\)
\(150\) −1.09625 0.514057i −0.0895080 0.0419726i
\(151\) 6.72795 0.547513 0.273756 0.961799i \(-0.411734\pi\)
0.273756 + 0.961799i \(0.411734\pi\)
\(152\) −0.949832 + 1.64516i −0.0770415 + 0.133440i
\(153\) 17.3361 2.98008i 1.40154 0.240925i
\(154\) 2.67081 6.57727i 0.215220 0.530011i
\(155\) 2.01894 3.49691i 0.162166 0.280879i
\(156\) 9.79382 6.82640i 0.784133 0.546549i
\(157\) 6.05582 10.4890i 0.483307 0.837112i −0.516509 0.856281i \(-0.672769\pi\)
0.999816 + 0.0191696i \(0.00610224\pi\)
\(158\) 4.67866 8.10368i 0.372214 0.644694i
\(159\) 4.15978 + 1.95063i 0.329892 + 0.154695i
\(160\) −2.91134 + 5.04260i −0.230162 + 0.398652i
\(161\) −11.2227 14.4164i −0.884475 1.13618i
\(162\) −1.14570 + 6.18624i −0.0900145 + 0.486037i
\(163\) −8.11477 + 14.0552i −0.635598 + 1.10089i 0.350790 + 0.936454i \(0.385913\pi\)
−0.986388 + 0.164434i \(0.947420\pi\)
\(164\) −4.86158 −0.379625
\(165\) −5.45391 + 3.80144i −0.424587 + 0.295941i
\(166\) −0.618696 −0.0480201
\(167\) −8.60497 14.9042i −0.665872 1.15332i −0.979048 0.203630i \(-0.934726\pi\)
0.313176 0.949695i \(-0.398607\pi\)
\(168\) 10.7439 + 3.33064i 0.828913 + 0.256964i
\(169\) −3.89924 + 6.75368i −0.299942 + 0.519514i
\(170\) 2.04942 3.54970i 0.157183 0.272250i
\(171\) −1.48475 1.78497i −0.113541 0.136500i
\(172\) −6.33956 10.9804i −0.483387 0.837250i
\(173\) −8.01528 13.8829i −0.609390 1.05550i −0.991341 0.131312i \(-0.958081\pi\)
0.381951 0.924183i \(-0.375252\pi\)
\(174\) 7.85313 5.47372i 0.595344 0.414961i
\(175\) −1.62523 2.08773i −0.122856 0.157818i
\(176\) 2.50786 + 4.34375i 0.189037 + 0.327422i
\(177\) −0.992407 11.6310i −0.0745939 0.874239i
\(178\) −1.32820 −0.0995526
\(179\) 4.60018 + 7.96775i 0.343834 + 0.595538i 0.985141 0.171746i \(-0.0549410\pi\)
−0.641307 + 0.767284i \(0.721608\pi\)
\(180\) −2.89944 3.48573i −0.216112 0.259811i
\(181\) −5.76356 −0.428402 −0.214201 0.976790i \(-0.568715\pi\)
−0.214201 + 0.976790i \(0.568715\pi\)
\(182\) −8.35471 + 1.15925i −0.619293 + 0.0859294i
\(183\) −10.9974 5.15697i −0.812952 0.381214i
\(184\) −16.9497 −1.24955
\(185\) 4.23407 7.33362i 0.311295 0.539178i
\(186\) −4.01087 + 2.79562i −0.294091 + 0.204985i
\(187\) −11.2527 19.4902i −0.822875 1.42526i
\(188\) 5.04674 0.368071
\(189\) −8.36331 + 10.9112i −0.608341 + 0.793675i
\(190\) −0.541010 −0.0392490
\(191\) −1.15149 1.99444i −0.0833190 0.144313i 0.821355 0.570418i \(-0.193219\pi\)
−0.904674 + 0.426105i \(0.859885\pi\)
\(192\) 2.07001 1.44282i 0.149390 0.104126i
\(193\) −9.97640 + 17.2796i −0.718117 + 1.24382i 0.243628 + 0.969869i \(0.421662\pi\)
−0.961745 + 0.273946i \(0.911671\pi\)
\(194\) 4.30230 0.308887
\(195\) 7.15181 + 3.35367i 0.512152 + 0.240161i
\(196\) 7.58432 + 7.37564i 0.541737 + 0.526831i
\(197\) 0.261164 0.0186071 0.00930357 0.999957i \(-0.497039\pi\)
0.00930357 + 0.999957i \(0.497039\pi\)
\(198\) 7.93298 1.36368i 0.563773 0.0969126i
\(199\) −1.81496 3.14360i −0.128659 0.222844i 0.794498 0.607266i \(-0.207734\pi\)
−0.923157 + 0.384423i \(0.874401\pi\)
\(200\) −2.45459 −0.173566
\(201\) 2.14549 + 25.1451i 0.151331 + 1.77360i
\(202\) 0.539993 + 0.935296i 0.0379938 + 0.0658072i
\(203\) 20.7189 2.87483i 1.45418 0.201773i
\(204\) 12.5919 8.77666i 0.881607 0.614489i
\(205\) −1.60838 2.78579i −0.112334 0.194568i
\(206\) 4.12561 + 7.14577i 0.287445 + 0.497869i
\(207\) 7.16884 19.4360i 0.498269 1.35090i
\(208\) 2.97981 5.16118i 0.206613 0.357864i
\(209\) −1.48525 + 2.57252i −0.102737 + 0.177945i
\(210\) 0.708437 + 3.12413i 0.0488868 + 0.215585i
\(211\) 2.25267 + 3.90174i 0.155080 + 0.268607i 0.933088 0.359648i \(-0.117103\pi\)
−0.778008 + 0.628254i \(0.783770\pi\)
\(212\) 4.00894 0.275335
\(213\) −13.7419 + 9.57829i −0.941583 + 0.656293i
\(214\) 1.40895 0.0963137
\(215\) 4.19469 7.26541i 0.286075 0.495497i
\(216\) 3.22162 + 12.3409i 0.219204 + 0.839689i
\(217\) −10.5819 + 1.46828i −0.718344 + 0.0996732i
\(218\) −0.135088 + 0.233979i −0.00914929 + 0.0158470i
\(219\) 21.9842 + 10.3090i 1.48556 + 0.696616i
\(220\) −2.90042 + 5.02367i −0.195546 + 0.338696i
\(221\) −13.3702 + 23.1579i −0.899380 + 1.55777i
\(222\) −8.41148 + 5.86289i −0.564541 + 0.393492i
\(223\) −5.85329 + 10.1382i −0.391966 + 0.678904i −0.992709 0.120538i \(-0.961538\pi\)
0.600743 + 0.799442i \(0.294871\pi\)
\(224\) 15.2592 2.11728i 1.01955 0.141466i
\(225\) 1.03816 2.81464i 0.0692109 0.187643i
\(226\) 2.78868 4.83013i 0.185500 0.321296i
\(227\) 9.27518 0.615615 0.307808 0.951449i \(-0.400405\pi\)
0.307808 + 0.951449i \(0.400405\pi\)
\(228\) −1.83424 0.860124i −0.121476 0.0569631i
\(229\) 16.9065 1.11721 0.558606 0.829433i \(-0.311336\pi\)
0.558606 + 0.829433i \(0.311336\pi\)
\(230\) −2.41358 4.18044i −0.159147 0.275650i
\(231\) 16.8002 + 5.20810i 1.10538 + 0.342668i
\(232\) 9.70303 16.8061i 0.637035 1.10338i
\(233\) −3.50083 + 6.06362i −0.229347 + 0.397241i −0.957615 0.288052i \(-0.906992\pi\)
0.728268 + 0.685293i \(0.240326\pi\)
\(234\) −6.11616 7.35288i −0.399826 0.480673i
\(235\) 1.66963 + 2.89189i 0.108915 + 0.188646i
\(236\) −5.09285 8.82107i −0.331516 0.574203i
\(237\) 20.9915 + 9.84346i 1.36355 + 0.639402i
\(238\) −10.7416 + 1.49044i −0.696275 + 0.0966110i
\(239\) −8.00452 13.8642i −0.517769 0.896803i −0.999787 0.0206414i \(-0.993429\pi\)
0.482017 0.876162i \(-0.339904\pi\)
\(240\) −2.04929 0.960963i −0.132281 0.0620299i
\(241\) −7.35462 −0.473752 −0.236876 0.971540i \(-0.576124\pi\)
−0.236876 + 0.971540i \(0.576124\pi\)
\(242\) −1.30444 2.25935i −0.0838523 0.145236i
\(243\) −15.5136 1.52534i −0.995201 0.0978509i
\(244\) −10.5986 −0.678508
\(245\) −1.71725 + 6.78609i −0.109711 + 0.433548i
\(246\) 0.331119 + 3.88071i 0.0211114 + 0.247425i
\(247\) 3.52950 0.224577
\(248\) −4.95568 + 8.58350i −0.314686 + 0.545053i
\(249\) −0.130325 1.52741i −0.00825902 0.0967956i
\(250\) −0.349525 0.605394i −0.0221059 0.0382885i
\(251\) 15.4784 0.976991 0.488495 0.872566i \(-0.337546\pi\)
0.488495 + 0.872566i \(0.337546\pi\)
\(252\) −2.56500 + 11.7184i −0.161580 + 0.738188i
\(253\) −26.5042 −1.66631
\(254\) 0.662664 + 1.14777i 0.0415792 + 0.0720173i
\(255\) 9.19504 + 4.31179i 0.575816 + 0.270015i
\(256\) 5.17118 8.95675i 0.323199 0.559797i
\(257\) −0.355901 −0.0222005 −0.0111003 0.999938i \(-0.503533\pi\)
−0.0111003 + 0.999938i \(0.503533\pi\)
\(258\) −8.33324 + 5.80836i −0.518805 + 0.361613i
\(259\) −22.1920 + 3.07923i −1.37894 + 0.191334i
\(260\) 6.89248 0.427453
\(261\) 15.1675 + 18.2344i 0.938844 + 1.12868i
\(262\) 2.56512 + 4.44291i 0.158473 + 0.274484i
\(263\) 19.1656 1.18180 0.590900 0.806745i \(-0.298773\pi\)
0.590900 + 0.806745i \(0.298773\pi\)
\(264\) 13.3871 9.33098i 0.823921 0.574282i
\(265\) 1.32630 + 2.29721i 0.0814737 + 0.141117i
\(266\) 0.879266 + 1.12948i 0.0539112 + 0.0692531i
\(267\) −0.279778 3.27899i −0.0171221 0.200671i
\(268\) 11.0103 + 19.0703i 0.672559 + 1.16491i
\(269\) −4.18841 7.25453i −0.255372 0.442317i 0.709625 0.704580i \(-0.248865\pi\)
−0.964996 + 0.262263i \(0.915531\pi\)
\(270\) −2.58497 + 2.55186i −0.157316 + 0.155301i
\(271\) −0.0397516 + 0.0688517i −0.00241474 + 0.00418244i −0.867230 0.497907i \(-0.834102\pi\)
0.864816 + 0.502090i \(0.167435\pi\)
\(272\) 3.83113 6.63570i 0.232296 0.402349i
\(273\) −4.62178 20.3815i −0.279723 1.23355i
\(274\) 3.30371 + 5.72219i 0.199584 + 0.345690i
\(275\) −3.83823 −0.231454
\(276\) −1.53674 18.0106i −0.0925011 1.08411i
\(277\) 21.3875 1.28505 0.642524 0.766265i \(-0.277887\pi\)
0.642524 + 0.766265i \(0.277887\pi\)
\(278\) 2.29970 3.98320i 0.137927 0.238897i
\(279\) −7.74657 9.31297i −0.463775 0.557553i
\(280\) 3.98928 + 5.12453i 0.238405 + 0.306249i
\(281\) 2.12078 3.67329i 0.126515 0.219130i −0.795809 0.605547i \(-0.792954\pi\)
0.922324 + 0.386417i \(0.126288\pi\)
\(282\) −0.343730 4.02851i −0.0204688 0.239894i
\(283\) 2.99392 5.18562i 0.177970 0.308253i −0.763215 0.646144i \(-0.776380\pi\)
0.941185 + 0.337892i \(0.109714\pi\)
\(284\) −7.30804 + 12.6579i −0.433652 + 0.751108i
\(285\) −0.113961 1.33562i −0.00675046 0.0791153i
\(286\) −6.11822 + 10.5971i −0.361778 + 0.626617i
\(287\) −3.20200 + 7.88541i −0.189008 + 0.465461i
\(288\) 11.1707 + 13.4294i 0.658237 + 0.791337i
\(289\) −8.69005 + 15.0516i −0.511180 + 0.885389i
\(290\) 5.52670 0.324539
\(291\) 0.906258 + 10.6213i 0.0531258 + 0.622633i
\(292\) 21.1871 1.23988
\(293\) −6.26949 10.8591i −0.366267 0.634393i 0.622711 0.782452i \(-0.286031\pi\)
−0.988979 + 0.148058i \(0.952698\pi\)
\(294\) 5.37097 6.55646i 0.313241 0.382380i
\(295\) 3.36978 5.83663i 0.196196 0.339822i
\(296\) −10.3929 + 18.0010i −0.604076 + 1.04629i
\(297\) 5.03764 + 19.2973i 0.292313 + 1.11974i
\(298\) 4.49376 + 7.78342i 0.260317 + 0.450882i
\(299\) 15.7460 + 27.2728i 0.910613 + 1.57723i
\(300\) −0.222545 2.60822i −0.0128486 0.150586i
\(301\) −21.9856 + 3.05059i −1.26723 + 0.175833i
\(302\) −2.35158 4.07306i −0.135318 0.234378i
\(303\) −2.19527 + 1.53013i −0.126115 + 0.0879035i
\(304\) −1.01135 −0.0580047
\(305\) −3.50639 6.07324i −0.200775 0.347753i
\(306\) −7.86351 9.45356i −0.449527 0.540424i
\(307\) −21.0767 −1.20291 −0.601455 0.798906i \(-0.705412\pi\)
−0.601455 + 0.798906i \(0.705412\pi\)
\(308\) 15.2019 2.10933i 0.866211 0.120190i
\(309\) −16.7721 + 11.6903i −0.954131 + 0.665040i
\(310\) −2.82268 −0.160318
\(311\) −6.41734 + 11.1152i −0.363894 + 0.630283i −0.988598 0.150579i \(-0.951886\pi\)
0.624704 + 0.780862i \(0.285220\pi\)
\(312\) −17.5548 8.23188i −0.993843 0.466039i
\(313\) 7.44794 + 12.9002i 0.420982 + 0.729163i 0.996036 0.0889532i \(-0.0283521\pi\)
−0.575054 + 0.818116i \(0.695019\pi\)
\(314\) −8.46663 −0.477799
\(315\) −7.56348 + 2.40704i −0.426154 + 0.135621i
\(316\) 20.2303 1.13805
\(317\) −17.1198 29.6524i −0.961545 1.66545i −0.718624 0.695399i \(-0.755228\pi\)
−0.242922 0.970046i \(-0.578106\pi\)
\(318\) −0.273047 3.20010i −0.0153117 0.179453i
\(319\) 15.1726 26.2797i 0.849502 1.47138i
\(320\) 1.45678 0.0814366
\(321\) 0.296788 + 3.47835i 0.0165651 + 0.194142i
\(322\) −4.80502 + 11.8331i −0.267773 + 0.659432i
\(323\) 4.53786 0.252493
\(324\) −12.8212 + 4.54215i −0.712288 + 0.252341i
\(325\) 2.28027 + 3.94954i 0.126486 + 0.219081i
\(326\) 11.3452 0.628355
\(327\) −0.606091 0.284212i −0.0335169 0.0157170i
\(328\) 3.94791 + 6.83798i 0.217987 + 0.377564i
\(329\) 3.32395 8.18574i 0.183255 0.451294i
\(330\) 4.20764 + 1.97307i 0.231623 + 0.108614i
\(331\) −16.5881 28.7314i −0.911764 1.57922i −0.811572 0.584253i \(-0.801388\pi\)
−0.100192 0.994968i \(-0.531946\pi\)
\(332\) −0.668804 1.15840i −0.0367054 0.0635756i
\(333\) −16.2459 19.5309i −0.890268 1.07029i
\(334\) −6.01529 + 10.4188i −0.329142 + 0.570091i
\(335\) −7.28514 + 12.6182i −0.398030 + 0.689408i
\(336\) 1.32433 + 5.84015i 0.0722482 + 0.318606i
\(337\) −10.8821 18.8484i −0.592786 1.02674i −0.993855 0.110688i \(-0.964695\pi\)
0.401069 0.916048i \(-0.368639\pi\)
\(338\) 5.45152 0.296524
\(339\) 12.5118 + 5.86712i 0.679549 + 0.318658i
\(340\) 8.86162 0.480589
\(341\) −7.74918 + 13.4220i −0.419641 + 0.726840i
\(342\) −0.561656 + 1.52275i −0.0303709 + 0.0823408i
\(343\) 16.9585 7.44381i 0.915671 0.401928i
\(344\) −10.2962 + 17.8336i −0.555136 + 0.961524i
\(345\) 9.81207 6.83912i 0.528264 0.368206i
\(346\) −5.60307 + 9.70481i −0.301223 + 0.521734i
\(347\) −2.40973 + 4.17378i −0.129361 + 0.224060i −0.923429 0.383769i \(-0.874626\pi\)
0.794068 + 0.607829i \(0.207959\pi\)
\(348\) 18.7378 + 8.78662i 1.00445 + 0.471012i
\(349\) 3.26983 5.66352i 0.175030 0.303161i −0.765142 0.643862i \(-0.777331\pi\)
0.940172 + 0.340701i \(0.110664\pi\)
\(350\) −0.695843 + 1.71362i −0.0371944 + 0.0915968i
\(351\) 16.8641 16.6481i 0.900140 0.888612i
\(352\) 11.1744 19.3547i 0.595598 1.03161i
\(353\) −0.354435 −0.0188647 −0.00943233 0.999956i \(-0.503002\pi\)
−0.00943233 + 0.999956i \(0.503002\pi\)
\(354\) −6.69447 + 4.66612i −0.355807 + 0.248001i
\(355\) −9.67100 −0.513283
\(356\) −1.43577 2.48683i −0.0760956 0.131801i
\(357\) −5.94220 26.2044i −0.314495 1.38689i
\(358\) 3.21575 5.56985i 0.169958 0.294376i
\(359\) 6.26344 10.8486i 0.330572 0.572567i −0.652052 0.758174i \(-0.726092\pi\)
0.982624 + 0.185607i \(0.0594251\pi\)
\(360\) −2.54827 + 6.90880i −0.134305 + 0.364126i
\(361\) 9.20052 + 15.9358i 0.484238 + 0.838725i
\(362\) 2.01451 + 3.48923i 0.105880 + 0.183390i
\(363\) 5.30301 3.69625i 0.278336 0.194003i
\(364\) −11.2019 14.3896i −0.587137 0.754222i
\(365\) 7.00941 + 12.1407i 0.366889 + 0.635471i
\(366\) 0.721866 + 8.46025i 0.0377325 + 0.442224i
\(367\) 12.9540 0.676192 0.338096 0.941112i \(-0.390217\pi\)
0.338096 + 0.941112i \(0.390217\pi\)
\(368\) −4.51187 7.81478i −0.235197 0.407374i
\(369\) −9.51076 + 1.63490i −0.495110 + 0.0851096i
\(370\) −5.91964 −0.307747
\(371\) 2.64043 6.50245i 0.137084 0.337590i
\(372\) −9.57004 4.48764i −0.496184 0.232673i
\(373\) 10.3804 0.537475 0.268738 0.963213i \(-0.413394\pi\)
0.268738 + 0.963213i \(0.413394\pi\)
\(374\) −7.86616 + 13.6246i −0.406749 + 0.704510i
\(375\) 1.42094 0.990413i 0.0733772 0.0511447i
\(376\) −4.09827 7.09841i −0.211352 0.366073i
\(377\) −36.0557 −1.85696
\(378\) 9.52878 + 1.24936i 0.490108 + 0.0642600i
\(379\) 5.82342 0.299129 0.149564 0.988752i \(-0.452213\pi\)
0.149564 + 0.988752i \(0.452213\pi\)
\(380\) −0.584826 1.01295i −0.0300010 0.0519632i
\(381\) −2.69397 + 1.87773i −0.138016 + 0.0961988i
\(382\) −0.804949 + 1.39421i −0.0411848 + 0.0713341i
\(383\) 26.0999 1.33364 0.666822 0.745217i \(-0.267654\pi\)
0.666822 + 0.745217i \(0.267654\pi\)
\(384\) 16.6652 + 7.81475i 0.850444 + 0.398795i
\(385\) 6.23801 + 8.01320i 0.317919 + 0.408391i
\(386\) 13.9480 0.709934
\(387\) −16.0948 19.3492i −0.818143 0.983576i
\(388\) 4.65075 + 8.05533i 0.236106 + 0.408948i
\(389\) 0.160490 0.00813716 0.00406858 0.999992i \(-0.498705\pi\)
0.00406858 + 0.999992i \(0.498705\pi\)
\(390\) −0.469442 5.50185i −0.0237711 0.278597i
\(391\) 20.2445 + 35.0645i 1.02381 + 1.77329i
\(392\) 4.21515 16.6571i 0.212897 0.841310i
\(393\) −10.4281 + 7.26852i −0.526030 + 0.366648i
\(394\) −0.0912831 0.158107i −0.00459878 0.00796531i
\(395\) 6.69289 + 11.5924i 0.336756 + 0.583278i
\(396\) 11.1287 + 13.3790i 0.559240 + 0.672322i
\(397\) 6.09165 10.5510i 0.305731 0.529542i −0.671693 0.740830i \(-0.734433\pi\)
0.977424 + 0.211288i \(0.0677659\pi\)
\(398\) −1.26874 + 2.19753i −0.0635964 + 0.110152i
\(399\) −2.60320 + 2.40861i −0.130323 + 0.120581i
\(400\) −0.653390 1.13171i −0.0326695 0.0565853i
\(401\) −18.8416 −0.940906 −0.470453 0.882425i \(-0.655909\pi\)
−0.470453 + 0.882425i \(0.655909\pi\)
\(402\) 14.4728 10.0877i 0.721838 0.503129i
\(403\) 18.4149 0.917313
\(404\) −1.16746 + 2.02209i −0.0580831 + 0.100603i
\(405\) −6.84443 5.84412i −0.340103 0.290397i
\(406\) −8.98216 11.5383i −0.445777 0.572635i
\(407\) −16.2513 + 28.1481i −0.805549 + 1.39525i
\(408\) −22.5701 10.5837i −1.11739 0.523971i
\(409\) 0.737626 1.27761i 0.0364733 0.0631736i −0.847213 0.531254i \(-0.821721\pi\)
0.883686 + 0.468081i \(0.155054\pi\)
\(410\) −1.12433 + 1.94740i −0.0555269 + 0.0961754i
\(411\) −13.4308 + 9.36140i −0.662492 + 0.461764i
\(412\) −8.91949 + 15.4490i −0.439432 + 0.761118i
\(413\) −17.6620 + 2.45067i −0.869089 + 0.120590i
\(414\) −14.2721 + 2.45338i −0.701437 + 0.120577i
\(415\) 0.442527 0.766479i 0.0217228 0.0376250i
\(416\) −26.5546 −1.30195
\(417\) 10.3180 + 4.83836i 0.505273 + 0.236936i
\(418\) 2.07652 0.101566
\(419\) −2.29886 3.98174i −0.112307 0.194521i 0.804393 0.594097i \(-0.202491\pi\)
−0.916700 + 0.399576i \(0.869157\pi\)
\(420\) −5.08359 + 4.70358i −0.248054 + 0.229511i
\(421\) −8.56269 + 14.8310i −0.417320 + 0.722819i −0.995669 0.0929702i \(-0.970364\pi\)
0.578349 + 0.815789i \(0.303697\pi\)
\(422\) 1.57473 2.72750i 0.0766564 0.132773i
\(423\) 9.87299 1.69717i 0.480041 0.0825192i
\(424\) −3.25552 5.63872i −0.158102 0.273840i
\(425\) 2.93173 + 5.07790i 0.142210 + 0.246314i
\(426\) 10.6018 + 4.97145i 0.513658 + 0.240868i
\(427\) −6.98062 + 17.1908i −0.337816 + 0.831922i
\(428\) 1.52306 + 2.63802i 0.0736199 + 0.127513i
\(429\) −27.4503 12.8722i −1.32531 0.621473i
\(430\) −5.86458 −0.282815
\(431\) −8.75901 15.1710i −0.421907 0.730764i 0.574219 0.818701i \(-0.305306\pi\)
−0.996126 + 0.0879379i \(0.971972\pi\)
\(432\) −4.83226 + 4.77038i −0.232492 + 0.229515i
\(433\) 31.4428 1.51104 0.755522 0.655124i \(-0.227383\pi\)
0.755522 + 0.655124i \(0.227383\pi\)
\(434\) 4.58751 + 5.89300i 0.220208 + 0.282873i
\(435\) 1.16417 + 13.6441i 0.0558177 + 0.654183i
\(436\) −0.584114 −0.0279740
\(437\) 2.67209 4.62819i 0.127823 0.221397i
\(438\) −1.44304 16.9124i −0.0689510 0.808104i
\(439\) −20.1678 34.9316i −0.962555 1.66719i −0.716045 0.698054i \(-0.754049\pi\)
−0.246510 0.969140i \(-0.579284\pi\)
\(440\) 9.42130 0.449143
\(441\) 17.3176 + 11.8785i 0.824650 + 0.565644i
\(442\) 18.6929 0.889131
\(443\) −18.0671 31.2931i −0.858394 1.48678i −0.873460 0.486896i \(-0.838129\pi\)
0.0150658 0.999887i \(-0.495204\pi\)
\(444\) −20.0700 9.41134i −0.952480 0.446642i
\(445\) 0.950003 1.64545i 0.0450345 0.0780020i
\(446\) 8.18348 0.387499
\(447\) −18.2688 + 12.7335i −0.864083 + 0.602275i
\(448\) −2.36761 3.04137i −0.111859 0.143691i
\(449\) 17.2314 0.813202 0.406601 0.913606i \(-0.366714\pi\)
0.406601 + 0.913606i \(0.366714\pi\)
\(450\) −2.06683 + 0.355289i −0.0974314 + 0.0167485i
\(451\) 6.17332 + 10.6925i 0.290690 + 0.503491i
\(452\) 12.0581 0.567167
\(453\) 9.56004 6.66345i 0.449170 0.313076i
\(454\) −3.24190 5.61514i −0.152150 0.263532i
\(455\) 4.53962 11.1795i 0.212821 0.524103i
\(456\) 0.279728 + 3.27840i 0.0130994 + 0.153525i
\(457\) −4.58643 7.94394i −0.214544 0.371602i 0.738587 0.674158i \(-0.235493\pi\)
−0.953132 + 0.302556i \(0.902160\pi\)
\(458\) −5.90923 10.2351i −0.276120 0.478254i
\(459\) 21.6821 21.4044i 1.01203 0.999073i
\(460\) 5.21811 9.03803i 0.243296 0.421400i
\(461\) 7.95525 13.7789i 0.370513 0.641747i −0.619132 0.785287i \(-0.712515\pi\)
0.989645 + 0.143540i \(0.0458486\pi\)
\(462\) −2.71915 11.9911i −0.126506 0.557878i
\(463\) −4.80144 8.31634i −0.223142 0.386493i 0.732618 0.680640i \(-0.238298\pi\)
−0.955760 + 0.294146i \(0.904965\pi\)
\(464\) 10.3314 0.479625
\(465\) −0.594584 6.96851i −0.0275732 0.323157i
\(466\) 4.89451 0.226734
\(467\) 13.1371 22.7541i 0.607912 1.05294i −0.383671 0.923470i \(-0.625340\pi\)
0.991584 0.129466i \(-0.0413262\pi\)
\(468\) 7.15551 19.3999i 0.330764 0.896759i
\(469\) 38.1835 5.29812i 1.76315 0.244645i
\(470\) 1.16716 2.02157i 0.0538369 0.0932482i
\(471\) −1.78345 20.9020i −0.0821771 0.963114i
\(472\) −8.27143 + 14.3265i −0.380724 + 0.659433i
\(473\) −16.1002 + 27.8863i −0.740287 + 1.28221i
\(474\) −1.37788 16.1487i −0.0632879 0.741733i
\(475\) 0.386961 0.670236i 0.0177550 0.0307526i
\(476\) −14.4022 18.5007i −0.660123 0.847977i
\(477\) 7.84274 1.34817i 0.359095 0.0617284i
\(478\) −5.59555 + 9.69178i −0.255935 + 0.443292i
\(479\) −7.33270 −0.335040 −0.167520 0.985869i \(-0.553576\pi\)
−0.167520 + 0.985869i \(0.553576\pi\)
\(480\) 0.857397 + 10.0487i 0.0391347 + 0.458657i
\(481\) 38.6192 1.76089
\(482\) 2.57062 + 4.45244i 0.117088 + 0.202803i
\(483\) −30.2251 9.36982i −1.37529 0.426342i
\(484\) 2.82017 4.88467i 0.128189 0.222030i
\(485\) −3.07725 + 5.32996i −0.139731 + 0.242021i
\(486\) 4.49897 + 9.92502i 0.204077 + 0.450208i
\(487\) −16.8879 29.2507i −0.765262 1.32547i −0.940108 0.340878i \(-0.889276\pi\)
0.174845 0.984596i \(-0.444057\pi\)
\(488\) 8.60676 + 14.9073i 0.389610 + 0.674823i
\(489\) 2.38982 + 28.0086i 0.108071 + 1.26659i
\(490\) 4.70848 1.33229i 0.212708 0.0601868i
\(491\) 10.2358 + 17.7289i 0.461934 + 0.800093i 0.999057 0.0434107i \(-0.0138224\pi\)
−0.537123 + 0.843504i \(0.680489\pi\)
\(492\) −6.90803 + 4.81497i −0.311438 + 0.217076i
\(493\) −46.3566 −2.08780
\(494\) −1.23365 2.13674i −0.0555044 0.0961364i
\(495\) −3.98471 + 10.8033i −0.179099 + 0.485570i
\(496\) −5.27663 −0.236928
\(497\) 15.7176 + 20.1905i 0.705031 + 0.905666i
\(498\) −0.879132 + 0.612765i −0.0393949 + 0.0274586i
\(499\) 24.3396 1.08959 0.544796 0.838569i \(-0.316607\pi\)
0.544796 + 0.838569i \(0.316607\pi\)
\(500\) 0.755665 1.30885i 0.0337944 0.0585336i
\(501\) −26.9885 12.6556i −1.20576 0.565411i
\(502\) −5.41010 9.37056i −0.241464 0.418229i
\(503\) −23.7168 −1.05748 −0.528739 0.848784i \(-0.677335\pi\)
−0.528739 + 0.848784i \(0.677335\pi\)
\(504\) 18.5652 5.90830i 0.826962 0.263177i
\(505\) −1.54494 −0.0687488
\(506\) 9.26387 + 16.0455i 0.411829 + 0.713309i
\(507\) 1.14833 + 13.4585i 0.0509993 + 0.597711i
\(508\) −1.43267 + 2.48145i −0.0635643 + 0.110097i
\(509\) −1.16561 −0.0516649 −0.0258324 0.999666i \(-0.508224\pi\)
−0.0258324 + 0.999666i \(0.508224\pi\)
\(510\) −0.603559 7.07370i −0.0267260 0.313229i
\(511\) 13.9545 34.3651i 0.617312 1.52022i
\(512\) 14.0242 0.619788
\(513\) −3.87760 1.06583i −0.171200 0.0470576i
\(514\) 0.124396 + 0.215461i 0.00548688 + 0.00950356i
\(515\) −11.8035 −0.520124
\(516\) −19.8833 9.32380i −0.875314 0.410457i
\(517\) −6.40844 11.0997i −0.281843 0.488166i
\(518\) 9.62078 + 12.3586i 0.422713 + 0.543007i
\(519\) −25.1390 11.7883i −1.10348 0.517451i
\(520\) −5.59713 9.69451i −0.245450 0.425132i
\(521\) 15.6184 + 27.0519i 0.684254 + 1.18516i 0.973670 + 0.227960i \(0.0732055\pi\)
−0.289416 + 0.957203i \(0.593461\pi\)
\(522\) 5.73762 15.5557i 0.251129 0.680854i
\(523\) −7.10144 + 12.3000i −0.310524 + 0.537844i −0.978476 0.206361i \(-0.933838\pi\)
0.667952 + 0.744205i \(0.267171\pi\)
\(524\) −5.54573 + 9.60549i −0.242267 + 0.419618i
\(525\) −4.37708 1.35690i −0.191031 0.0592200i
\(526\) −6.69883 11.6027i −0.292083 0.505903i
\(527\) 23.6760 1.03134
\(528\) 7.86564 + 3.68840i 0.342308 + 0.160517i
\(529\) 24.6834 1.07319
\(530\) 0.927146 1.60586i 0.0402726 0.0697543i
\(531\) −12.9296 15.5441i −0.561099 0.674556i
\(532\) −1.16429 + 2.86724i −0.0504783 + 0.124310i
\(533\) 7.33506 12.7047i 0.317717 0.550301i
\(534\) −1.88729 + 1.31546i −0.0816712 + 0.0569257i
\(535\) −1.00776 + 1.74549i −0.0435693 + 0.0754642i
\(536\) 17.8821 30.9726i 0.772387 1.33781i
\(537\) 14.4280 + 6.76565i 0.622613 + 0.291959i
\(538\) −2.92790 + 5.07127i −0.126231 + 0.218638i
\(539\) 6.59120 26.0466i 0.283903 1.12191i
\(540\) −7.57226 2.08138i −0.325858 0.0895682i
\(541\) −1.38923 + 2.40621i −0.0597275 + 0.103451i −0.894343 0.447382i \(-0.852356\pi\)
0.834616 + 0.550833i \(0.185690\pi\)
\(542\) 0.0555766 0.00238722
\(543\) −8.18970 + 5.70831i −0.351453 + 0.244967i
\(544\) −34.1411 −1.46379
\(545\) −0.193245 0.334710i −0.00827770 0.0143374i
\(546\) −10.7234 + 9.92185i −0.458921 + 0.424616i
\(547\) −8.59132 + 14.8806i −0.367338 + 0.636248i −0.989148 0.146919i \(-0.953064\pi\)
0.621810 + 0.783168i \(0.286398\pi\)
\(548\) −7.14256 + 12.3713i −0.305115 + 0.528475i
\(549\) −20.7342 + 3.56422i −0.884915 + 0.152117i
\(550\) 1.34156 + 2.32364i 0.0572042 + 0.0990805i
\(551\) 3.05932 + 5.29891i 0.130332 + 0.225741i
\(552\) −24.0846 + 16.7872i −1.02511 + 0.714512i
\(553\) 13.3244 32.8133i 0.566611 1.39537i
\(554\) −7.47545 12.9479i −0.317601 0.550101i
\(555\) −1.24694 14.6141i −0.0529297 0.620336i
\(556\) 9.94383 0.421712
\(557\) 12.1738 + 21.0857i 0.515822 + 0.893430i 0.999831 + 0.0183672i \(0.00584679\pi\)
−0.484009 + 0.875063i \(0.660820\pi\)
\(558\) −2.93040 + 7.94484i −0.124054 + 0.336332i
\(559\) 38.2600 1.61823
\(560\) −1.30079 + 3.20339i −0.0549683 + 0.135368i
\(561\) −35.2927 16.5497i −1.49006 0.698727i
\(562\) −2.96505 −0.125073
\(563\) 13.1260 22.7349i 0.553194 0.958160i −0.444848 0.895606i \(-0.646742\pi\)
0.998042 0.0625535i \(-0.0199244\pi\)
\(564\) 7.17113 4.99836i 0.301959 0.210469i
\(565\) 3.98925 + 6.90958i 0.167829 + 0.290688i
\(566\) −4.18579 −0.175942
\(567\) −1.07717 + 23.7874i −0.0452367 + 0.998976i
\(568\) 23.7384 0.996039
\(569\) 3.65815 + 6.33610i 0.153358 + 0.265623i 0.932460 0.361274i \(-0.117658\pi\)
−0.779102 + 0.626897i \(0.784325\pi\)
\(570\) −0.768744 + 0.535823i −0.0321992 + 0.0224432i
\(571\) 5.72058 9.90834i 0.239399 0.414651i −0.721143 0.692786i \(-0.756383\pi\)
0.960542 + 0.278135i \(0.0897163\pi\)
\(572\) −26.4549 −1.10614
\(573\) −3.61153 1.69354i −0.150874 0.0707485i
\(574\) 5.89296 0.817672i 0.245967 0.0341290i
\(575\) 6.90532 0.287972
\(576\) 1.51238 4.10032i 0.0630158 0.170847i
\(577\) 17.3881 + 30.1170i 0.723875 + 1.25379i 0.959436 + 0.281928i \(0.0909739\pi\)
−0.235561 + 0.971860i \(0.575693\pi\)
\(578\) 12.1495 0.505354
\(579\) 2.93807 + 34.4341i 0.122102 + 1.43103i
\(580\) 5.97431 + 10.3478i 0.248070 + 0.429669i
\(581\) −2.31941 + 0.321828i −0.0962254 + 0.0133517i
\(582\) 6.11333 4.26106i 0.253406 0.176627i
\(583\) −5.09063 8.81723i −0.210832 0.365173i
\(584\) −17.2052 29.8004i −0.711958 1.23315i
\(585\) 13.4838 2.31787i 0.557488 0.0958323i
\(586\) −4.38268 + 7.59102i −0.181047 + 0.313582i
\(587\) −16.4446 + 28.4830i −0.678743 + 1.17562i 0.296616 + 0.954997i \(0.404142\pi\)
−0.975360 + 0.220621i \(0.929192\pi\)
\(588\) 18.0818 + 2.96876i 0.745682 + 0.122430i
\(589\) −1.56251 2.70634i −0.0643819 0.111513i
\(590\) −4.71128 −0.193960
\(591\) 0.371099 0.258660i 0.0152650 0.0106398i
\(592\) −11.0660 −0.454810
\(593\) −11.6851 + 20.2392i −0.479851 + 0.831125i −0.999733 0.0231124i \(-0.992642\pi\)
0.519882 + 0.854238i \(0.325976\pi\)
\(594\) 9.92172 9.79465i 0.407093 0.401879i
\(595\) 5.83656 14.3734i 0.239276 0.589253i
\(596\) −9.71543 + 16.8276i −0.397959 + 0.689286i
\(597\) −5.69241 2.66932i −0.232975 0.109248i
\(598\) 11.0072 19.0650i 0.450118 0.779627i
\(599\) 3.67779 6.37012i 0.150270 0.260276i −0.781056 0.624460i \(-0.785319\pi\)
0.931327 + 0.364185i \(0.118652\pi\)
\(600\) −3.48784 + 2.43106i −0.142390 + 0.0992476i
\(601\) −15.8014 + 27.3689i −0.644553 + 1.11640i 0.339851 + 0.940479i \(0.389623\pi\)
−0.984405 + 0.175920i \(0.943710\pi\)
\(602\) 9.53130 + 12.2437i 0.388467 + 0.499015i
\(603\) 27.9527 + 33.6049i 1.13832 + 1.36850i
\(604\) 5.08408 8.80588i 0.206868 0.358306i
\(605\) 3.73203 0.151729
\(606\) 1.69363 + 0.794187i 0.0687990 + 0.0322616i
\(607\) −1.99685 −0.0810498 −0.0405249 0.999179i \(-0.512903\pi\)
−0.0405249 + 0.999179i \(0.512903\pi\)
\(608\) 2.25315 + 3.90258i 0.0913775 + 0.158270i
\(609\) 26.5931 24.6052i 1.07761 0.997054i
\(610\) −2.45114 + 4.24550i −0.0992437 + 0.171895i
\(611\) −7.61442 + 13.1886i −0.308047 + 0.533552i
\(612\) 9.19980 24.9423i 0.371880 1.00823i
\(613\) −3.00257 5.20061i −0.121273 0.210051i 0.798997 0.601335i \(-0.205364\pi\)
−0.920270 + 0.391284i \(0.872031\pi\)
\(614\) 7.36682 + 12.7597i 0.297301 + 0.514940i
\(615\) −5.04450 2.36549i −0.203414 0.0953859i
\(616\) −15.3118 19.6691i −0.616929 0.792492i
\(617\) −3.65695 6.33402i −0.147223 0.254998i 0.782977 0.622051i \(-0.213700\pi\)
−0.930200 + 0.367053i \(0.880367\pi\)
\(618\) 12.9395 + 6.06767i 0.520504 + 0.244078i
\(619\) −18.6023 −0.747690 −0.373845 0.927491i \(-0.621961\pi\)
−0.373845 + 0.927491i \(0.621961\pi\)
\(620\) −3.05129 5.28499i −0.122543 0.212250i
\(621\) −9.06315 34.7176i −0.363692 1.39317i
\(622\) 8.97207 0.359747
\(623\) −4.97924 + 0.690890i −0.199489 + 0.0276799i
\(624\) −0.877561 10.2850i −0.0351305 0.411729i
\(625\) 1.00000 0.0400000
\(626\) 5.20647 9.01787i 0.208092 0.360427i
\(627\) 0.437409 + 5.12642i 0.0174684 + 0.204729i
\(628\) −9.15234 15.8523i −0.365218 0.632576i
\(629\) 49.6525 1.97978
\(630\) 4.10083 + 3.73757i 0.163381 + 0.148908i
\(631\) 4.53109 0.180380 0.0901899 0.995925i \(-0.471253\pi\)
0.0901899 + 0.995925i \(0.471253\pi\)
\(632\) −16.4283 28.4547i −0.653484 1.13187i
\(633\) 7.06525 + 3.31308i 0.280818 + 0.131683i
\(634\) −11.9676 + 20.7285i −0.475294 + 0.823233i
\(635\) −1.89590 −0.0752365
\(636\) 5.69648 3.97051i 0.225880 0.157441i
\(637\) −30.7177 + 8.69176i −1.21708 + 0.344380i
\(638\) −21.2128 −0.839821
\(639\) −10.0401 + 27.2204i −0.397179 + 1.07682i
\(640\) 5.31351 + 9.20326i 0.210035 + 0.363791i
\(641\) −27.5418 −1.08784 −0.543918 0.839139i \(-0.683060\pi\)
−0.543918 + 0.839139i \(0.683060\pi\)
\(642\) 2.00204 1.39544i 0.0790141 0.0550737i
\(643\) 1.10409 + 1.91233i 0.0435409 + 0.0754150i 0.886975 0.461818i \(-0.152803\pi\)
−0.843434 + 0.537233i \(0.819469\pi\)
\(644\) −27.3496 + 3.79487i −1.07773 + 0.149539i
\(645\) −1.23534 14.4782i −0.0486416 0.570079i
\(646\) −1.58609 2.74719i −0.0624040 0.108087i
\(647\) 24.2181 + 41.9469i 0.952110 + 1.64910i 0.740847 + 0.671673i \(0.234424\pi\)
0.211263 + 0.977429i \(0.432243\pi\)
\(648\) 16.8003 + 14.3449i 0.659978 + 0.563522i
\(649\) −12.9340 + 22.4023i −0.507704 + 0.879369i
\(650\) 1.59402 2.76092i 0.0625226 0.108292i
\(651\) −13.5820 + 12.5668i −0.532322 + 0.492530i
\(652\) 12.2641 + 21.2420i 0.480299 + 0.831902i
\(653\) −19.4509 −0.761173 −0.380587 0.924745i \(-0.624278\pi\)
−0.380587 + 0.924745i \(0.624278\pi\)
\(654\) 0.0397836 + 0.466263i 0.00155566 + 0.0182323i
\(655\) −7.33888 −0.286754
\(656\) −2.10180 + 3.64042i −0.0820613 + 0.142134i
\(657\) 41.4485 7.12501i 1.61706 0.277973i
\(658\) −6.11740 + 0.848814i −0.238481 + 0.0330902i
\(659\) 1.04114 1.80330i 0.0405569 0.0702467i −0.845034 0.534712i \(-0.820420\pi\)
0.885591 + 0.464465i \(0.153753\pi\)
\(660\) 0.854180 + 10.0110i 0.0332489 + 0.389677i
\(661\) 22.7432 39.3923i 0.884606 1.53218i 0.0384419 0.999261i \(-0.487761\pi\)
0.846164 0.532922i \(-0.178906\pi\)
\(662\) −11.5959 + 20.0847i −0.450687 + 0.780612i
\(663\) 3.93757 + 46.1482i 0.152922 + 1.79225i
\(664\) −1.08622 + 1.88139i −0.0421536 + 0.0730122i
\(665\) −2.02818 + 0.281418i −0.0786493 + 0.0109129i
\(666\) −6.14555 + 16.6617i −0.238135 + 0.645627i
\(667\) −27.2968 + 47.2794i −1.05694 + 1.83067i
\(668\) −26.0099 −1.00635
\(669\) 1.72381 + 20.2030i 0.0666463 + 0.781093i
\(670\) 10.1853 0.393494
\(671\) 13.4583 + 23.3105i 0.519553 + 0.899893i
\(672\) 19.5855 18.1214i 0.755526 0.699050i
\(673\) −17.4910 + 30.2953i −0.674229 + 1.16780i 0.302464 + 0.953161i \(0.402191\pi\)
−0.976694 + 0.214639i \(0.931143\pi\)
\(674\) −7.60712 + 13.1759i −0.293015 + 0.507518i
\(675\) −1.31249 5.02766i −0.0505177 0.193515i
\(676\) 5.89304 + 10.2070i 0.226655 + 0.392579i
\(677\) 5.91975 + 10.2533i 0.227514 + 0.394066i 0.957071 0.289854i \(-0.0936068\pi\)
−0.729557 + 0.683921i \(0.760273\pi\)
\(678\) −0.821272 9.62529i −0.0315408 0.369657i
\(679\) 16.1288 2.23793i 0.618966 0.0858840i
\(680\) −7.19620 12.4642i −0.275961 0.477979i
\(681\) 13.1795 9.18626i 0.505040 0.352018i
\(682\) 10.8341 0.414860
\(683\) 0.504725 + 0.874210i 0.0193128 + 0.0334507i 0.875520 0.483181i \(-0.160519\pi\)
−0.856207 + 0.516632i \(0.827186\pi\)
\(684\) −3.45823 + 0.594471i −0.132229 + 0.0227302i
\(685\) −9.45201 −0.361143
\(686\) −10.4338 7.66477i −0.398366 0.292642i
\(687\) 24.0232 16.7444i 0.916541 0.638839i
\(688\) −10.9631 −0.417963
\(689\) −6.04862 + 10.4765i −0.230434 + 0.399123i
\(690\) −7.56992 3.54973i −0.288182 0.135136i
\(691\) 10.1696 + 17.6143i 0.386870 + 0.670078i 0.992027 0.126028i \(-0.0402230\pi\)
−0.605157 + 0.796106i \(0.706890\pi\)
\(692\) −24.2275 −0.920990
\(693\) 29.0304 9.23877i 1.10277 0.350952i
\(694\) 3.36904 0.127887
\(695\) 3.28976 + 5.69803i 0.124788 + 0.216139i
\(696\) −2.85756 33.4906i −0.108316 1.26946i
\(697\) 9.43064 16.3344i 0.357211 0.618708i
\(698\) −4.57155 −0.173036
\(699\) 1.03100 + 12.0833i 0.0389961 + 0.457034i
\(700\) −3.96066 + 0.549558i −0.149699 + 0.0207713i
\(701\) −33.4009 −1.26154 −0.630768 0.775972i \(-0.717260\pi\)
−0.630768 + 0.775972i \(0.717260\pi\)
\(702\) −15.9731 4.39051i −0.602866 0.165709i
\(703\) −3.27684 5.67565i −0.123588 0.214061i
\(704\) −5.59147 −0.210737
\(705\) 5.23662 + 2.45559i 0.197223 + 0.0924828i
\(706\) 0.123884 + 0.214573i 0.00466242 + 0.00807555i
\(707\) 2.51088 + 3.22541i 0.0944313 + 0.121304i
\(708\) −15.9732 7.49023i −0.600308 0.281500i
\(709\) 19.5316 + 33.8296i 0.733523 + 1.27050i 0.955368 + 0.295417i \(0.0954587\pi\)
−0.221845 + 0.975082i \(0.571208\pi\)
\(710\) 3.38025 + 5.85477i 0.126859 + 0.219725i
\(711\) 39.5769 6.80327i 1.48425 0.255143i
\(712\) −2.33187 + 4.03892i −0.0873906 + 0.151365i
\(713\) 13.9414 24.1473i 0.522111 0.904323i
\(714\) −13.7871 + 12.7565i −0.515968 + 0.477399i
\(715\) −8.75220 15.1593i −0.327314 0.566924i
\(716\) 13.9048 0.519647
\(717\) −25.1053 11.7725i −0.937575 0.439653i
\(718\) −8.75691 −0.326805
\(719\) 1.55174 2.68769i 0.0578702 0.100234i −0.835639 0.549279i \(-0.814902\pi\)
0.893509 + 0.449045i \(0.148236\pi\)
\(720\) −3.86367 + 0.664166i −0.143991 + 0.0247520i
\(721\) 19.1834 + 24.6425i 0.714427 + 0.917736i
\(722\) 6.43162 11.1399i 0.239360 0.414584i
\(723\) −10.4505 + 7.28411i −0.388658 + 0.270899i
\(724\) −4.35532 + 7.54364i −0.161864 + 0.280357i
\(725\) −3.95301 + 6.84682i −0.146811 + 0.254284i
\(726\) −4.09122 1.91848i −0.151839 0.0712014i
\(727\) 21.5168 37.2683i 0.798015 1.38220i −0.122892 0.992420i \(-0.539217\pi\)
0.920907 0.389783i \(-0.127450\pi\)
\(728\) −11.1429 + 27.4411i −0.412984 + 1.01704i
\(729\) −23.5547 + 13.1975i −0.872398 + 0.488796i
\(730\) 4.89992 8.48691i 0.181354 0.314115i
\(731\) 49.1907 1.81938
\(732\) −15.0601 + 10.4970i −0.556636 + 0.387981i
\(733\) 23.8253 0.880009 0.440004 0.897996i \(-0.354977\pi\)
0.440004 + 0.897996i \(0.354977\pi\)
\(734\) −4.52773 7.84226i −0.167122 0.289463i
\(735\) 4.28092 + 11.3434i 0.157904 + 0.418409i
\(736\) −20.1038 + 34.8207i −0.741034 + 1.28351i
\(737\) 27.9621 48.4317i 1.03000 1.78401i
\(738\) 4.31400 + 5.18632i 0.158801 + 0.190911i
\(739\) −0.522437 0.904887i −0.0192181 0.0332868i 0.856256 0.516551i \(-0.172784\pi\)
−0.875475 + 0.483264i \(0.839451\pi\)
\(740\) −6.39908 11.0835i −0.235235 0.407438i
\(741\) 5.01522 3.49566i 0.184239 0.128416i
\(742\) −4.85944 + 0.674267i −0.178396 + 0.0247531i
\(743\) 23.6637 + 40.9867i 0.868137 + 1.50366i 0.863899 + 0.503666i \(0.168016\pi\)
0.00423816 + 0.999991i \(0.498651\pi\)
\(744\) 1.45946 + 17.1048i 0.0535064 + 0.627094i
\(745\) −12.8568 −0.471036
\(746\) −3.62820 6.28422i −0.132838 0.230082i
\(747\) −1.69795 2.04129i −0.0621248 0.0746867i
\(748\) −34.0130 −1.24364
\(749\) 5.28196 0.732894i 0.192999 0.0267794i
\(750\) −1.09625 0.514057i −0.0400292 0.0187707i
\(751\) −44.4958 −1.62368 −0.811838 0.583883i \(-0.801533\pi\)
−0.811838 + 0.583883i \(0.801533\pi\)
\(752\) 2.18185 3.77907i 0.0795637 0.137808i
\(753\) 21.9940 15.3301i 0.801506 0.558658i
\(754\) 12.6024 + 21.8279i 0.458951 + 0.794926i
\(755\) 6.72795 0.244855
\(756\) 7.96131 + 19.1916i 0.289550 + 0.697990i
\(757\) 15.8107 0.574650 0.287325 0.957833i \(-0.407234\pi\)
0.287325 + 0.957833i \(0.407234\pi\)
\(758\) −2.03543 3.52546i −0.0739301 0.128051i
\(759\) −37.6610 + 26.2501i −1.36701 + 0.952819i
\(760\) −0.949832 + 1.64516i −0.0344540 + 0.0596761i
\(761\) 28.8757 1.04674 0.523372 0.852104i \(-0.324674\pi\)
0.523372 + 0.852104i \(0.324674\pi\)
\(762\) 2.07837 + 0.974602i 0.0752915 + 0.0353061i
\(763\) −0.384717 + 0.947425i −0.0139277 + 0.0342991i
\(764\) −3.48057 −0.125923
\(765\) 17.3361 2.98008i 0.626788 0.107745i
\(766\) −9.12257 15.8008i −0.329612 0.570905i
\(767\) 30.7360 1.10981
\(768\) −1.52293 17.8487i −0.0549538 0.644058i
\(769\) −20.2272 35.0345i −0.729411 1.26338i −0.957133 0.289650i \(-0.906461\pi\)
0.227722 0.973726i \(-0.426872\pi\)
\(770\) 2.67081 6.57727i 0.0962492 0.237028i
\(771\) −0.505716 + 0.352489i −0.0182129 + 0.0126946i
\(772\) 15.0776 + 26.1152i 0.542656 + 0.939908i
\(773\) 0.958668 + 1.66046i 0.0344809 + 0.0597226i 0.882751 0.469841i \(-0.155689\pi\)
−0.848270 + 0.529564i \(0.822356\pi\)
\(774\) −6.08839 + 16.5067i −0.218843 + 0.593321i
\(775\) 2.01894 3.49691i 0.0725226 0.125613i
\(776\) 7.55340 13.0829i 0.271151 0.469648i
\(777\) −28.4838 + 26.3546i −1.02185 + 0.945467i
\(778\) −0.0560951 0.0971596i −0.00201111 0.00348334i
\(779\) −2.48952 −0.0891962
\(780\) 9.79382 6.82640i 0.350675 0.244424i
\(781\) 37.1195 1.32824
\(782\) 14.1519 24.5118i 0.506071 0.876541i
\(783\) 39.6118 + 10.8880i 1.41561 + 0.389107i
\(784\) 8.80189 2.49055i 0.314353 0.0889481i
\(785\) 6.05582 10.4890i 0.216141 0.374368i
\(786\) 8.04521 + 3.77260i 0.286963 + 0.134564i
\(787\) 9.54909 16.5395i 0.340388 0.589570i −0.644117 0.764927i \(-0.722775\pi\)
0.984505 + 0.175358i \(0.0561082\pi\)
\(788\) 0.197352 0.341824i 0.00703038 0.0121770i
\(789\) 27.2332 18.9818i 0.969527 0.675771i
\(790\) 4.67866 8.10368i 0.166459 0.288316i
\(791\) 7.94190 19.5581i 0.282381 0.695407i
\(792\) 9.78084 26.5176i 0.347547 0.942261i
\(793\) 15.9910 27.6972i 0.567857 0.983558i
\(794\) −8.51672 −0.302247
\(795\) 4.15978 + 1.95063i 0.147532 + 0.0691817i
\(796\) −5.48600 −0.194446
\(797\) 20.4912 + 35.4919i 0.725837 + 1.25719i 0.958628 + 0.284660i \(0.0918808\pi\)
−0.232791 + 0.972527i \(0.574786\pi\)
\(798\) 2.36804 + 0.734096i 0.0838278 + 0.0259867i
\(799\) −9.78982 + 16.9565i −0.346339 + 0.599877i
\(800\) −2.91134 + 5.04260i −0.102932 + 0.178283i
\(801\) −3.64511 4.38217i −0.128794 0.154836i
\(802\) 6.58561 + 11.4066i 0.232546 + 0.402781i
\(803\) −26.9037 46.5987i −0.949413 1.64443i
\(804\) 34.5325 + 16.1932i 1.21787 + 0.571089i
\(805\) −11.2227 14.4164i −0.395549 0.508113i
\(806\) −6.43647 11.1483i −0.226715 0.392682i
\(807\) −13.1365 6.16003i −0.462426 0.216843i
\(808\) 3.79219 0.133409
\(809\) 19.3458 + 33.5079i 0.680163 + 1.17808i 0.974931 + 0.222508i \(0.0714242\pi\)
−0.294768 + 0.955569i \(0.595242\pi\)
\(810\) −1.14570 + 6.18624i −0.0402557 + 0.217362i
\(811\) −48.0986 −1.68897 −0.844485 0.535580i \(-0.820093\pi\)
−0.844485 + 0.535580i \(0.820093\pi\)
\(812\) 11.8938 29.2903i 0.417391 1.02789i
\(813\) 0.0117069 + 0.137205i 0.000410580 + 0.00481199i
\(814\) 22.7210 0.796369
\(815\) −8.11477 + 14.0552i −0.284248 + 0.492332i
\(816\) −1.12827 13.2234i −0.0394975 0.462910i
\(817\) −3.24636 5.62286i −0.113576 0.196719i
\(818\) −1.03127 −0.0360576
\(819\) −26.7534 24.3836i −0.934841 0.852030i
\(820\) −4.86158 −0.169774
\(821\) −10.8094 18.7224i −0.377251 0.653418i 0.613410 0.789764i \(-0.289797\pi\)
−0.990661 + 0.136347i \(0.956464\pi\)
\(822\) 10.3617 + 4.85888i 0.361407 + 0.169473i
\(823\) −12.9732 + 22.4702i −0.452217 + 0.783263i −0.998523 0.0543227i \(-0.982700\pi\)
0.546307 + 0.837585i \(0.316033\pi\)
\(824\) 28.9728 1.00931
\(825\) −5.45391 + 3.80144i −0.189881 + 0.132349i
\(826\) 7.65692 + 9.83589i 0.266418 + 0.342234i
\(827\) −45.3663 −1.57754 −0.788770 0.614689i \(-0.789282\pi\)
−0.788770 + 0.614689i \(0.789282\pi\)
\(828\) −20.0216 24.0701i −0.695798 0.836492i
\(829\) −20.8415 36.0986i −0.723857 1.25376i −0.959443 0.281903i \(-0.909034\pi\)
0.235586 0.971853i \(-0.424299\pi\)
\(830\) −0.618696 −0.0214753
\(831\) 30.3904 21.1824i 1.05423 0.734811i
\(832\) 3.32185 + 5.75362i 0.115165 + 0.199471i
\(833\) −39.4936 + 11.1749i −1.36837 + 0.387189i
\(834\) −0.677268 7.93757i −0.0234519 0.274855i
\(835\) −8.60497 14.9042i −0.297787 0.515783i
\(836\) 2.24470 + 3.88793i 0.0776345 + 0.134467i
\(837\) −20.2311 5.56091i −0.699290 0.192213i
\(838\) −1.60702 + 2.78343i −0.0555135 + 0.0961521i
\(839\) −16.8414 + 29.1701i −0.581429 + 1.00706i 0.413881 + 0.910331i \(0.364173\pi\)
−0.995310 + 0.0967337i \(0.969160\pi\)
\(840\) 10.7439 + 3.33064i 0.370701 + 0.114918i
\(841\) −16.7526 29.0164i −0.577677 1.00057i
\(842\) 11.9715 0.412564
\(843\) −0.624573 7.31999i −0.0215114 0.252114i
\(844\) 6.80905 0.234377
\(845\) −3.89924 + 6.75368i −0.134138 + 0.232334i
\(846\) −4.47831 5.38385i −0.153967 0.185101i
\(847\) −6.06541 7.79148i −0.208410 0.267718i
\(848\) 1.73318 3.00195i 0.0595176 0.103087i
\(849\) −0.881715 10.3337i −0.0302604 0.354651i
\(850\) 2.04942 3.54970i 0.0702946 0.121754i
\(851\) 29.2376 50.6410i 1.00225 1.73595i
\(852\) 2.15223 + 25.2241i 0.0737343 + 0.864165i
\(853\) 25.3194 43.8545i 0.866920 1.50155i 0.00179188 0.999998i \(-0.499430\pi\)
0.865128 0.501551i \(-0.167237\pi\)
\(854\) 12.8471 1.78259i 0.439619 0.0609990i
\(855\) −1.48475 1.78497i −0.0507773 0.0610448i
\(856\) 2.47364 4.28447i 0.0845473 0.146440i
\(857\) 13.6216 0.465306 0.232653 0.972560i \(-0.425259\pi\)
0.232653 + 0.972560i \(0.425259\pi\)
\(858\) 1.80183 + 21.1174i 0.0615134 + 0.720936i
\(859\) 4.14348 0.141374 0.0706869 0.997499i \(-0.477481\pi\)
0.0706869 + 0.997499i \(0.477481\pi\)
\(860\) −6.33956 10.9804i −0.216177 0.374430i
\(861\) 3.25995 + 14.3760i 0.111099 + 0.489934i
\(862\) −6.12298 + 10.6053i −0.208549 + 0.361218i
\(863\) −12.8153 + 22.1968i −0.436238 + 0.755587i −0.997396 0.0721222i \(-0.977023\pi\)
0.561158 + 0.827709i \(0.310356\pi\)
\(864\) 29.1736 + 8.01890i 0.992505 + 0.272809i
\(865\) −8.01528 13.8829i −0.272528 0.472032i
\(866\) −10.9900 19.0353i −0.373456 0.646845i
\(867\) 2.55924 + 29.9942i 0.0869163 + 1.01866i
\(868\) −6.07459 + 14.9596i −0.206185 + 0.507762i
\(869\) −25.6889 44.4944i −0.871436 1.50937i
\(870\) 7.85313 5.47372i 0.266246 0.185576i
\(871\) −66.4483 −2.25152
\(872\) 0.474337 + 0.821577i 0.0160631 + 0.0278221i
\(873\) 11.8072 + 14.1947i 0.399615 + 0.480419i
\(874\) −3.73584 −0.126367
\(875\) −1.62523 2.08773i −0.0549428 0.0705782i
\(876\) 30.1056 20.9840i 1.01718 0.708982i
\(877\) 9.89011 0.333965 0.166983 0.985960i \(-0.446598\pi\)
0.166983 + 0.985960i \(0.446598\pi\)
\(878\) −14.0983 + 24.4189i −0.475793 + 0.824098i
\(879\) −19.6636 9.22074i −0.663235 0.311008i
\(880\) 2.50786 + 4.34375i 0.0845401 + 0.146428i
\(881\) −14.6040 −0.492022 −0.246011 0.969267i \(-0.579120\pi\)
−0.246011 + 0.969267i \(0.579120\pi\)
\(882\) 1.13824 14.6358i 0.0383267 0.492814i
\(883\) 15.8128 0.532142 0.266071 0.963953i \(-0.414274\pi\)
0.266071 + 0.963953i \(0.414274\pi\)
\(884\) 20.2069 + 34.9993i 0.679630 + 1.17715i
\(885\) −0.992407 11.6310i −0.0333594 0.390972i
\(886\) −12.6298 + 21.8754i −0.424306 + 0.734920i
\(887\) −21.8316 −0.733033 −0.366517 0.930412i \(-0.619450\pi\)
−0.366517 + 0.930412i \(0.619450\pi\)
\(888\) 3.06073 + 35.8718i 0.102712 + 1.20378i
\(889\) 3.08128 + 3.95813i 0.103343 + 0.132752i
\(890\) −1.32820 −0.0445213
\(891\) 26.2705 + 22.4311i 0.880096 + 0.751470i
\(892\) 8.84626 + 15.3222i 0.296195 + 0.513024i
\(893\) 2.58433 0.0864814
\(894\) 14.0942 + 6.60913i 0.471380 + 0.221042i
\(895\) 4.60018 + 7.96775i 0.153767 + 0.266333i
\(896\) 10.5783 26.0506i 0.353395 0.870290i
\(897\) 49.3855 + 23.1581i 1.64893 + 0.773227i
\(898\) −6.02281 10.4318i −0.200984 0.348114i
\(899\) 15.9618 + 27.6467i 0.532357 + 0.922069i
\(900\) −2.89944 3.48573i −0.0966481 0.116191i
\(901\) −7.77668 + 13.4696i −0.259079 + 0.448737i
\(902\) 4.31545 7.47459i 0.143689 0.248877i
\(903\) −28.2189 + 26.1095i −0.939066 + 0.868870i
\(904\) −9.79197 16.9602i −0.325676 0.564088i
\(905\) −5.76356 −0.191587
\(906\) −7.37548 3.45855i −0.245034 0.114903i
\(907\) −45.5220 −1.51153 −0.755767 0.654841i \(-0.772736\pi\)
−0.755767 + 0.654841i \(0.772736\pi\)
\(908\) 7.00893 12.1398i 0.232600 0.402874i
\(909\) −1.60390 + 4.34845i −0.0531979 + 0.144229i
\(910\) −8.35471 + 1.15925i −0.276956 + 0.0384288i
\(911\) 23.4277 40.5779i 0.776193 1.34441i −0.157928 0.987451i \(-0.550481\pi\)
0.934121 0.356956i \(-0.116185\pi\)
\(912\) −1.43707 + 1.00165i −0.0475860 + 0.0331680i
\(913\) −1.69852 + 2.94193i −0.0562129 + 0.0973635i
\(914\) −3.20614 + 5.55320i −0.106050 + 0.183684i
\(915\) −10.9974 5.15697i −0.363563 0.170484i
\(916\) 12.7756 22.1281i 0.422119 0.731132i
\(917\) 11.9274 + 15.3216i 0.393876 + 0.505964i
\(918\) −20.5365 5.64485i −0.677807 0.186308i
\(919\) −24.5539 + 42.5286i −0.809958 + 1.40289i 0.102935 + 0.994688i \(0.467177\pi\)
−0.912892 + 0.408200i \(0.866157\pi\)
\(920\) −16.9497 −0.558816
\(921\) −29.9488 + 20.8746i −0.986847 + 0.687843i
\(922\) −11.1222 −0.366291
\(923\) −22.0525 38.1960i −0.725866 1.25724i
\(924\) 19.5120 18.0534i 0.641897 0.593914i
\(925\) 4.23407 7.33362i 0.139215 0.241128i
\(926\) −3.35644 + 5.81353i −0.110300 + 0.191045i
\(927\) −12.2539 + 33.2226i −0.402472 + 1.09117i
\(928\) −23.0172 39.8669i −0.755575 1.30869i
\(929\) −26.4882 45.8789i −0.869050 1.50524i −0.862969 0.505257i \(-0.831398\pi\)
−0.00608051 0.999982i \(-0.501935\pi\)
\(930\) −4.01087 + 2.79562i −0.131522 + 0.0916720i
\(931\) 3.88378 + 3.77692i 0.127286 + 0.123783i
\(932\) 5.29091 + 9.16413i 0.173310 + 0.300181i
\(933\) 1.88992 + 22.1498i 0.0618732 + 0.725153i
\(934\) −18.3670 −0.600985
\(935\) −11.2527 19.4902i −0.368001 0.637397i
\(936\) −33.0973 + 5.68944i −1.08182 + 0.185965i
\(937\) 22.9340 0.749220 0.374610 0.927183i \(-0.377777\pi\)
0.374610 + 0.927183i \(0.377777\pi\)
\(938\) −16.5535 21.2643i −0.540492 0.694303i
\(939\) 23.3596 + 10.9539i 0.762313 + 0.357468i
\(940\) 5.04674 0.164606
\(941\) 15.4761 26.8054i 0.504507 0.873831i −0.495480 0.868619i \(-0.665008\pi\)
0.999986 0.00521168i \(-0.00165894\pi\)
\(942\) −12.0306 + 8.38546i −0.391978 + 0.273213i
\(943\) −11.1063 19.2368i −0.361672 0.626435i
\(944\) −8.80712 −0.286648
\(945\) −8.36331 + 10.9112i −0.272059 + 0.354942i
\(946\) 22.5096 0.731851
\(947\) −6.42093 11.1214i −0.208652 0.361396i 0.742638 0.669693i \(-0.233574\pi\)
−0.951290 + 0.308297i \(0.900241\pi\)
\(948\) 28.7462 20.0364i 0.933633 0.650752i
\(949\) −31.9667 + 55.3679i −1.03768 + 1.79732i
\(950\) −0.541010 −0.0175527
\(951\) −53.6944 25.1787i −1.74116 0.816475i
\(952\) −14.3264 + 35.2809i −0.464321 + 1.14346i
\(953\) 47.3316 1.53322 0.766611 0.642112i \(-0.221942\pi\)
0.766611 + 0.642112i \(0.221942\pi\)
\(954\) −3.55741 4.27673i −0.115175 0.138464i
\(955\) −1.15149 1.99444i −0.0372614 0.0645386i
\(956\) −24.1950 −0.782521
\(957\) −4.46836 52.3691i −0.144442 1.69285i
\(958\) 2.56296 + 4.43917i 0.0828054 + 0.143423i
\(959\) 15.3617 + 19.7333i 0.496055 + 0.637221i
\(960\) 2.07001 1.44282i 0.0668092 0.0465667i
\(961\) 7.34773 + 12.7266i 0.237024 + 0.410537i
\(962\) −13.4984 23.3799i −0.435205 0.753797i
\(963\) 3.86672 + 4.64859i 0.124603 + 0.149799i
\(964\) −5.55763 + 9.62609i −0.178999 + 0.310036i
\(965\) −9.97640 + 17.2796i −0.321152 + 0.556251i
\(966\) 4.89198 + 21.5731i 0.157397 + 0.694103i
\(967\) −10.2481 17.7503i −0.329557 0.570810i 0.652867 0.757473i \(-0.273566\pi\)
−0.982424 + 0.186663i \(0.940233\pi\)
\(968\) −9.16061 −0.294433
\(969\) 6.44804 4.49436i 0.207141 0.144379i
\(970\) 4.30230 0.138139
\(971\) 28.6673 49.6533i 0.919979 1.59345i 0.120534 0.992709i \(-0.461539\pi\)
0.799444 0.600740i \(-0.205127\pi\)
\(972\) −13.7196 + 19.1524i −0.440056 + 0.614314i
\(973\) 6.54934 16.1288i 0.209962 0.517064i
\(974\) −11.8054 + 20.4476i −0.378271 + 0.655185i
\(975\) 7.15181 + 3.35367i 0.229041 + 0.107403i
\(976\) −4.58208 + 7.93640i −0.146669 + 0.254038i
\(977\) 4.45153 7.71028i 0.142417 0.246674i −0.785989 0.618240i \(-0.787846\pi\)
0.928406 + 0.371567i \(0.121179\pi\)
\(978\) 16.1210 11.2365i 0.515491 0.359303i
\(979\) −3.64633 + 6.31564i −0.116537 + 0.201849i
\(980\) 7.58432 + 7.37564i 0.242272 + 0.235606i
\(981\) −1.14271 + 0.196432i −0.0364839 + 0.00627159i
\(982\) 7.15531 12.3934i 0.228335 0.395488i
\(983\) 1.90661 0.0608115 0.0304058 0.999538i \(-0.490320\pi\)
0.0304058 + 0.999538i \(0.490320\pi\)
\(984\) 12.3822 + 5.80632i 0.394729 + 0.185099i
\(985\) 0.261164 0.00832136
\(986\) 16.2028 + 28.0640i 0.516002 + 0.893741i
\(987\) −3.38411 14.9236i −0.107718 0.475022i
\(988\) 2.66712 4.61959i 0.0848524 0.146969i
\(989\) 28.9656 50.1699i 0.921053 1.59531i
\(990\) 7.93298 1.36368i 0.252127 0.0433406i
\(991\) −4.29788 7.44415i −0.136527 0.236471i 0.789653 0.613554i \(-0.210261\pi\)
−0.926180 + 0.377083i \(0.876927\pi\)
\(992\) 11.7557 + 20.3614i 0.373243 + 0.646476i
\(993\) −52.0267 24.3967i −1.65102 0.774204i
\(994\) 6.72950 16.5724i 0.213447 0.525645i
\(995\) −1.81496 3.14360i −0.0575380 0.0996587i
\(996\) −2.09763 0.983633i −0.0664660 0.0311676i
\(997\) 43.4530 1.37617 0.688085 0.725630i \(-0.258451\pi\)
0.688085 + 0.725630i \(0.258451\pi\)
\(998\) −8.50730 14.7351i −0.269294 0.466431i
\(999\) −42.4281 11.6622i −1.34237 0.368974i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 315.2.k.c.16.8 36
3.2 odd 2 945.2.k.c.856.11 36
7.4 even 3 315.2.l.c.151.11 yes 36
9.4 even 3 315.2.l.c.121.11 yes 36
9.5 odd 6 945.2.l.c.226.8 36
21.11 odd 6 945.2.l.c.46.8 36
63.4 even 3 inner 315.2.k.c.256.8 yes 36
63.32 odd 6 945.2.k.c.361.11 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
315.2.k.c.16.8 36 1.1 even 1 trivial
315.2.k.c.256.8 yes 36 63.4 even 3 inner
315.2.l.c.121.11 yes 36 9.4 even 3
315.2.l.c.151.11 yes 36 7.4 even 3
945.2.k.c.361.11 36 63.32 odd 6
945.2.k.c.856.11 36 3.2 odd 2
945.2.l.c.46.8 36 21.11 odd 6
945.2.l.c.226.8 36 9.5 odd 6