Properties

Label 945.2.k.c.856.11
Level $945$
Weight $2$
Character 945.856
Analytic conductor $7.546$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [945,2,Mod(361,945)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("945.361"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(945, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 0, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 945 = 3^{3} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 945.k (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [36] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.54586299101\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 315)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 856.11
Character \(\chi\) \(=\) 945.856
Dual form 945.2.k.c.361.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.349525 + 0.605394i) q^{2} +(0.755665 - 1.30885i) q^{4} -1.00000 q^{5} +(-1.62523 - 2.08773i) q^{7} +2.45459 q^{8} +(-0.349525 - 0.605394i) q^{10} +3.83823 q^{11} +(2.28027 + 3.94954i) q^{13} +(0.695843 - 1.71362i) q^{14} +(-0.653390 - 1.13171i) q^{16} +(-2.93173 - 5.07790i) q^{17} +(0.386961 - 0.670236i) q^{19} +(-0.755665 + 1.30885i) q^{20} +(1.34156 + 2.32364i) q^{22} -6.90532 q^{23} +1.00000 q^{25} +(-1.59402 + 2.76092i) q^{26} +(-3.96066 + 0.549558i) q^{28} +(3.95301 - 6.84682i) q^{29} +(2.01894 - 3.49691i) q^{31} +(2.91134 - 5.04260i) q^{32} +(2.04942 - 3.54970i) q^{34} +(1.62523 + 2.08773i) q^{35} +(4.23407 - 7.33362i) q^{37} +0.541010 q^{38} -2.45459 q^{40} +(1.60838 + 2.78579i) q^{41} +(4.19469 - 7.26541i) q^{43} +(2.90042 - 5.02367i) q^{44} +(-2.41358 - 4.18044i) q^{46} +(-1.66963 - 2.89189i) q^{47} +(-1.71725 + 6.78609i) q^{49} +(0.349525 + 0.605394i) q^{50} +6.89248 q^{52} +(-1.32630 - 2.29721i) q^{53} -3.83823 q^{55} +(-3.98928 - 5.12453i) q^{56} +5.52670 q^{58} +(-3.36978 + 5.83663i) q^{59} +(-3.50639 - 6.07324i) q^{61} +2.82268 q^{62} +1.45678 q^{64} +(-2.28027 - 3.94954i) q^{65} +(-7.28514 + 12.6182i) q^{67} -8.86162 q^{68} +(-0.695843 + 1.71362i) q^{70} +9.67100 q^{71} +(7.00941 + 12.1407i) q^{73} +5.91964 q^{74} +(-0.584826 - 1.01295i) q^{76} +(-6.23801 - 8.01320i) q^{77} +(6.69289 + 11.5924i) q^{79} +(0.653390 + 1.13171i) q^{80} +(-1.12433 + 1.94740i) q^{82} +(-0.442527 + 0.766479i) q^{83} +(2.93173 + 5.07790i) q^{85} +5.86458 q^{86} +9.42130 q^{88} +(-0.950003 + 1.64545i) q^{89} +(4.53962 - 11.1795i) q^{91} +(-5.21811 + 9.03803i) q^{92} +(1.16716 - 2.02157i) q^{94} +(-0.386961 + 0.670236i) q^{95} +(-3.07725 + 5.32996i) q^{97} +(-4.70848 + 1.33229i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q - 22 q^{4} - 36 q^{5} - q^{7} + 2 q^{11} + 2 q^{13} + 6 q^{14} - 30 q^{16} + 5 q^{17} - 2 q^{19} + 22 q^{20} - 19 q^{22} - 6 q^{23} + 36 q^{25} + 4 q^{26} + 5 q^{28} + 8 q^{29} - 10 q^{32} + 10 q^{34}+ \cdots - 16 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/945\mathbb{Z}\right)^\times\).

\(n\) \(136\) \(596\) \(757\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.349525 + 0.605394i 0.247151 + 0.428078i 0.962734 0.270449i \(-0.0871722\pi\)
−0.715583 + 0.698528i \(0.753839\pi\)
\(3\) 0 0
\(4\) 0.755665 1.30885i 0.377833 0.654425i
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) −1.62523 2.08773i −0.614279 0.789089i
\(8\) 2.45459 0.867829
\(9\) 0 0
\(10\) −0.349525 0.605394i −0.110529 0.191442i
\(11\) 3.83823 1.15727 0.578635 0.815586i \(-0.303585\pi\)
0.578635 + 0.815586i \(0.303585\pi\)
\(12\) 0 0
\(13\) 2.28027 + 3.94954i 0.632432 + 1.09541i 0.987053 + 0.160395i \(0.0512767\pi\)
−0.354621 + 0.935010i \(0.615390\pi\)
\(14\) 0.695843 1.71362i 0.185972 0.457984i
\(15\) 0 0
\(16\) −0.653390 1.13171i −0.163348 0.282926i
\(17\) −2.93173 5.07790i −0.711048 1.23157i −0.964464 0.264214i \(-0.914887\pi\)
0.253416 0.967357i \(-0.418446\pi\)
\(18\) 0 0
\(19\) 0.386961 0.670236i 0.0887750 0.153763i −0.818219 0.574907i \(-0.805038\pi\)
0.906994 + 0.421144i \(0.138371\pi\)
\(20\) −0.755665 + 1.30885i −0.168972 + 0.292668i
\(21\) 0 0
\(22\) 1.34156 + 2.32364i 0.286021 + 0.495403i
\(23\) −6.90532 −1.43986 −0.719929 0.694048i \(-0.755826\pi\)
−0.719929 + 0.694048i \(0.755826\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) −1.59402 + 2.76092i −0.312613 + 0.541461i
\(27\) 0 0
\(28\) −3.96066 + 0.549558i −0.748494 + 0.103857i
\(29\) 3.95301 6.84682i 0.734056 1.27142i −0.221080 0.975256i \(-0.570958\pi\)
0.955136 0.296167i \(-0.0957084\pi\)
\(30\) 0 0
\(31\) 2.01894 3.49691i 0.362613 0.628064i −0.625777 0.780002i \(-0.715218\pi\)
0.988390 + 0.151938i \(0.0485513\pi\)
\(32\) 2.91134 5.04260i 0.514658 0.891413i
\(33\) 0 0
\(34\) 2.04942 3.54970i 0.351473 0.608769i
\(35\) 1.62523 + 2.08773i 0.274714 + 0.352891i
\(36\) 0 0
\(37\) 4.23407 7.33362i 0.696076 1.20564i −0.273740 0.961804i \(-0.588261\pi\)
0.969816 0.243836i \(-0.0784059\pi\)
\(38\) 0.541010 0.0877634
\(39\) 0 0
\(40\) −2.45459 −0.388105
\(41\) 1.60838 + 2.78579i 0.251186 + 0.435067i 0.963853 0.266436i \(-0.0858460\pi\)
−0.712667 + 0.701503i \(0.752513\pi\)
\(42\) 0 0
\(43\) 4.19469 7.26541i 0.639683 1.10796i −0.345819 0.938301i \(-0.612399\pi\)
0.985502 0.169663i \(-0.0542679\pi\)
\(44\) 2.90042 5.02367i 0.437255 0.757347i
\(45\) 0 0
\(46\) −2.41358 4.18044i −0.355863 0.616372i
\(47\) −1.66963 2.89189i −0.243541 0.421826i 0.718179 0.695858i \(-0.244976\pi\)
−0.961720 + 0.274032i \(0.911642\pi\)
\(48\) 0 0
\(49\) −1.71725 + 6.78609i −0.245321 + 0.969442i
\(50\) 0.349525 + 0.605394i 0.0494302 + 0.0856157i
\(51\) 0 0
\(52\) 6.89248 0.955814
\(53\) −1.32630 2.29721i −0.182181 0.315546i 0.760442 0.649406i \(-0.224982\pi\)
−0.942623 + 0.333859i \(0.891649\pi\)
\(54\) 0 0
\(55\) −3.83823 −0.517547
\(56\) −3.98928 5.12453i −0.533090 0.684794i
\(57\) 0 0
\(58\) 5.52670 0.725691
\(59\) −3.36978 + 5.83663i −0.438708 + 0.759864i −0.997590 0.0693827i \(-0.977897\pi\)
0.558882 + 0.829247i \(0.311230\pi\)
\(60\) 0 0
\(61\) −3.50639 6.07324i −0.448947 0.777599i 0.549371 0.835579i \(-0.314868\pi\)
−0.998318 + 0.0579795i \(0.981534\pi\)
\(62\) 2.82268 0.358481
\(63\) 0 0
\(64\) 1.45678 0.182098
\(65\) −2.28027 3.94954i −0.282832 0.489880i
\(66\) 0 0
\(67\) −7.28514 + 12.6182i −0.890022 + 1.54156i −0.0501748 + 0.998740i \(0.515978\pi\)
−0.839847 + 0.542823i \(0.817356\pi\)
\(68\) −8.86162 −1.07463
\(69\) 0 0
\(70\) −0.695843 + 1.71362i −0.0831691 + 0.204817i
\(71\) 9.67100 1.14774 0.573868 0.818948i \(-0.305442\pi\)
0.573868 + 0.818948i \(0.305442\pi\)
\(72\) 0 0
\(73\) 7.00941 + 12.1407i 0.820389 + 1.42096i 0.905393 + 0.424575i \(0.139577\pi\)
−0.0850031 + 0.996381i \(0.527090\pi\)
\(74\) 5.91964 0.688144
\(75\) 0 0
\(76\) −0.584826 1.01295i −0.0670842 0.116193i
\(77\) −6.23801 8.01320i −0.710888 0.913189i
\(78\) 0 0
\(79\) 6.69289 + 11.5924i 0.753009 + 1.30425i 0.946358 + 0.323120i \(0.104732\pi\)
−0.193349 + 0.981130i \(0.561935\pi\)
\(80\) 0.653390 + 1.13171i 0.0730513 + 0.126529i
\(81\) 0 0
\(82\) −1.12433 + 1.94740i −0.124162 + 0.215055i
\(83\) −0.442527 + 0.766479i −0.0485736 + 0.0841320i −0.889290 0.457344i \(-0.848801\pi\)
0.840716 + 0.541476i \(0.182134\pi\)
\(84\) 0 0
\(85\) 2.93173 + 5.07790i 0.317990 + 0.550776i
\(86\) 5.86458 0.632394
\(87\) 0 0
\(88\) 9.42130 1.00431
\(89\) −0.950003 + 1.64545i −0.100700 + 0.174418i −0.911973 0.410250i \(-0.865442\pi\)
0.811273 + 0.584667i \(0.198775\pi\)
\(90\) 0 0
\(91\) 4.53962 11.1795i 0.475881 1.17193i
\(92\) −5.21811 + 9.03803i −0.544025 + 0.942279i
\(93\) 0 0
\(94\) 1.16716 2.02157i 0.120383 0.208509i
\(95\) −0.386961 + 0.670236i −0.0397014 + 0.0687648i
\(96\) 0 0
\(97\) −3.07725 + 5.32996i −0.312448 + 0.541176i −0.978892 0.204380i \(-0.934482\pi\)
0.666444 + 0.745555i \(0.267816\pi\)
\(98\) −4.70848 + 1.33229i −0.475629 + 0.134582i
\(99\) 0 0
\(100\) 0.755665 1.30885i 0.0755665 0.130885i
\(101\) 1.54494 0.153727 0.0768635 0.997042i \(-0.475509\pi\)
0.0768635 + 0.997042i \(0.475509\pi\)
\(102\) 0 0
\(103\) −11.8035 −1.16303 −0.581516 0.813535i \(-0.697540\pi\)
−0.581516 + 0.813535i \(0.697540\pi\)
\(104\) 5.59713 + 9.69451i 0.548843 + 0.950625i
\(105\) 0 0
\(106\) 0.927146 1.60586i 0.0900524 0.155975i
\(107\) 1.00776 1.74549i 0.0974239 0.168743i −0.813194 0.581993i \(-0.802273\pi\)
0.910618 + 0.413250i \(0.135606\pi\)
\(108\) 0 0
\(109\) −0.193245 0.334710i −0.0185095 0.0320594i 0.856622 0.515944i \(-0.172559\pi\)
−0.875132 + 0.483885i \(0.839225\pi\)
\(110\) −1.34156 2.32364i −0.127912 0.221551i
\(111\) 0 0
\(112\) −1.30079 + 3.20339i −0.122913 + 0.302692i
\(113\) −3.98925 6.90958i −0.375277 0.649998i 0.615092 0.788456i \(-0.289119\pi\)
−0.990368 + 0.138457i \(0.955786\pi\)
\(114\) 0 0
\(115\) 6.90532 0.643924
\(116\) −5.97431 10.3478i −0.554701 0.960770i
\(117\) 0 0
\(118\) −4.71128 −0.433709
\(119\) −5.83656 + 14.3734i −0.535037 + 1.31761i
\(120\) 0 0
\(121\) 3.73203 0.339275
\(122\) 2.45114 4.24550i 0.221916 0.384369i
\(123\) 0 0
\(124\) −3.05129 5.28499i −0.274014 0.474606i
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −1.89590 −0.168234 −0.0841170 0.996456i \(-0.526807\pi\)
−0.0841170 + 0.996456i \(0.526807\pi\)
\(128\) −5.31351 9.20326i −0.469652 0.813461i
\(129\) 0 0
\(130\) 1.59402 2.76092i 0.139805 0.242149i
\(131\) 7.33888 0.641201 0.320600 0.947215i \(-0.396115\pi\)
0.320600 + 0.947215i \(0.396115\pi\)
\(132\) 0 0
\(133\) −2.02818 + 0.281418i −0.175865 + 0.0244020i
\(134\) −10.1853 −0.879880
\(135\) 0 0
\(136\) −7.19620 12.4642i −0.617069 1.06879i
\(137\) 9.45201 0.807540 0.403770 0.914861i \(-0.367700\pi\)
0.403770 + 0.914861i \(0.367700\pi\)
\(138\) 0 0
\(139\) 3.28976 + 5.69803i 0.279034 + 0.483301i 0.971145 0.238490i \(-0.0766525\pi\)
−0.692111 + 0.721791i \(0.743319\pi\)
\(140\) 3.96066 0.549558i 0.334737 0.0464461i
\(141\) 0 0
\(142\) 3.38025 + 5.85477i 0.283664 + 0.491321i
\(143\) 8.75220 + 15.1593i 0.731896 + 1.26768i
\(144\) 0 0
\(145\) −3.95301 + 6.84682i −0.328280 + 0.568597i
\(146\) −4.89992 + 8.48691i −0.405520 + 0.702382i
\(147\) 0 0
\(148\) −6.39908 11.0835i −0.526001 0.911060i
\(149\) 12.8568 1.05327 0.526634 0.850092i \(-0.323454\pi\)
0.526634 + 0.850092i \(0.323454\pi\)
\(150\) 0 0
\(151\) 6.72795 0.547513 0.273756 0.961799i \(-0.411734\pi\)
0.273756 + 0.961799i \(0.411734\pi\)
\(152\) 0.949832 1.64516i 0.0770415 0.133440i
\(153\) 0 0
\(154\) 2.67081 6.57727i 0.215220 0.530011i
\(155\) −2.01894 + 3.49691i −0.162166 + 0.280879i
\(156\) 0 0
\(157\) 6.05582 10.4890i 0.483307 0.837112i −0.516509 0.856281i \(-0.672769\pi\)
0.999816 + 0.0191696i \(0.00610224\pi\)
\(158\) −4.67866 + 8.10368i −0.372214 + 0.644694i
\(159\) 0 0
\(160\) −2.91134 + 5.04260i −0.230162 + 0.398652i
\(161\) 11.2227 + 14.4164i 0.884475 + 1.13618i
\(162\) 0 0
\(163\) −8.11477 + 14.0552i −0.635598 + 1.10089i 0.350790 + 0.936454i \(0.385913\pi\)
−0.986388 + 0.164434i \(0.947420\pi\)
\(164\) 4.86158 0.379625
\(165\) 0 0
\(166\) −0.618696 −0.0480201
\(167\) 8.60497 + 14.9042i 0.665872 + 1.15332i 0.979048 + 0.203630i \(0.0652738\pi\)
−0.313176 + 0.949695i \(0.601393\pi\)
\(168\) 0 0
\(169\) −3.89924 + 6.75368i −0.299942 + 0.519514i
\(170\) −2.04942 + 3.54970i −0.157183 + 0.272250i
\(171\) 0 0
\(172\) −6.33956 10.9804i −0.483387 0.837250i
\(173\) 8.01528 + 13.8829i 0.609390 + 1.05550i 0.991341 + 0.131312i \(0.0419191\pi\)
−0.381951 + 0.924183i \(0.624748\pi\)
\(174\) 0 0
\(175\) −1.62523 2.08773i −0.122856 0.157818i
\(176\) −2.50786 4.34375i −0.189037 0.327422i
\(177\) 0 0
\(178\) −1.32820 −0.0995526
\(179\) −4.60018 7.96775i −0.343834 0.595538i 0.641307 0.767284i \(-0.278392\pi\)
−0.985141 + 0.171746i \(0.945059\pi\)
\(180\) 0 0
\(181\) −5.76356 −0.428402 −0.214201 0.976790i \(-0.568715\pi\)
−0.214201 + 0.976790i \(0.568715\pi\)
\(182\) 8.35471 1.15925i 0.619293 0.0859294i
\(183\) 0 0
\(184\) −16.9497 −1.24955
\(185\) −4.23407 + 7.33362i −0.311295 + 0.539178i
\(186\) 0 0
\(187\) −11.2527 19.4902i −0.822875 1.42526i
\(188\) −5.04674 −0.368071
\(189\) 0 0
\(190\) −0.541010 −0.0392490
\(191\) 1.15149 + 1.99444i 0.0833190 + 0.144313i 0.904674 0.426105i \(-0.140115\pi\)
−0.821355 + 0.570418i \(0.806781\pi\)
\(192\) 0 0
\(193\) −9.97640 + 17.2796i −0.718117 + 1.24382i 0.243628 + 0.969869i \(0.421662\pi\)
−0.961745 + 0.273946i \(0.911671\pi\)
\(194\) −4.30230 −0.308887
\(195\) 0 0
\(196\) 7.58432 + 7.37564i 0.541737 + 0.526831i
\(197\) −0.261164 −0.0186071 −0.00930357 0.999957i \(-0.502961\pi\)
−0.00930357 + 0.999957i \(0.502961\pi\)
\(198\) 0 0
\(199\) −1.81496 3.14360i −0.128659 0.222844i 0.794498 0.607266i \(-0.207734\pi\)
−0.923157 + 0.384423i \(0.874401\pi\)
\(200\) 2.45459 0.173566
\(201\) 0 0
\(202\) 0.539993 + 0.935296i 0.0379938 + 0.0658072i
\(203\) −20.7189 + 2.87483i −1.45418 + 0.201773i
\(204\) 0 0
\(205\) −1.60838 2.78579i −0.112334 0.194568i
\(206\) −4.12561 7.14577i −0.287445 0.497869i
\(207\) 0 0
\(208\) 2.97981 5.16118i 0.206613 0.357864i
\(209\) 1.48525 2.57252i 0.102737 0.177945i
\(210\) 0 0
\(211\) 2.25267 + 3.90174i 0.155080 + 0.268607i 0.933088 0.359648i \(-0.117103\pi\)
−0.778008 + 0.628254i \(0.783770\pi\)
\(212\) −4.00894 −0.275335
\(213\) 0 0
\(214\) 1.40895 0.0963137
\(215\) −4.19469 + 7.26541i −0.286075 + 0.495497i
\(216\) 0 0
\(217\) −10.5819 + 1.46828i −0.718344 + 0.0996732i
\(218\) 0.135088 0.233979i 0.00914929 0.0158470i
\(219\) 0 0
\(220\) −2.90042 + 5.02367i −0.195546 + 0.338696i
\(221\) 13.3702 23.1579i 0.899380 1.55777i
\(222\) 0 0
\(223\) −5.85329 + 10.1382i −0.391966 + 0.678904i −0.992709 0.120538i \(-0.961538\pi\)
0.600743 + 0.799442i \(0.294871\pi\)
\(224\) −15.2592 + 2.11728i −1.01955 + 0.141466i
\(225\) 0 0
\(226\) 2.78868 4.83013i 0.185500 0.321296i
\(227\) −9.27518 −0.615615 −0.307808 0.951449i \(-0.599595\pi\)
−0.307808 + 0.951449i \(0.599595\pi\)
\(228\) 0 0
\(229\) 16.9065 1.11721 0.558606 0.829433i \(-0.311336\pi\)
0.558606 + 0.829433i \(0.311336\pi\)
\(230\) 2.41358 + 4.18044i 0.159147 + 0.275650i
\(231\) 0 0
\(232\) 9.70303 16.8061i 0.637035 1.10338i
\(233\) 3.50083 6.06362i 0.229347 0.397241i −0.728268 0.685293i \(-0.759674\pi\)
0.957615 + 0.288052i \(0.0930076\pi\)
\(234\) 0 0
\(235\) 1.66963 + 2.89189i 0.108915 + 0.188646i
\(236\) 5.09285 + 8.82107i 0.331516 + 0.574203i
\(237\) 0 0
\(238\) −10.7416 + 1.49044i −0.696275 + 0.0966110i
\(239\) 8.00452 + 13.8642i 0.517769 + 0.896803i 0.999787 + 0.0206414i \(0.00657084\pi\)
−0.482017 + 0.876162i \(0.660096\pi\)
\(240\) 0 0
\(241\) −7.35462 −0.473752 −0.236876 0.971540i \(-0.576124\pi\)
−0.236876 + 0.971540i \(0.576124\pi\)
\(242\) 1.30444 + 2.25935i 0.0838523 + 0.145236i
\(243\) 0 0
\(244\) −10.5986 −0.678508
\(245\) 1.71725 6.78609i 0.109711 0.433548i
\(246\) 0 0
\(247\) 3.52950 0.224577
\(248\) 4.95568 8.58350i 0.314686 0.545053i
\(249\) 0 0
\(250\) −0.349525 0.605394i −0.0221059 0.0382885i
\(251\) −15.4784 −0.976991 −0.488495 0.872566i \(-0.662454\pi\)
−0.488495 + 0.872566i \(0.662454\pi\)
\(252\) 0 0
\(253\) −26.5042 −1.66631
\(254\) −0.662664 1.14777i −0.0415792 0.0720173i
\(255\) 0 0
\(256\) 5.17118 8.95675i 0.323199 0.559797i
\(257\) 0.355901 0.0222005 0.0111003 0.999938i \(-0.496467\pi\)
0.0111003 + 0.999938i \(0.496467\pi\)
\(258\) 0 0
\(259\) −22.1920 + 3.07923i −1.37894 + 0.191334i
\(260\) −6.89248 −0.427453
\(261\) 0 0
\(262\) 2.56512 + 4.44291i 0.158473 + 0.274484i
\(263\) −19.1656 −1.18180 −0.590900 0.806745i \(-0.701227\pi\)
−0.590900 + 0.806745i \(0.701227\pi\)
\(264\) 0 0
\(265\) 1.32630 + 2.29721i 0.0814737 + 0.141117i
\(266\) −0.879266 1.12948i −0.0539112 0.0692531i
\(267\) 0 0
\(268\) 11.0103 + 19.0703i 0.672559 + 1.16491i
\(269\) 4.18841 + 7.25453i 0.255372 + 0.442317i 0.964996 0.262263i \(-0.0844688\pi\)
−0.709625 + 0.704580i \(0.751135\pi\)
\(270\) 0 0
\(271\) −0.0397516 + 0.0688517i −0.00241474 + 0.00418244i −0.867230 0.497907i \(-0.834102\pi\)
0.864816 + 0.502090i \(0.167435\pi\)
\(272\) −3.83113 + 6.63570i −0.232296 + 0.402349i
\(273\) 0 0
\(274\) 3.30371 + 5.72219i 0.199584 + 0.345690i
\(275\) 3.83823 0.231454
\(276\) 0 0
\(277\) 21.3875 1.28505 0.642524 0.766265i \(-0.277887\pi\)
0.642524 + 0.766265i \(0.277887\pi\)
\(278\) −2.29970 + 3.98320i −0.137927 + 0.238897i
\(279\) 0 0
\(280\) 3.98928 + 5.12453i 0.238405 + 0.306249i
\(281\) −2.12078 + 3.67329i −0.126515 + 0.219130i −0.922324 0.386417i \(-0.873712\pi\)
0.795809 + 0.605547i \(0.207046\pi\)
\(282\) 0 0
\(283\) 2.99392 5.18562i 0.177970 0.308253i −0.763215 0.646144i \(-0.776380\pi\)
0.941185 + 0.337892i \(0.109714\pi\)
\(284\) 7.30804 12.6579i 0.433652 0.751108i
\(285\) 0 0
\(286\) −6.11822 + 10.5971i −0.361778 + 0.626617i
\(287\) 3.20200 7.88541i 0.189008 0.465461i
\(288\) 0 0
\(289\) −8.69005 + 15.0516i −0.511180 + 0.885389i
\(290\) −5.52670 −0.324539
\(291\) 0 0
\(292\) 21.1871 1.23988
\(293\) 6.26949 + 10.8591i 0.366267 + 0.634393i 0.988979 0.148058i \(-0.0473023\pi\)
−0.622711 + 0.782452i \(0.713969\pi\)
\(294\) 0 0
\(295\) 3.36978 5.83663i 0.196196 0.339822i
\(296\) 10.3929 18.0010i 0.604076 1.04629i
\(297\) 0 0
\(298\) 4.49376 + 7.78342i 0.260317 + 0.450882i
\(299\) −15.7460 27.2728i −0.910613 1.57723i
\(300\) 0 0
\(301\) −21.9856 + 3.05059i −1.26723 + 0.175833i
\(302\) 2.35158 + 4.07306i 0.135318 + 0.234378i
\(303\) 0 0
\(304\) −1.01135 −0.0580047
\(305\) 3.50639 + 6.07324i 0.200775 + 0.347753i
\(306\) 0 0
\(307\) −21.0767 −1.20291 −0.601455 0.798906i \(-0.705412\pi\)
−0.601455 + 0.798906i \(0.705412\pi\)
\(308\) −15.2019 + 2.10933i −0.866211 + 0.120190i
\(309\) 0 0
\(310\) −2.82268 −0.160318
\(311\) 6.41734 11.1152i 0.363894 0.630283i −0.624704 0.780862i \(-0.714780\pi\)
0.988598 + 0.150579i \(0.0481137\pi\)
\(312\) 0 0
\(313\) 7.44794 + 12.9002i 0.420982 + 0.729163i 0.996036 0.0889532i \(-0.0283521\pi\)
−0.575054 + 0.818116i \(0.695019\pi\)
\(314\) 8.46663 0.477799
\(315\) 0 0
\(316\) 20.2303 1.13805
\(317\) 17.1198 + 29.6524i 0.961545 + 1.66545i 0.718624 + 0.695399i \(0.244772\pi\)
0.242922 + 0.970046i \(0.421894\pi\)
\(318\) 0 0
\(319\) 15.1726 26.2797i 0.849502 1.47138i
\(320\) −1.45678 −0.0814366
\(321\) 0 0
\(322\) −4.80502 + 11.8331i −0.267773 + 0.659432i
\(323\) −4.53786 −0.252493
\(324\) 0 0
\(325\) 2.28027 + 3.94954i 0.126486 + 0.219081i
\(326\) −11.3452 −0.628355
\(327\) 0 0
\(328\) 3.94791 + 6.83798i 0.217987 + 0.377564i
\(329\) −3.32395 + 8.18574i −0.183255 + 0.451294i
\(330\) 0 0
\(331\) −16.5881 28.7314i −0.911764 1.57922i −0.811572 0.584253i \(-0.801388\pi\)
−0.100192 0.994968i \(-0.531946\pi\)
\(332\) 0.668804 + 1.15840i 0.0367054 + 0.0635756i
\(333\) 0 0
\(334\) −6.01529 + 10.4188i −0.329142 + 0.570091i
\(335\) 7.28514 12.6182i 0.398030 0.689408i
\(336\) 0 0
\(337\) −10.8821 18.8484i −0.592786 1.02674i −0.993855 0.110688i \(-0.964695\pi\)
0.401069 0.916048i \(-0.368639\pi\)
\(338\) −5.45152 −0.296524
\(339\) 0 0
\(340\) 8.86162 0.480589
\(341\) 7.74918 13.4220i 0.419641 0.726840i
\(342\) 0 0
\(343\) 16.9585 7.44381i 0.915671 0.401928i
\(344\) 10.2962 17.8336i 0.555136 0.961524i
\(345\) 0 0
\(346\) −5.60307 + 9.70481i −0.301223 + 0.521734i
\(347\) 2.40973 4.17378i 0.129361 0.224060i −0.794068 0.607829i \(-0.792041\pi\)
0.923429 + 0.383769i \(0.125374\pi\)
\(348\) 0 0
\(349\) 3.26983 5.66352i 0.175030 0.303161i −0.765142 0.643862i \(-0.777331\pi\)
0.940172 + 0.340701i \(0.110664\pi\)
\(350\) 0.695843 1.71362i 0.0371944 0.0915968i
\(351\) 0 0
\(352\) 11.1744 19.3547i 0.595598 1.03161i
\(353\) 0.354435 0.0188647 0.00943233 0.999956i \(-0.496998\pi\)
0.00943233 + 0.999956i \(0.496998\pi\)
\(354\) 0 0
\(355\) −9.67100 −0.513283
\(356\) 1.43577 + 2.48683i 0.0760956 + 0.131801i
\(357\) 0 0
\(358\) 3.21575 5.56985i 0.169958 0.294376i
\(359\) −6.26344 + 10.8486i −0.330572 + 0.572567i −0.982624 0.185607i \(-0.940575\pi\)
0.652052 + 0.758174i \(0.273908\pi\)
\(360\) 0 0
\(361\) 9.20052 + 15.9358i 0.484238 + 0.838725i
\(362\) −2.01451 3.48923i −0.105880 0.183390i
\(363\) 0 0
\(364\) −11.2019 14.3896i −0.587137 0.754222i
\(365\) −7.00941 12.1407i −0.366889 0.635471i
\(366\) 0 0
\(367\) 12.9540 0.676192 0.338096 0.941112i \(-0.390217\pi\)
0.338096 + 0.941112i \(0.390217\pi\)
\(368\) 4.51187 + 7.81478i 0.235197 + 0.407374i
\(369\) 0 0
\(370\) −5.91964 −0.307747
\(371\) −2.64043 + 6.50245i −0.137084 + 0.337590i
\(372\) 0 0
\(373\) 10.3804 0.537475 0.268738 0.963213i \(-0.413394\pi\)
0.268738 + 0.963213i \(0.413394\pi\)
\(374\) 7.86616 13.6246i 0.406749 0.704510i
\(375\) 0 0
\(376\) −4.09827 7.09841i −0.211352 0.366073i
\(377\) 36.0557 1.85696
\(378\) 0 0
\(379\) 5.82342 0.299129 0.149564 0.988752i \(-0.452213\pi\)
0.149564 + 0.988752i \(0.452213\pi\)
\(380\) 0.584826 + 1.01295i 0.0300010 + 0.0519632i
\(381\) 0 0
\(382\) −0.804949 + 1.39421i −0.0411848 + 0.0713341i
\(383\) −26.0999 −1.33364 −0.666822 0.745217i \(-0.732346\pi\)
−0.666822 + 0.745217i \(0.732346\pi\)
\(384\) 0 0
\(385\) 6.23801 + 8.01320i 0.317919 + 0.408391i
\(386\) −13.9480 −0.709934
\(387\) 0 0
\(388\) 4.65075 + 8.05533i 0.236106 + 0.408948i
\(389\) −0.160490 −0.00813716 −0.00406858 0.999992i \(-0.501295\pi\)
−0.00406858 + 0.999992i \(0.501295\pi\)
\(390\) 0 0
\(391\) 20.2445 + 35.0645i 1.02381 + 1.77329i
\(392\) −4.21515 + 16.6571i −0.212897 + 0.841310i
\(393\) 0 0
\(394\) −0.0912831 0.158107i −0.00459878 0.00796531i
\(395\) −6.69289 11.5924i −0.336756 0.583278i
\(396\) 0 0
\(397\) 6.09165 10.5510i 0.305731 0.529542i −0.671693 0.740830i \(-0.734433\pi\)
0.977424 + 0.211288i \(0.0677659\pi\)
\(398\) 1.26874 2.19753i 0.0635964 0.110152i
\(399\) 0 0
\(400\) −0.653390 1.13171i −0.0326695 0.0565853i
\(401\) 18.8416 0.940906 0.470453 0.882425i \(-0.344091\pi\)
0.470453 + 0.882425i \(0.344091\pi\)
\(402\) 0 0
\(403\) 18.4149 0.917313
\(404\) 1.16746 2.02209i 0.0580831 0.100603i
\(405\) 0 0
\(406\) −8.98216 11.5383i −0.445777 0.572635i
\(407\) 16.2513 28.1481i 0.805549 1.39525i
\(408\) 0 0
\(409\) 0.737626 1.27761i 0.0364733 0.0631736i −0.847213 0.531254i \(-0.821721\pi\)
0.883686 + 0.468081i \(0.155054\pi\)
\(410\) 1.12433 1.94740i 0.0555269 0.0961754i
\(411\) 0 0
\(412\) −8.91949 + 15.4490i −0.439432 + 0.761118i
\(413\) 17.6620 2.45067i 0.869089 0.120590i
\(414\) 0 0
\(415\) 0.442527 0.766479i 0.0217228 0.0376250i
\(416\) 26.5546 1.30195
\(417\) 0 0
\(418\) 2.07652 0.101566
\(419\) 2.29886 + 3.98174i 0.112307 + 0.194521i 0.916700 0.399576i \(-0.130843\pi\)
−0.804393 + 0.594097i \(0.797509\pi\)
\(420\) 0 0
\(421\) −8.56269 + 14.8310i −0.417320 + 0.722819i −0.995669 0.0929702i \(-0.970364\pi\)
0.578349 + 0.815789i \(0.303697\pi\)
\(422\) −1.57473 + 2.72750i −0.0766564 + 0.132773i
\(423\) 0 0
\(424\) −3.25552 5.63872i −0.158102 0.273840i
\(425\) −2.93173 5.07790i −0.142210 0.246314i
\(426\) 0 0
\(427\) −6.98062 + 17.1908i −0.337816 + 0.831922i
\(428\) −1.52306 2.63802i −0.0736199 0.127513i
\(429\) 0 0
\(430\) −5.86458 −0.282815
\(431\) 8.75901 + 15.1710i 0.421907 + 0.730764i 0.996126 0.0879379i \(-0.0280277\pi\)
−0.574219 + 0.818701i \(0.694694\pi\)
\(432\) 0 0
\(433\) 31.4428 1.51104 0.755522 0.655124i \(-0.227383\pi\)
0.755522 + 0.655124i \(0.227383\pi\)
\(434\) −4.58751 5.89300i −0.220208 0.282873i
\(435\) 0 0
\(436\) −0.584114 −0.0279740
\(437\) −2.67209 + 4.62819i −0.127823 + 0.221397i
\(438\) 0 0
\(439\) −20.1678 34.9316i −0.962555 1.66719i −0.716045 0.698054i \(-0.754049\pi\)
−0.246510 0.969140i \(-0.579284\pi\)
\(440\) −9.42130 −0.449143
\(441\) 0 0
\(442\) 18.6929 0.889131
\(443\) 18.0671 + 31.2931i 0.858394 + 1.48678i 0.873460 + 0.486896i \(0.161871\pi\)
−0.0150658 + 0.999887i \(0.504796\pi\)
\(444\) 0 0
\(445\) 0.950003 1.64545i 0.0450345 0.0780020i
\(446\) −8.18348 −0.387499
\(447\) 0 0
\(448\) −2.36761 3.04137i −0.111859 0.143691i
\(449\) −17.2314 −0.813202 −0.406601 0.913606i \(-0.633286\pi\)
−0.406601 + 0.913606i \(0.633286\pi\)
\(450\) 0 0
\(451\) 6.17332 + 10.6925i 0.290690 + 0.503491i
\(452\) −12.0581 −0.567167
\(453\) 0 0
\(454\) −3.24190 5.61514i −0.152150 0.263532i
\(455\) −4.53962 + 11.1795i −0.212821 + 0.524103i
\(456\) 0 0
\(457\) −4.58643 7.94394i −0.214544 0.371602i 0.738587 0.674158i \(-0.235493\pi\)
−0.953132 + 0.302556i \(0.902160\pi\)
\(458\) 5.90923 + 10.2351i 0.276120 + 0.478254i
\(459\) 0 0
\(460\) 5.21811 9.03803i 0.243296 0.421400i
\(461\) −7.95525 + 13.7789i −0.370513 + 0.641747i −0.989645 0.143540i \(-0.954151\pi\)
0.619132 + 0.785287i \(0.287485\pi\)
\(462\) 0 0
\(463\) −4.80144 8.31634i −0.223142 0.386493i 0.732618 0.680640i \(-0.238298\pi\)
−0.955760 + 0.294146i \(0.904965\pi\)
\(464\) −10.3314 −0.479625
\(465\) 0 0
\(466\) 4.89451 0.226734
\(467\) −13.1371 + 22.7541i −0.607912 + 1.05294i 0.383671 + 0.923470i \(0.374660\pi\)
−0.991584 + 0.129466i \(0.958674\pi\)
\(468\) 0 0
\(469\) 38.1835 5.29812i 1.76315 0.244645i
\(470\) −1.16716 + 2.02157i −0.0538369 + 0.0932482i
\(471\) 0 0
\(472\) −8.27143 + 14.3265i −0.380724 + 0.659433i
\(473\) 16.1002 27.8863i 0.740287 1.28221i
\(474\) 0 0
\(475\) 0.386961 0.670236i 0.0177550 0.0307526i
\(476\) 14.4022 + 18.5007i 0.660123 + 0.847977i
\(477\) 0 0
\(478\) −5.59555 + 9.69178i −0.255935 + 0.443292i
\(479\) 7.33270 0.335040 0.167520 0.985869i \(-0.446424\pi\)
0.167520 + 0.985869i \(0.446424\pi\)
\(480\) 0 0
\(481\) 38.6192 1.76089
\(482\) −2.57062 4.45244i −0.117088 0.202803i
\(483\) 0 0
\(484\) 2.82017 4.88467i 0.128189 0.222030i
\(485\) 3.07725 5.32996i 0.139731 0.242021i
\(486\) 0 0
\(487\) −16.8879 29.2507i −0.765262 1.32547i −0.940108 0.340878i \(-0.889276\pi\)
0.174845 0.984596i \(-0.444057\pi\)
\(488\) −8.60676 14.9073i −0.389610 0.674823i
\(489\) 0 0
\(490\) 4.70848 1.33229i 0.212708 0.0601868i
\(491\) −10.2358 17.7289i −0.461934 0.800093i 0.537123 0.843504i \(-0.319511\pi\)
−0.999057 + 0.0434107i \(0.986178\pi\)
\(492\) 0 0
\(493\) −46.3566 −2.08780
\(494\) 1.23365 + 2.13674i 0.0555044 + 0.0961364i
\(495\) 0 0
\(496\) −5.27663 −0.236928
\(497\) −15.7176 20.1905i −0.705031 0.905666i
\(498\) 0 0
\(499\) 24.3396 1.08959 0.544796 0.838569i \(-0.316607\pi\)
0.544796 + 0.838569i \(0.316607\pi\)
\(500\) −0.755665 + 1.30885i −0.0337944 + 0.0585336i
\(501\) 0 0
\(502\) −5.41010 9.37056i −0.241464 0.418229i
\(503\) 23.7168 1.05748 0.528739 0.848784i \(-0.322665\pi\)
0.528739 + 0.848784i \(0.322665\pi\)
\(504\) 0 0
\(505\) −1.54494 −0.0687488
\(506\) −9.26387 16.0455i −0.411829 0.713309i
\(507\) 0 0
\(508\) −1.43267 + 2.48145i −0.0635643 + 0.110097i
\(509\) 1.16561 0.0516649 0.0258324 0.999666i \(-0.491776\pi\)
0.0258324 + 0.999666i \(0.491776\pi\)
\(510\) 0 0
\(511\) 13.9545 34.3651i 0.617312 1.52022i
\(512\) −14.0242 −0.619788
\(513\) 0 0
\(514\) 0.124396 + 0.215461i 0.00548688 + 0.00950356i
\(515\) 11.8035 0.520124
\(516\) 0 0
\(517\) −6.40844 11.0997i −0.281843 0.488166i
\(518\) −9.62078 12.3586i −0.422713 0.543007i
\(519\) 0 0
\(520\) −5.59713 9.69451i −0.245450 0.425132i
\(521\) −15.6184 27.0519i −0.684254 1.18516i −0.973670 0.227960i \(-0.926794\pi\)
0.289416 0.957203i \(-0.406539\pi\)
\(522\) 0 0
\(523\) −7.10144 + 12.3000i −0.310524 + 0.537844i −0.978476 0.206361i \(-0.933838\pi\)
0.667952 + 0.744205i \(0.267171\pi\)
\(524\) 5.54573 9.60549i 0.242267 0.419618i
\(525\) 0 0
\(526\) −6.69883 11.6027i −0.292083 0.505903i
\(527\) −23.6760 −1.03134
\(528\) 0 0
\(529\) 24.6834 1.07319
\(530\) −0.927146 + 1.60586i −0.0402726 + 0.0697543i
\(531\) 0 0
\(532\) −1.16429 + 2.86724i −0.0504783 + 0.124310i
\(533\) −7.33506 + 12.7047i −0.317717 + 0.550301i
\(534\) 0 0
\(535\) −1.00776 + 1.74549i −0.0435693 + 0.0754642i
\(536\) −17.8821 + 30.9726i −0.772387 + 1.33781i
\(537\) 0 0
\(538\) −2.92790 + 5.07127i −0.126231 + 0.218638i
\(539\) −6.59120 + 26.0466i −0.283903 + 1.12191i
\(540\) 0 0
\(541\) −1.38923 + 2.40621i −0.0597275 + 0.103451i −0.894343 0.447382i \(-0.852356\pi\)
0.834616 + 0.550833i \(0.185690\pi\)
\(542\) −0.0555766 −0.00238722
\(543\) 0 0
\(544\) −34.1411 −1.46379
\(545\) 0.193245 + 0.334710i 0.00827770 + 0.0143374i
\(546\) 0 0
\(547\) −8.59132 + 14.8806i −0.367338 + 0.636248i −0.989148 0.146919i \(-0.953064\pi\)
0.621810 + 0.783168i \(0.286398\pi\)
\(548\) 7.14256 12.3713i 0.305115 0.528475i
\(549\) 0 0
\(550\) 1.34156 + 2.32364i 0.0572042 + 0.0990805i
\(551\) −3.05932 5.29891i −0.130332 0.225741i
\(552\) 0 0
\(553\) 13.3244 32.8133i 0.566611 1.39537i
\(554\) 7.47545 + 12.9479i 0.317601 + 0.550101i
\(555\) 0 0
\(556\) 9.94383 0.421712
\(557\) −12.1738 21.0857i −0.515822 0.893430i −0.999831 0.0183672i \(-0.994153\pi\)
0.484009 0.875063i \(-0.339180\pi\)
\(558\) 0 0
\(559\) 38.2600 1.61823
\(560\) 1.30079 3.20339i 0.0549683 0.135368i
\(561\) 0 0
\(562\) −2.96505 −0.125073
\(563\) −13.1260 + 22.7349i −0.553194 + 0.958160i 0.444848 + 0.895606i \(0.353258\pi\)
−0.998042 + 0.0625535i \(0.980076\pi\)
\(564\) 0 0
\(565\) 3.98925 + 6.90958i 0.167829 + 0.290688i
\(566\) 4.18579 0.175942
\(567\) 0 0
\(568\) 23.7384 0.996039
\(569\) −3.65815 6.33610i −0.153358 0.265623i 0.779102 0.626897i \(-0.215675\pi\)
−0.932460 + 0.361274i \(0.882342\pi\)
\(570\) 0 0
\(571\) 5.72058 9.90834i 0.239399 0.414651i −0.721143 0.692786i \(-0.756383\pi\)
0.960542 + 0.278135i \(0.0897163\pi\)
\(572\) 26.4549 1.10614
\(573\) 0 0
\(574\) 5.89296 0.817672i 0.245967 0.0341290i
\(575\) −6.90532 −0.287972
\(576\) 0 0
\(577\) 17.3881 + 30.1170i 0.723875 + 1.25379i 0.959436 + 0.281928i \(0.0909739\pi\)
−0.235561 + 0.971860i \(0.575693\pi\)
\(578\) −12.1495 −0.505354
\(579\) 0 0
\(580\) 5.97431 + 10.3478i 0.248070 + 0.429669i
\(581\) 2.31941 0.321828i 0.0962254 0.0133517i
\(582\) 0 0
\(583\) −5.09063 8.81723i −0.210832 0.365173i
\(584\) 17.2052 + 29.8004i 0.711958 + 1.23315i
\(585\) 0 0
\(586\) −4.38268 + 7.59102i −0.181047 + 0.313582i
\(587\) 16.4446 28.4830i 0.678743 1.17562i −0.296616 0.954997i \(-0.595858\pi\)
0.975360 0.220621i \(-0.0708084\pi\)
\(588\) 0 0
\(589\) −1.56251 2.70634i −0.0643819 0.111513i
\(590\) 4.71128 0.193960
\(591\) 0 0
\(592\) −11.0660 −0.454810
\(593\) 11.6851 20.2392i 0.479851 0.831125i −0.519882 0.854238i \(-0.674024\pi\)
0.999733 + 0.0231124i \(0.00735756\pi\)
\(594\) 0 0
\(595\) 5.83656 14.3734i 0.239276 0.589253i
\(596\) 9.71543 16.8276i 0.397959 0.689286i
\(597\) 0 0
\(598\) 11.0072 19.0650i 0.450118 0.779627i
\(599\) −3.67779 + 6.37012i −0.150270 + 0.260276i −0.931327 0.364185i \(-0.881348\pi\)
0.781056 + 0.624460i \(0.214681\pi\)
\(600\) 0 0
\(601\) −15.8014 + 27.3689i −0.644553 + 1.11640i 0.339851 + 0.940479i \(0.389623\pi\)
−0.984405 + 0.175920i \(0.943710\pi\)
\(602\) −9.53130 12.2437i −0.388467 0.499015i
\(603\) 0 0
\(604\) 5.08408 8.80588i 0.206868 0.358306i
\(605\) −3.73203 −0.151729
\(606\) 0 0
\(607\) −1.99685 −0.0810498 −0.0405249 0.999179i \(-0.512903\pi\)
−0.0405249 + 0.999179i \(0.512903\pi\)
\(608\) −2.25315 3.90258i −0.0913775 0.158270i
\(609\) 0 0
\(610\) −2.45114 + 4.24550i −0.0992437 + 0.171895i
\(611\) 7.61442 13.1886i 0.308047 0.533552i
\(612\) 0 0
\(613\) −3.00257 5.20061i −0.121273 0.210051i 0.798997 0.601335i \(-0.205364\pi\)
−0.920270 + 0.391284i \(0.872031\pi\)
\(614\) −7.36682 12.7597i −0.297301 0.514940i
\(615\) 0 0
\(616\) −15.3118 19.6691i −0.616929 0.792492i
\(617\) 3.65695 + 6.33402i 0.147223 + 0.254998i 0.930200 0.367053i \(-0.119633\pi\)
−0.782977 + 0.622051i \(0.786300\pi\)
\(618\) 0 0
\(619\) −18.6023 −0.747690 −0.373845 0.927491i \(-0.621961\pi\)
−0.373845 + 0.927491i \(0.621961\pi\)
\(620\) 3.05129 + 5.28499i 0.122543 + 0.212250i
\(621\) 0 0
\(622\) 8.97207 0.359747
\(623\) 4.97924 0.690890i 0.199489 0.0276799i
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) −5.20647 + 9.01787i −0.208092 + 0.360427i
\(627\) 0 0
\(628\) −9.15234 15.8523i −0.365218 0.632576i
\(629\) −49.6525 −1.97978
\(630\) 0 0
\(631\) 4.53109 0.180380 0.0901899 0.995925i \(-0.471253\pi\)
0.0901899 + 0.995925i \(0.471253\pi\)
\(632\) 16.4283 + 28.4547i 0.653484 + 1.13187i
\(633\) 0 0
\(634\) −11.9676 + 20.7285i −0.475294 + 0.823233i
\(635\) 1.89590 0.0752365
\(636\) 0 0
\(637\) −30.7177 + 8.69176i −1.21708 + 0.344380i
\(638\) 21.2128 0.839821
\(639\) 0 0
\(640\) 5.31351 + 9.20326i 0.210035 + 0.363791i
\(641\) 27.5418 1.08784 0.543918 0.839139i \(-0.316940\pi\)
0.543918 + 0.839139i \(0.316940\pi\)
\(642\) 0 0
\(643\) 1.10409 + 1.91233i 0.0435409 + 0.0754150i 0.886975 0.461818i \(-0.152803\pi\)
−0.843434 + 0.537233i \(0.819469\pi\)
\(644\) 27.3496 3.79487i 1.07773 0.149539i
\(645\) 0 0
\(646\) −1.58609 2.74719i −0.0624040 0.108087i
\(647\) −24.2181 41.9469i −0.952110 1.64910i −0.740847 0.671673i \(-0.765576\pi\)
−0.211263 0.977429i \(-0.567757\pi\)
\(648\) 0 0
\(649\) −12.9340 + 22.4023i −0.507704 + 0.879369i
\(650\) −1.59402 + 2.76092i −0.0625226 + 0.108292i
\(651\) 0 0
\(652\) 12.2641 + 21.2420i 0.480299 + 0.831902i
\(653\) 19.4509 0.761173 0.380587 0.924745i \(-0.375722\pi\)
0.380587 + 0.924745i \(0.375722\pi\)
\(654\) 0 0
\(655\) −7.33888 −0.286754
\(656\) 2.10180 3.64042i 0.0820613 0.142134i
\(657\) 0 0
\(658\) −6.11740 + 0.848814i −0.238481 + 0.0330902i
\(659\) −1.04114 + 1.80330i −0.0405569 + 0.0702467i −0.885591 0.464465i \(-0.846247\pi\)
0.845034 + 0.534712i \(0.179580\pi\)
\(660\) 0 0
\(661\) 22.7432 39.3923i 0.884606 1.53218i 0.0384419 0.999261i \(-0.487761\pi\)
0.846164 0.532922i \(-0.178906\pi\)
\(662\) 11.5959 20.0847i 0.450687 0.780612i
\(663\) 0 0
\(664\) −1.08622 + 1.88139i −0.0421536 + 0.0730122i
\(665\) 2.02818 0.281418i 0.0786493 0.0109129i
\(666\) 0 0
\(667\) −27.2968 + 47.2794i −1.05694 + 1.83067i
\(668\) 26.0099 1.00635
\(669\) 0 0
\(670\) 10.1853 0.393494
\(671\) −13.4583 23.3105i −0.519553 0.899893i
\(672\) 0 0
\(673\) −17.4910 + 30.2953i −0.674229 + 1.16780i 0.302464 + 0.953161i \(0.402191\pi\)
−0.976694 + 0.214639i \(0.931143\pi\)
\(674\) 7.60712 13.1759i 0.293015 0.507518i
\(675\) 0 0
\(676\) 5.89304 + 10.2070i 0.226655 + 0.392579i
\(677\) −5.91975 10.2533i −0.227514 0.394066i 0.729557 0.683921i \(-0.239727\pi\)
−0.957071 + 0.289854i \(0.906393\pi\)
\(678\) 0 0
\(679\) 16.1288 2.23793i 0.618966 0.0858840i
\(680\) 7.19620 + 12.4642i 0.275961 + 0.477979i
\(681\) 0 0
\(682\) 10.8341 0.414860
\(683\) −0.504725 0.874210i −0.0193128 0.0334507i 0.856207 0.516632i \(-0.172814\pi\)
−0.875520 + 0.483181i \(0.839481\pi\)
\(684\) 0 0
\(685\) −9.45201 −0.361143
\(686\) 10.4338 + 7.66477i 0.398366 + 0.292642i
\(687\) 0 0
\(688\) −10.9631 −0.417963
\(689\) 6.04862 10.4765i 0.230434 0.399123i
\(690\) 0 0
\(691\) 10.1696 + 17.6143i 0.386870 + 0.670078i 0.992027 0.126028i \(-0.0402230\pi\)
−0.605157 + 0.796106i \(0.706890\pi\)
\(692\) 24.2275 0.920990
\(693\) 0 0
\(694\) 3.36904 0.127887
\(695\) −3.28976 5.69803i −0.124788 0.216139i
\(696\) 0 0
\(697\) 9.43064 16.3344i 0.357211 0.618708i
\(698\) 4.57155 0.173036
\(699\) 0 0
\(700\) −3.96066 + 0.549558i −0.149699 + 0.0207713i
\(701\) 33.4009 1.26154 0.630768 0.775972i \(-0.282740\pi\)
0.630768 + 0.775972i \(0.282740\pi\)
\(702\) 0 0
\(703\) −3.27684 5.67565i −0.123588 0.214061i
\(704\) 5.59147 0.210737
\(705\) 0 0
\(706\) 0.123884 + 0.214573i 0.00466242 + 0.00807555i
\(707\) −2.51088 3.22541i −0.0944313 0.121304i
\(708\) 0 0
\(709\) 19.5316 + 33.8296i 0.733523 + 1.27050i 0.955368 + 0.295417i \(0.0954587\pi\)
−0.221845 + 0.975082i \(0.571208\pi\)
\(710\) −3.38025 5.85477i −0.126859 0.219725i
\(711\) 0 0
\(712\) −2.33187 + 4.03892i −0.0873906 + 0.151365i
\(713\) −13.9414 + 24.1473i −0.522111 + 0.904323i
\(714\) 0 0
\(715\) −8.75220 15.1593i −0.327314 0.566924i
\(716\) −13.9048 −0.519647
\(717\) 0 0
\(718\) −8.75691 −0.326805
\(719\) −1.55174 + 2.68769i −0.0578702 + 0.100234i −0.893509 0.449045i \(-0.851764\pi\)
0.835639 + 0.549279i \(0.185098\pi\)
\(720\) 0 0
\(721\) 19.1834 + 24.6425i 0.714427 + 0.917736i
\(722\) −6.43162 + 11.1399i −0.239360 + 0.414584i
\(723\) 0 0
\(724\) −4.35532 + 7.54364i −0.161864 + 0.280357i
\(725\) 3.95301 6.84682i 0.146811 0.254284i
\(726\) 0 0
\(727\) 21.5168 37.2683i 0.798015 1.38220i −0.122892 0.992420i \(-0.539217\pi\)
0.920907 0.389783i \(-0.127450\pi\)
\(728\) 11.1429 27.4411i 0.412984 1.01704i
\(729\) 0 0
\(730\) 4.89992 8.48691i 0.181354 0.314115i
\(731\) −49.1907 −1.81938
\(732\) 0 0
\(733\) 23.8253 0.880009 0.440004 0.897996i \(-0.354977\pi\)
0.440004 + 0.897996i \(0.354977\pi\)
\(734\) 4.52773 + 7.84226i 0.167122 + 0.289463i
\(735\) 0 0
\(736\) −20.1038 + 34.8207i −0.741034 + 1.28351i
\(737\) −27.9621 + 48.4317i −1.03000 + 1.78401i
\(738\) 0 0
\(739\) −0.522437 0.904887i −0.0192181 0.0332868i 0.856256 0.516551i \(-0.172784\pi\)
−0.875475 + 0.483264i \(0.839451\pi\)
\(740\) 6.39908 + 11.0835i 0.235235 + 0.407438i
\(741\) 0 0
\(742\) −4.85944 + 0.674267i −0.178396 + 0.0247531i
\(743\) −23.6637 40.9867i −0.868137 1.50366i −0.863899 0.503666i \(-0.831984\pi\)
−0.00423816 0.999991i \(-0.501349\pi\)
\(744\) 0 0
\(745\) −12.8568 −0.471036
\(746\) 3.62820 + 6.28422i 0.132838 + 0.230082i
\(747\) 0 0
\(748\) −34.0130 −1.24364
\(749\) −5.28196 + 0.732894i −0.192999 + 0.0267794i
\(750\) 0 0
\(751\) −44.4958 −1.62368 −0.811838 0.583883i \(-0.801533\pi\)
−0.811838 + 0.583883i \(0.801533\pi\)
\(752\) −2.18185 + 3.77907i −0.0795637 + 0.137808i
\(753\) 0 0
\(754\) 12.6024 + 21.8279i 0.458951 + 0.794926i
\(755\) −6.72795 −0.244855
\(756\) 0 0
\(757\) 15.8107 0.574650 0.287325 0.957833i \(-0.407234\pi\)
0.287325 + 0.957833i \(0.407234\pi\)
\(758\) 2.03543 + 3.52546i 0.0739301 + 0.128051i
\(759\) 0 0
\(760\) −0.949832 + 1.64516i −0.0344540 + 0.0596761i
\(761\) −28.8757 −1.04674 −0.523372 0.852104i \(-0.675326\pi\)
−0.523372 + 0.852104i \(0.675326\pi\)
\(762\) 0 0
\(763\) −0.384717 + 0.947425i −0.0139277 + 0.0342991i
\(764\) 3.48057 0.125923
\(765\) 0 0
\(766\) −9.12257 15.8008i −0.329612 0.570905i
\(767\) −30.7360 −1.10981
\(768\) 0 0
\(769\) −20.2272 35.0345i −0.729411 1.26338i −0.957133 0.289650i \(-0.906461\pi\)
0.227722 0.973726i \(-0.426872\pi\)
\(770\) −2.67081 + 6.57727i −0.0962492 + 0.237028i
\(771\) 0 0
\(772\) 15.0776 + 26.1152i 0.542656 + 0.939908i
\(773\) −0.958668 1.66046i −0.0344809 0.0597226i 0.848270 0.529564i \(-0.177644\pi\)
−0.882751 + 0.469841i \(0.844311\pi\)
\(774\) 0 0
\(775\) 2.01894 3.49691i 0.0725226 0.125613i
\(776\) −7.55340 + 13.0829i −0.271151 + 0.469648i
\(777\) 0 0
\(778\) −0.0560951 0.0971596i −0.00201111 0.00348334i
\(779\) 2.48952 0.0891962
\(780\) 0 0
\(781\) 37.1195 1.32824
\(782\) −14.1519 + 24.5118i −0.506071 + 0.876541i
\(783\) 0 0
\(784\) 8.80189 2.49055i 0.314353 0.0889481i
\(785\) −6.05582 + 10.4890i −0.216141 + 0.374368i
\(786\) 0 0
\(787\) 9.54909 16.5395i 0.340388 0.589570i −0.644117 0.764927i \(-0.722775\pi\)
0.984505 + 0.175358i \(0.0561082\pi\)
\(788\) −0.197352 + 0.341824i −0.00703038 + 0.0121770i
\(789\) 0 0
\(790\) 4.67866 8.10368i 0.166459 0.288316i
\(791\) −7.94190 + 19.5581i −0.282381 + 0.695407i
\(792\) 0 0
\(793\) 15.9910 27.6972i 0.567857 0.983558i
\(794\) 8.51672 0.302247
\(795\) 0 0
\(796\) −5.48600 −0.194446
\(797\) −20.4912 35.4919i −0.725837 1.25719i −0.958628 0.284660i \(-0.908119\pi\)
0.232791 0.972527i \(-0.425214\pi\)
\(798\) 0 0
\(799\) −9.78982 + 16.9565i −0.346339 + 0.599877i
\(800\) 2.91134 5.04260i 0.102932 0.178283i
\(801\) 0 0
\(802\) 6.58561 + 11.4066i 0.232546 + 0.402781i
\(803\) 26.9037 + 46.5987i 0.949413 + 1.64443i
\(804\) 0 0
\(805\) −11.2227 14.4164i −0.395549 0.508113i
\(806\) 6.43647 + 11.1483i 0.226715 + 0.392682i
\(807\) 0 0
\(808\) 3.79219 0.133409
\(809\) −19.3458 33.5079i −0.680163 1.17808i −0.974931 0.222508i \(-0.928576\pi\)
0.294768 0.955569i \(-0.404758\pi\)
\(810\) 0 0
\(811\) −48.0986 −1.68897 −0.844485 0.535580i \(-0.820093\pi\)
−0.844485 + 0.535580i \(0.820093\pi\)
\(812\) −11.8938 + 29.2903i −0.417391 + 1.02789i
\(813\) 0 0
\(814\) 22.7210 0.796369
\(815\) 8.11477 14.0552i 0.284248 0.492332i
\(816\) 0 0
\(817\) −3.24636 5.62286i −0.113576 0.196719i
\(818\) 1.03127 0.0360576
\(819\) 0 0
\(820\) −4.86158 −0.169774
\(821\) 10.8094 + 18.7224i 0.377251 + 0.653418i 0.990661 0.136347i \(-0.0435361\pi\)
−0.613410 + 0.789764i \(0.710203\pi\)
\(822\) 0 0
\(823\) −12.9732 + 22.4702i −0.452217 + 0.783263i −0.998523 0.0543227i \(-0.982700\pi\)
0.546307 + 0.837585i \(0.316033\pi\)
\(824\) −28.9728 −1.00931
\(825\) 0 0
\(826\) 7.65692 + 9.83589i 0.266418 + 0.342234i
\(827\) 45.3663 1.57754 0.788770 0.614689i \(-0.210718\pi\)
0.788770 + 0.614689i \(0.210718\pi\)
\(828\) 0 0
\(829\) −20.8415 36.0986i −0.723857 1.25376i −0.959443 0.281903i \(-0.909034\pi\)
0.235586 0.971853i \(-0.424299\pi\)
\(830\) 0.618696 0.0214753
\(831\) 0 0
\(832\) 3.32185 + 5.75362i 0.115165 + 0.199471i
\(833\) 39.4936 11.1749i 1.36837 0.387189i
\(834\) 0 0
\(835\) −8.60497 14.9042i −0.297787 0.515783i
\(836\) −2.24470 3.88793i −0.0776345 0.134467i
\(837\) 0 0
\(838\) −1.60702 + 2.78343i −0.0555135 + 0.0961521i
\(839\) 16.8414 29.1701i 0.581429 1.00706i −0.413881 0.910331i \(-0.635827\pi\)
0.995310 0.0967337i \(-0.0308395\pi\)
\(840\) 0 0
\(841\) −16.7526 29.0164i −0.577677 1.00057i
\(842\) −11.9715 −0.412564
\(843\) 0 0
\(844\) 6.80905 0.234377
\(845\) 3.89924 6.75368i 0.134138 0.232334i
\(846\) 0 0
\(847\) −6.06541 7.79148i −0.208410 0.267718i
\(848\) −1.73318 + 3.00195i −0.0595176 + 0.103087i
\(849\) 0 0
\(850\) 2.04942 3.54970i 0.0702946 0.121754i
\(851\) −29.2376 + 50.6410i −1.00225 + 1.73595i
\(852\) 0 0
\(853\) 25.3194 43.8545i 0.866920 1.50155i 0.00179188 0.999998i \(-0.499430\pi\)
0.865128 0.501551i \(-0.167237\pi\)
\(854\) −12.8471 + 1.78259i −0.439619 + 0.0609990i
\(855\) 0 0
\(856\) 2.47364 4.28447i 0.0845473 0.146440i
\(857\) −13.6216 −0.465306 −0.232653 0.972560i \(-0.574741\pi\)
−0.232653 + 0.972560i \(0.574741\pi\)
\(858\) 0 0
\(859\) 4.14348 0.141374 0.0706869 0.997499i \(-0.477481\pi\)
0.0706869 + 0.997499i \(0.477481\pi\)
\(860\) 6.33956 + 10.9804i 0.216177 + 0.374430i
\(861\) 0 0
\(862\) −6.12298 + 10.6053i −0.208549 + 0.361218i
\(863\) 12.8153 22.1968i 0.436238 0.755587i −0.561158 0.827709i \(-0.689644\pi\)
0.997396 + 0.0721222i \(0.0229772\pi\)
\(864\) 0 0
\(865\) −8.01528 13.8829i −0.272528 0.472032i
\(866\) 10.9900 + 19.0353i 0.373456 + 0.646845i
\(867\) 0 0
\(868\) −6.07459 + 14.9596i −0.206185 + 0.507762i
\(869\) 25.6889 + 44.4944i 0.871436 + 1.50937i
\(870\) 0 0
\(871\) −66.4483 −2.25152
\(872\) −0.474337 0.821577i −0.0160631 0.0278221i
\(873\) 0 0
\(874\) −3.73584 −0.126367
\(875\) 1.62523 + 2.08773i 0.0549428 + 0.0705782i
\(876\) 0 0
\(877\) 9.89011 0.333965 0.166983 0.985960i \(-0.446598\pi\)
0.166983 + 0.985960i \(0.446598\pi\)
\(878\) 14.0983 24.4189i 0.475793 0.824098i
\(879\) 0 0
\(880\) 2.50786 + 4.34375i 0.0845401 + 0.146428i
\(881\) 14.6040 0.492022 0.246011 0.969267i \(-0.420880\pi\)
0.246011 + 0.969267i \(0.420880\pi\)
\(882\) 0 0
\(883\) 15.8128 0.532142 0.266071 0.963953i \(-0.414274\pi\)
0.266071 + 0.963953i \(0.414274\pi\)
\(884\) −20.2069 34.9993i −0.679630 1.17715i
\(885\) 0 0
\(886\) −12.6298 + 21.8754i −0.424306 + 0.734920i
\(887\) 21.8316 0.733033 0.366517 0.930412i \(-0.380550\pi\)
0.366517 + 0.930412i \(0.380550\pi\)
\(888\) 0 0
\(889\) 3.08128 + 3.95813i 0.103343 + 0.132752i
\(890\) 1.32820 0.0445213
\(891\) 0 0
\(892\) 8.84626 + 15.3222i 0.296195 + 0.513024i
\(893\) −2.58433 −0.0864814
\(894\) 0 0
\(895\) 4.60018 + 7.96775i 0.153767 + 0.266333i
\(896\) −10.5783 + 26.0506i −0.353395 + 0.870290i
\(897\) 0 0
\(898\) −6.02281 10.4318i −0.200984 0.348114i
\(899\) −15.9618 27.6467i −0.532357 0.922069i
\(900\) 0 0
\(901\) −7.77668 + 13.4696i −0.259079 + 0.448737i
\(902\) −4.31545 + 7.47459i −0.143689 + 0.248877i
\(903\) 0 0
\(904\) −9.79197 16.9602i −0.325676 0.564088i
\(905\) 5.76356 0.191587
\(906\) 0 0
\(907\) −45.5220 −1.51153 −0.755767 0.654841i \(-0.772736\pi\)
−0.755767 + 0.654841i \(0.772736\pi\)
\(908\) −7.00893 + 12.1398i −0.232600 + 0.402874i
\(909\) 0 0
\(910\) −8.35471 + 1.15925i −0.276956 + 0.0384288i
\(911\) −23.4277 + 40.5779i −0.776193 + 1.34441i 0.157928 + 0.987451i \(0.449519\pi\)
−0.934121 + 0.356956i \(0.883815\pi\)
\(912\) 0 0
\(913\) −1.69852 + 2.94193i −0.0562129 + 0.0973635i
\(914\) 3.20614 5.55320i 0.106050 0.183684i
\(915\) 0 0
\(916\) 12.7756 22.1281i 0.422119 0.731132i
\(917\) −11.9274 15.3216i −0.393876 0.505964i
\(918\) 0 0
\(919\) −24.5539 + 42.5286i −0.809958 + 1.40289i 0.102935 + 0.994688i \(0.467177\pi\)
−0.912892 + 0.408200i \(0.866157\pi\)
\(920\) 16.9497 0.558816
\(921\) 0 0
\(922\) −11.1222 −0.366291
\(923\) 22.0525 + 38.1960i 0.725866 + 1.25724i
\(924\) 0 0
\(925\) 4.23407 7.33362i 0.139215 0.241128i
\(926\) 3.35644 5.81353i 0.110300 0.191045i
\(927\) 0 0
\(928\) −23.0172 39.8669i −0.755575 1.30869i
\(929\) 26.4882 + 45.8789i 0.869050 + 1.50524i 0.862969 + 0.505257i \(0.168602\pi\)
0.00608051 + 0.999982i \(0.498065\pi\)
\(930\) 0 0
\(931\) 3.88378 + 3.77692i 0.127286 + 0.123783i
\(932\) −5.29091 9.16413i −0.173310 0.300181i
\(933\) 0 0
\(934\) −18.3670 −0.600985
\(935\) 11.2527 + 19.4902i 0.368001 + 0.637397i
\(936\) 0 0
\(937\) 22.9340 0.749220 0.374610 0.927183i \(-0.377777\pi\)
0.374610 + 0.927183i \(0.377777\pi\)
\(938\) 16.5535 + 21.2643i 0.540492 + 0.694303i
\(939\) 0 0
\(940\) 5.04674 0.164606
\(941\) −15.4761 + 26.8054i −0.504507 + 0.873831i 0.495480 + 0.868619i \(0.334992\pi\)
−0.999986 + 0.00521168i \(0.998341\pi\)
\(942\) 0 0
\(943\) −11.1063 19.2368i −0.361672 0.626435i
\(944\) 8.80712 0.286648
\(945\) 0 0
\(946\) 22.5096 0.731851
\(947\) 6.42093 + 11.1214i 0.208652 + 0.361396i 0.951290 0.308297i \(-0.0997591\pi\)
−0.742638 + 0.669693i \(0.766426\pi\)
\(948\) 0 0
\(949\) −31.9667 + 55.3679i −1.03768 + 1.79732i
\(950\) 0.541010 0.0175527
\(951\) 0 0
\(952\) −14.3264 + 35.2809i −0.464321 + 1.14346i
\(953\) −47.3316 −1.53322 −0.766611 0.642112i \(-0.778058\pi\)
−0.766611 + 0.642112i \(0.778058\pi\)
\(954\) 0 0
\(955\) −1.15149 1.99444i −0.0372614 0.0645386i
\(956\) 24.1950 0.782521
\(957\) 0 0
\(958\) 2.56296 + 4.43917i 0.0828054 + 0.143423i
\(959\) −15.3617 19.7333i −0.496055 0.637221i
\(960\) 0 0
\(961\) 7.34773 + 12.7266i 0.237024 + 0.410537i
\(962\) 13.4984 + 23.3799i 0.435205 + 0.753797i
\(963\) 0 0
\(964\) −5.55763 + 9.62609i −0.178999 + 0.310036i
\(965\) 9.97640 17.2796i 0.321152 0.556251i
\(966\) 0 0
\(967\) −10.2481 17.7503i −0.329557 0.570810i 0.652867 0.757473i \(-0.273566\pi\)
−0.982424 + 0.186663i \(0.940233\pi\)
\(968\) 9.16061 0.294433
\(969\) 0 0
\(970\) 4.30230 0.138139
\(971\) −28.6673 + 49.6533i −0.919979 + 1.59345i −0.120534 + 0.992709i \(0.538461\pi\)
−0.799444 + 0.600740i \(0.794873\pi\)
\(972\) 0 0
\(973\) 6.54934 16.1288i 0.209962 0.517064i
\(974\) 11.8054 20.4476i 0.378271 0.655185i
\(975\) 0 0
\(976\) −4.58208 + 7.93640i −0.146669 + 0.254038i
\(977\) −4.45153 + 7.71028i −0.142417 + 0.246674i −0.928406 0.371567i \(-0.878821\pi\)
0.785989 + 0.618240i \(0.212154\pi\)
\(978\) 0 0
\(979\) −3.64633 + 6.31564i −0.116537 + 0.201849i
\(980\) −7.58432 7.37564i −0.242272 0.235606i
\(981\) 0 0
\(982\) 7.15531 12.3934i 0.228335 0.395488i
\(983\) −1.90661 −0.0608115 −0.0304058 0.999538i \(-0.509680\pi\)
−0.0304058 + 0.999538i \(0.509680\pi\)
\(984\) 0 0
\(985\) 0.261164 0.00832136
\(986\) −16.2028 28.0640i −0.516002 0.893741i
\(987\) 0 0
\(988\) 2.66712 4.61959i 0.0848524 0.146969i
\(989\) −28.9656 + 50.1699i −0.921053 + 1.59531i
\(990\) 0 0
\(991\) −4.29788 7.44415i −0.136527 0.236471i 0.789653 0.613554i \(-0.210261\pi\)
−0.926180 + 0.377083i \(0.876927\pi\)
\(992\) −11.7557 20.3614i −0.373243 0.646476i
\(993\) 0 0
\(994\) 6.72950 16.5724i 0.213447 0.525645i
\(995\) 1.81496 + 3.14360i 0.0575380 + 0.0996587i
\(996\) 0 0
\(997\) 43.4530 1.37617 0.688085 0.725630i \(-0.258451\pi\)
0.688085 + 0.725630i \(0.258451\pi\)
\(998\) 8.50730 + 14.7351i 0.269294 + 0.466431i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 945.2.k.c.856.11 36
3.2 odd 2 315.2.k.c.16.8 36
7.4 even 3 945.2.l.c.46.8 36
9.4 even 3 945.2.l.c.226.8 36
9.5 odd 6 315.2.l.c.121.11 yes 36
21.11 odd 6 315.2.l.c.151.11 yes 36
63.4 even 3 inner 945.2.k.c.361.11 36
63.32 odd 6 315.2.k.c.256.8 yes 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
315.2.k.c.16.8 36 3.2 odd 2
315.2.k.c.256.8 yes 36 63.32 odd 6
315.2.l.c.121.11 yes 36 9.5 odd 6
315.2.l.c.151.11 yes 36 21.11 odd 6
945.2.k.c.361.11 36 63.4 even 3 inner
945.2.k.c.856.11 36 1.1 even 1 trivial
945.2.l.c.46.8 36 7.4 even 3
945.2.l.c.226.8 36 9.4 even 3