Newspace parameters
Level: | \( N \) | \(=\) | \( 315 = 3^{2} \cdot 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 315.k (of order \(3\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(2.51528766367\) |
Analytic rank: | \(0\) |
Dimension: | \(36\) |
Relative dimension: | \(18\) over \(\Q(\zeta_{3})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
16.1 | −1.37850 | − | 2.38764i | −1.12222 | − | 1.31932i | −2.80055 | + | 4.85069i | 1.00000 | −1.60307 | + | 4.49816i | 2.15266 | + | 1.53820i | 9.92824 | −0.481224 | + | 2.96115i | −1.37850 | − | 2.38764i | ||||
16.2 | −1.29282 | − | 2.23923i | 1.72292 | − | 0.177629i | −2.34278 | + | 4.05782i | 1.00000 | −2.62518 | − | 3.62838i | −2.13970 | − | 1.55618i | 6.94392 | 2.93690 | − | 0.612079i | −1.29282 | − | 2.23923i | ||||
16.3 | −1.04330 | − | 1.80705i | 0.853418 | + | 1.50721i | −1.17696 | + | 2.03855i | 1.00000 | 1.83323 | − | 3.11464i | 2.35024 | − | 1.21507i | 0.738471 | −1.54336 | + | 2.57256i | −1.04330 | − | 1.80705i | ||||
16.4 | −0.949927 | − | 1.64532i | −1.72850 | + | 0.110854i | −0.804724 | + | 1.39382i | 1.00000 | 1.82434 | + | 2.73864i | 0.880383 | − | 2.49498i | −0.741992 | 2.97542 | − | 0.383223i | −0.949927 | − | 1.64532i | ||||
16.5 | −0.926279 | − | 1.60436i | −0.957532 | + | 1.44331i | −0.715985 | + | 1.24012i | 1.00000 | 3.20253 | + | 0.199324i | −2.45383 | + | 0.989310i | −1.05231 | −1.16627 | − | 2.76402i | −0.926279 | − | 1.60436i | ||||
16.6 | −0.750300 | − | 1.29956i | −0.590164 | − | 1.62841i | −0.125900 | + | 0.218065i | 1.00000 | −1.67341 | + | 1.98874i | −2.32993 | + | 1.25356i | −2.62335 | −2.30341 | + | 1.92205i | −0.750300 | − | 1.29956i | ||||
16.7 | −0.415616 | − | 0.719867i | 1.70907 | + | 0.281183i | 0.654527 | − | 1.13367i | 1.00000 | −0.507903 | − | 1.34717i | 0.762251 | + | 2.53357i | −2.75059 | 2.84187 | + | 0.961126i | −0.415616 | − | 0.719867i | ||||
16.8 | −0.349525 | − | 0.605394i | 1.42094 | − | 0.990413i | 0.755665 | − | 1.30885i | 1.00000 | −1.09625 | − | 0.514057i | −1.62523 | − | 2.08773i | −2.45459 | 1.03816 | − | 2.81464i | −0.349525 | − | 0.605394i | ||||
16.9 | −0.0127903 | − | 0.0221535i | −1.71905 | − | 0.211800i | 0.999673 | − | 1.73148i | 1.00000 | 0.0172951 | + | 0.0407920i | 0.170066 | + | 2.64028i | −0.102306 | 2.91028 | + | 0.728190i | −0.0127903 | − | 0.0221535i | ||||
16.10 | 0.129832 | + | 0.224875i | −0.458568 | − | 1.67024i | 0.966288 | − | 1.67366i | 1.00000 | 0.316059 | − | 0.319971i | 2.52961 | − | 0.775284i | 1.02114 | −2.57943 | + | 1.53184i | 0.129832 | + | 0.224875i | ||||
16.11 | 0.195497 | + | 0.338610i | 0.811590 | + | 1.53014i | 0.923562 | − | 1.59966i | 1.00000 | −0.359457 | + | 0.573950i | 0.0590728 | − | 2.64509i | 1.50420 | −1.68264 | + | 2.48369i | 0.195497 | + | 0.338610i | ||||
16.12 | 0.588830 | + | 1.01988i | −0.114571 | + | 1.72826i | 0.306558 | − | 0.530973i | 1.00000 | −1.83009 | + | 0.900802i | −1.15510 | + | 2.38028i | 3.07736 | −2.97375 | − | 0.396015i | 0.588830 | + | 1.01988i | ||||
16.13 | 0.712894 | + | 1.23477i | 1.38205 | − | 1.04400i | −0.0164351 | + | 0.0284664i | 1.00000 | 2.27435 | + | 0.962251i | −0.526228 | + | 2.59289i | 2.80471 | 0.820129 | − | 2.88572i | 0.712894 | + | 1.23477i | ||||
16.14 | 0.792206 | + | 1.37214i | −1.71008 | + | 0.274985i | −0.255182 | + | 0.441987i | 1.00000 | −1.73206 | − | 2.12863i | 2.64012 | − | 0.172564i | 2.36020 | 2.84877 | − | 0.940495i | 0.792206 | + | 1.37214i | ||||
16.15 | 0.845194 | + | 1.46392i | 0.216636 | − | 1.71845i | −0.428706 | + | 0.742540i | 1.00000 | 2.69877 | − | 1.13529i | −2.15586 | − | 1.53371i | 1.93142 | −2.90614 | − | 0.744556i | 0.845194 | + | 1.46392i | ||||
16.16 | 1.17969 | + | 2.04328i | 1.66846 | + | 0.465033i | −1.78334 | + | 3.08884i | 1.00000 | 1.01807 | + | 3.95772i | −0.0799028 | − | 2.64454i | −3.69640 | 2.56749 | + | 1.55177i | 1.17969 | + | 2.04328i | ||||
16.17 | 1.32610 | + | 2.29687i | −0.540247 | + | 1.64564i | −2.51707 | + | 4.35969i | 1.00000 | −4.49624 | + | 0.941405i | 2.58884 | + | 0.545800i | −8.04712 | −2.41627 | − | 1.77810i | 1.32610 | + | 2.29687i | ||||
16.18 | 1.34882 | + | 2.33623i | −1.34415 | − | 1.09237i | −2.63865 | + | 4.57028i | 1.00000 | 0.739006 | − | 4.61365i | −2.16746 | + | 1.51728i | −8.84100 | 0.613465 | + | 2.93661i | 1.34882 | + | 2.33623i | ||||
256.1 | −1.37850 | + | 2.38764i | −1.12222 | + | 1.31932i | −2.80055 | − | 4.85069i | 1.00000 | −1.60307 | − | 4.49816i | 2.15266 | − | 1.53820i | 9.92824 | −0.481224 | − | 2.96115i | −1.37850 | + | 2.38764i | ||||
256.2 | −1.29282 | + | 2.23923i | 1.72292 | + | 0.177629i | −2.34278 | − | 4.05782i | 1.00000 | −2.62518 | + | 3.62838i | −2.13970 | + | 1.55618i | 6.94392 | 2.93690 | + | 0.612079i | −1.29282 | + | 2.23923i | ||||
See all 36 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
63.g | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 315.2.k.c | ✓ | 36 |
3.b | odd | 2 | 1 | 945.2.k.c | 36 | ||
7.c | even | 3 | 1 | 315.2.l.c | yes | 36 | |
9.c | even | 3 | 1 | 315.2.l.c | yes | 36 | |
9.d | odd | 6 | 1 | 945.2.l.c | 36 | ||
21.h | odd | 6 | 1 | 945.2.l.c | 36 | ||
63.g | even | 3 | 1 | inner | 315.2.k.c | ✓ | 36 |
63.n | odd | 6 | 1 | 945.2.k.c | 36 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
315.2.k.c | ✓ | 36 | 1.a | even | 1 | 1 | trivial |
315.2.k.c | ✓ | 36 | 63.g | even | 3 | 1 | inner |
315.2.l.c | yes | 36 | 7.c | even | 3 | 1 | |
315.2.l.c | yes | 36 | 9.c | even | 3 | 1 | |
945.2.k.c | 36 | 3.b | odd | 2 | 1 | ||
945.2.k.c | 36 | 63.n | odd | 6 | 1 | ||
945.2.l.c | 36 | 9.d | odd | 6 | 1 | ||
945.2.l.c | 36 | 21.h | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{36} + 29 T_{2}^{34} + 497 T_{2}^{32} - 2 T_{2}^{31} + 5658 T_{2}^{30} - 74 T_{2}^{29} + 47976 T_{2}^{28} + \cdots + 81 \)
acting on \(S_{2}^{\mathrm{new}}(315, [\chi])\).