Properties

Label 312.6.q.d.217.8
Level $312$
Weight $6$
Character 312.217
Analytic conductor $50.040$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [312,6,Mod(217,312)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("312.217"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(312, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 4])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 312 = 2^{3} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 312.q (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,90] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(50.0397517816\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 45625 x^{18} - 258130 x^{17} + 874261585 x^{16} + 8836032648 x^{15} - 9129028858830 x^{14} + \cdots + 26\!\cdots\!43 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{44}\cdot 3\cdot 13 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 217.8
Root \(50.0867 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 312.217
Dual form 312.6.q.d.289.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(4.50000 - 7.79423i) q^{3} +49.5867 q^{5} +(-115.331 - 199.759i) q^{7} +(-40.5000 - 70.1481i) q^{9} +(202.563 - 350.850i) q^{11} +(599.553 + 108.761i) q^{13} +(223.140 - 386.490i) q^{15} +(116.089 + 201.071i) q^{17} +(-174.248 - 301.807i) q^{19} -2075.96 q^{21} +(2021.35 - 3501.09i) q^{23} -666.156 q^{25} -729.000 q^{27} +(-3717.32 + 6438.59i) q^{29} -7157.59 q^{31} +(-1823.07 - 3157.65i) q^{33} +(-5718.89 - 9905.41i) q^{35} +(-49.9573 + 86.5286i) q^{37} +(3545.70 - 4183.63i) q^{39} +(7005.95 - 12134.7i) q^{41} +(7341.52 + 12715.9i) q^{43} +(-2008.26 - 3478.41i) q^{45} +12657.0 q^{47} +(-18199.0 + 31521.6i) q^{49} +2089.60 q^{51} +14624.1 q^{53} +(10044.4 - 17397.5i) q^{55} -3136.47 q^{57} +(-18042.8 - 31251.0i) q^{59} +(-21691.6 - 37570.9i) q^{61} +(-9341.82 + 16180.5i) q^{63} +(29729.9 + 5393.09i) q^{65} +(-14136.4 + 24485.0i) q^{67} +(-18192.2 - 31509.8i) q^{69} +(-7539.63 - 13059.0i) q^{71} +25512.0 q^{73} +(-2997.70 + 5192.17i) q^{75} -93447.3 q^{77} -67991.9 q^{79} +(-3280.50 + 5681.99i) q^{81} -120312. q^{83} +(5756.46 + 9970.47i) q^{85} +(33455.9 + 57947.3i) q^{87} +(11401.5 - 19748.0i) q^{89} +(-47421.2 - 132310. i) q^{91} +(-32209.2 + 55787.9i) q^{93} +(-8640.41 - 14965.6i) q^{95} +(-73278.9 - 126923. i) q^{97} -32815.2 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 90 q^{3} - 10 q^{5} - 9 q^{7} - 810 q^{9} + 72 q^{11} + 182 q^{13} - 45 q^{15} + 937 q^{17} + 566 q^{19} - 162 q^{21} - 324 q^{23} + 28770 q^{25} - 14580 q^{27} - 5599 q^{29} - 5342 q^{31} - 648 q^{33}+ \cdots - 11664 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/312\mathbb{Z}\right)^\times\).

\(n\) \(79\) \(145\) \(157\) \(209\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 4.50000 7.79423i 0.288675 0.500000i
\(4\) 0 0
\(5\) 49.5867 0.887034 0.443517 0.896266i \(-0.353731\pi\)
0.443517 + 0.896266i \(0.353731\pi\)
\(6\) 0 0
\(7\) −115.331 199.759i −0.889613 1.54086i −0.840333 0.542071i \(-0.817640\pi\)
−0.0492806 0.998785i \(-0.515693\pi\)
\(8\) 0 0
\(9\) −40.5000 70.1481i −0.166667 0.288675i
\(10\) 0 0
\(11\) 202.563 350.850i 0.504753 0.874257i −0.495232 0.868761i \(-0.664917\pi\)
0.999985 0.00549658i \(-0.00174962\pi\)
\(12\) 0 0
\(13\) 599.553 + 108.761i 0.983942 + 0.178490i
\(14\) 0 0
\(15\) 223.140 386.490i 0.256065 0.443517i
\(16\) 0 0
\(17\) 116.089 + 201.071i 0.0974243 + 0.168744i 0.910618 0.413250i \(-0.135606\pi\)
−0.813194 + 0.581993i \(0.802273\pi\)
\(18\) 0 0
\(19\) −174.248 301.807i −0.110735 0.191799i 0.805332 0.592824i \(-0.201987\pi\)
−0.916067 + 0.401026i \(0.868654\pi\)
\(20\) 0 0
\(21\) −2075.96 −1.02724
\(22\) 0 0
\(23\) 2021.35 3501.09i 0.796751 1.38001i −0.124970 0.992161i \(-0.539883\pi\)
0.921721 0.387853i \(-0.126783\pi\)
\(24\) 0 0
\(25\) −666.156 −0.213170
\(26\) 0 0
\(27\) −729.000 −0.192450
\(28\) 0 0
\(29\) −3717.32 + 6438.59i −0.820796 + 1.42166i 0.0842937 + 0.996441i \(0.473137\pi\)
−0.905090 + 0.425220i \(0.860197\pi\)
\(30\) 0 0
\(31\) −7157.59 −1.33771 −0.668856 0.743392i \(-0.733216\pi\)
−0.668856 + 0.743392i \(0.733216\pi\)
\(32\) 0 0
\(33\) −1823.07 3157.65i −0.291419 0.504753i
\(34\) 0 0
\(35\) −5718.89 9905.41i −0.789118 1.36679i
\(36\) 0 0
\(37\) −49.9573 + 86.5286i −0.00599922 + 0.0103910i −0.869009 0.494796i \(-0.835243\pi\)
0.863010 + 0.505186i \(0.168576\pi\)
\(38\) 0 0
\(39\) 3545.70 4183.63i 0.373285 0.440445i
\(40\) 0 0
\(41\) 7005.95 12134.7i 0.650890 1.12737i −0.332017 0.943273i \(-0.607729\pi\)
0.982907 0.184101i \(-0.0589374\pi\)
\(42\) 0 0
\(43\) 7341.52 + 12715.9i 0.605501 + 1.04876i 0.991972 + 0.126457i \(0.0403604\pi\)
−0.386471 + 0.922301i \(0.626306\pi\)
\(44\) 0 0
\(45\) −2008.26 3478.41i −0.147839 0.256065i
\(46\) 0 0
\(47\) 12657.0 0.835766 0.417883 0.908501i \(-0.362772\pi\)
0.417883 + 0.908501i \(0.362772\pi\)
\(48\) 0 0
\(49\) −18199.0 + 31521.6i −1.08282 + 1.87551i
\(50\) 0 0
\(51\) 2089.60 0.112496
\(52\) 0 0
\(53\) 14624.1 0.715123 0.357561 0.933890i \(-0.383608\pi\)
0.357561 + 0.933890i \(0.383608\pi\)
\(54\) 0 0
\(55\) 10044.4 17397.5i 0.447733 0.775496i
\(56\) 0 0
\(57\) −3136.47 −0.127866
\(58\) 0 0
\(59\) −18042.8 31251.0i −0.674797 1.16878i −0.976528 0.215389i \(-0.930898\pi\)
0.301732 0.953393i \(-0.402435\pi\)
\(60\) 0 0
\(61\) −21691.6 37570.9i −0.746391 1.29279i −0.949542 0.313640i \(-0.898451\pi\)
0.203150 0.979148i \(-0.434882\pi\)
\(62\) 0 0
\(63\) −9341.82 + 16180.5i −0.296538 + 0.513619i
\(64\) 0 0
\(65\) 29729.9 + 5393.09i 0.872790 + 0.158327i
\(66\) 0 0
\(67\) −14136.4 + 24485.0i −0.384727 + 0.666366i −0.991731 0.128332i \(-0.959038\pi\)
0.607005 + 0.794698i \(0.292371\pi\)
\(68\) 0 0
\(69\) −18192.2 31509.8i −0.460005 0.796751i
\(70\) 0 0
\(71\) −7539.63 13059.0i −0.177502 0.307443i 0.763522 0.645782i \(-0.223468\pi\)
−0.941024 + 0.338339i \(0.890135\pi\)
\(72\) 0 0
\(73\) 25512.0 0.560321 0.280160 0.959953i \(-0.409612\pi\)
0.280160 + 0.959953i \(0.409612\pi\)
\(74\) 0 0
\(75\) −2997.70 + 5192.17i −0.0615369 + 0.106585i
\(76\) 0 0
\(77\) −93447.3 −1.79614
\(78\) 0 0
\(79\) −67991.9 −1.22572 −0.612858 0.790193i \(-0.709980\pi\)
−0.612858 + 0.790193i \(0.709980\pi\)
\(80\) 0 0
\(81\) −3280.50 + 5681.99i −0.0555556 + 0.0962250i
\(82\) 0 0
\(83\) −120312. −1.91696 −0.958479 0.285164i \(-0.907952\pi\)
−0.958479 + 0.285164i \(0.907952\pi\)
\(84\) 0 0
\(85\) 5756.46 + 9970.47i 0.0864187 + 0.149682i
\(86\) 0 0
\(87\) 33455.9 + 57947.3i 0.473887 + 0.820796i
\(88\) 0 0
\(89\) 11401.5 19748.0i 0.152577 0.264271i −0.779597 0.626281i \(-0.784576\pi\)
0.932174 + 0.362010i \(0.117910\pi\)
\(90\) 0 0
\(91\) −47421.2 132310.i −0.600300 1.67490i
\(92\) 0 0
\(93\) −32209.2 + 55787.9i −0.386164 + 0.668856i
\(94\) 0 0
\(95\) −8640.41 14965.6i −0.0982258 0.170132i
\(96\) 0 0
\(97\) −73278.9 126923.i −0.790769 1.36965i −0.925491 0.378769i \(-0.876347\pi\)
0.134722 0.990883i \(-0.456986\pi\)
\(98\) 0 0
\(99\) −32815.2 −0.336502
\(100\) 0 0
\(101\) 2743.48 4751.84i 0.0267607 0.0463509i −0.852335 0.522996i \(-0.824814\pi\)
0.879096 + 0.476645i \(0.158147\pi\)
\(102\) 0 0
\(103\) 117634. 1.09255 0.546274 0.837607i \(-0.316046\pi\)
0.546274 + 0.837607i \(0.316046\pi\)
\(104\) 0 0
\(105\) −102940. −0.911195
\(106\) 0 0
\(107\) −61292.0 + 106161.i −0.517540 + 0.896406i 0.482252 + 0.876033i \(0.339819\pi\)
−0.999792 + 0.0203737i \(0.993514\pi\)
\(108\) 0 0
\(109\) −89811.5 −0.724045 −0.362023 0.932169i \(-0.617914\pi\)
−0.362023 + 0.932169i \(0.617914\pi\)
\(110\) 0 0
\(111\) 449.616 + 778.758i 0.00346365 + 0.00599922i
\(112\) 0 0
\(113\) 113200. + 196069.i 0.833972 + 1.44448i 0.894865 + 0.446337i \(0.147272\pi\)
−0.0608934 + 0.998144i \(0.519395\pi\)
\(114\) 0 0
\(115\) 100232. 173608.i 0.706746 1.22412i
\(116\) 0 0
\(117\) −16652.5 46462.3i −0.112465 0.313788i
\(118\) 0 0
\(119\) 26777.3 46379.6i 0.173340 0.300234i
\(120\) 0 0
\(121\) −1538.10 2664.08i −0.00955042 0.0165418i
\(122\) 0 0
\(123\) −63053.6 109212.i −0.375792 0.650890i
\(124\) 0 0
\(125\) −187991. −1.07612
\(126\) 0 0
\(127\) 179657. 311176.i 0.988406 1.71197i 0.362713 0.931901i \(-0.381850\pi\)
0.625693 0.780069i \(-0.284816\pi\)
\(128\) 0 0
\(129\) 132147. 0.699172
\(130\) 0 0
\(131\) 115715. 0.589130 0.294565 0.955632i \(-0.404825\pi\)
0.294565 + 0.955632i \(0.404825\pi\)
\(132\) 0 0
\(133\) −40192.5 + 69615.5i −0.197023 + 0.341253i
\(134\) 0 0
\(135\) −36148.7 −0.170710
\(136\) 0 0
\(137\) −144019. 249448.i −0.655569 1.13548i −0.981751 0.190172i \(-0.939096\pi\)
0.326182 0.945307i \(-0.394238\pi\)
\(138\) 0 0
\(139\) −30707.0 53186.1i −0.134803 0.233486i 0.790719 0.612179i \(-0.209707\pi\)
−0.925522 + 0.378693i \(0.876374\pi\)
\(140\) 0 0
\(141\) 56956.3 98651.2i 0.241265 0.417883i
\(142\) 0 0
\(143\) 159606. 188322.i 0.652693 0.770125i
\(144\) 0 0
\(145\) −184330. + 319269.i −0.728075 + 1.26106i
\(146\) 0 0
\(147\) 163791. + 283695.i 0.625169 + 1.08282i
\(148\) 0 0
\(149\) −33587.8 58175.7i −0.123941 0.214672i 0.797377 0.603481i \(-0.206220\pi\)
−0.921319 + 0.388809i \(0.872887\pi\)
\(150\) 0 0
\(151\) 265159. 0.946376 0.473188 0.880962i \(-0.343103\pi\)
0.473188 + 0.880962i \(0.343103\pi\)
\(152\) 0 0
\(153\) 9403.18 16286.8i 0.0324748 0.0562480i
\(154\) 0 0
\(155\) −354921. −1.18660
\(156\) 0 0
\(157\) −64807.3 −0.209834 −0.104917 0.994481i \(-0.533458\pi\)
−0.104917 + 0.994481i \(0.533458\pi\)
\(158\) 0 0
\(159\) 65808.6 113984.i 0.206438 0.357561i
\(160\) 0 0
\(161\) −932500. −2.83520
\(162\) 0 0
\(163\) 166052. + 287610.i 0.489524 + 0.847881i 0.999927 0.0120545i \(-0.00383717\pi\)
−0.510403 + 0.859935i \(0.670504\pi\)
\(164\) 0 0
\(165\) −90400.0 156577.i −0.258499 0.447733i
\(166\) 0 0
\(167\) 56447.8 97770.5i 0.156623 0.271279i −0.777026 0.629469i \(-0.783272\pi\)
0.933649 + 0.358190i \(0.116606\pi\)
\(168\) 0 0
\(169\) 347635. + 130416.i 0.936283 + 0.351248i
\(170\) 0 0
\(171\) −14114.1 + 24446.4i −0.0369117 + 0.0639329i
\(172\) 0 0
\(173\) 84494.6 + 146349.i 0.214642 + 0.371770i 0.953162 0.302461i \(-0.0978083\pi\)
−0.738520 + 0.674232i \(0.764475\pi\)
\(174\) 0 0
\(175\) 76828.5 + 133071.i 0.189639 + 0.328464i
\(176\) 0 0
\(177\) −324770. −0.779188
\(178\) 0 0
\(179\) −46275.6 + 80151.6i −0.107949 + 0.186973i −0.914939 0.403592i \(-0.867762\pi\)
0.806990 + 0.590565i \(0.201095\pi\)
\(180\) 0 0
\(181\) −405706. −0.920482 −0.460241 0.887794i \(-0.652237\pi\)
−0.460241 + 0.887794i \(0.652237\pi\)
\(182\) 0 0
\(183\) −390448. −0.861859
\(184\) 0 0
\(185\) −2477.22 + 4290.67i −0.00532152 + 0.00921714i
\(186\) 0 0
\(187\) 94061.1 0.196701
\(188\) 0 0
\(189\) 84076.4 + 145625.i 0.171206 + 0.296538i
\(190\) 0 0
\(191\) 116450. + 201697.i 0.230969 + 0.400051i 0.958094 0.286455i \(-0.0924769\pi\)
−0.727124 + 0.686506i \(0.759144\pi\)
\(192\) 0 0
\(193\) 350194. 606553.i 0.676730 1.17213i −0.299231 0.954181i \(-0.596730\pi\)
0.975960 0.217949i \(-0.0699367\pi\)
\(194\) 0 0
\(195\) 175819. 207453.i 0.331116 0.390690i
\(196\) 0 0
\(197\) −254820. + 441361.i −0.467808 + 0.810267i −0.999323 0.0367819i \(-0.988289\pi\)
0.531516 + 0.847048i \(0.321623\pi\)
\(198\) 0 0
\(199\) 493479. + 854731.i 0.883357 + 1.53002i 0.847586 + 0.530658i \(0.178055\pi\)
0.0357707 + 0.999360i \(0.488611\pi\)
\(200\) 0 0
\(201\) 127228. + 220365.i 0.222122 + 0.384727i
\(202\) 0 0
\(203\) 1.71489e6 2.92077
\(204\) 0 0
\(205\) 347402. 601719.i 0.577362 1.00002i
\(206\) 0 0
\(207\) −327459. −0.531168
\(208\) 0 0
\(209\) −141185. −0.223575
\(210\) 0 0
\(211\) 350051. 606305.i 0.541283 0.937530i −0.457547 0.889185i \(-0.651272\pi\)
0.998831 0.0483451i \(-0.0153947\pi\)
\(212\) 0 0
\(213\) −135713. −0.204962
\(214\) 0 0
\(215\) 364042. + 630539.i 0.537100 + 0.930284i
\(216\) 0 0
\(217\) 825493. + 1.42980e6i 1.19005 + 2.06122i
\(218\) 0 0
\(219\) 114804. 198846.i 0.161751 0.280160i
\(220\) 0 0
\(221\) 47732.6 + 133179.i 0.0657408 + 0.183423i
\(222\) 0 0
\(223\) 286906. 496935.i 0.386346 0.669171i −0.605609 0.795763i \(-0.707070\pi\)
0.991955 + 0.126591i \(0.0404036\pi\)
\(224\) 0 0
\(225\) 26979.3 + 46729.5i 0.0355283 + 0.0615369i
\(226\) 0 0
\(227\) −296780. 514038.i −0.382270 0.662110i 0.609117 0.793081i \(-0.291524\pi\)
−0.991386 + 0.130970i \(0.958191\pi\)
\(228\) 0 0
\(229\) 777766. 0.980077 0.490038 0.871701i \(-0.336983\pi\)
0.490038 + 0.871701i \(0.336983\pi\)
\(230\) 0 0
\(231\) −420513. + 728350.i −0.518501 + 0.898069i
\(232\) 0 0
\(233\) 292792. 0.353321 0.176660 0.984272i \(-0.443471\pi\)
0.176660 + 0.984272i \(0.443471\pi\)
\(234\) 0 0
\(235\) 627617. 0.741353
\(236\) 0 0
\(237\) −305964. + 529945.i −0.353834 + 0.612858i
\(238\) 0 0
\(239\) 897569. 1.01642 0.508210 0.861233i \(-0.330307\pi\)
0.508210 + 0.861233i \(0.330307\pi\)
\(240\) 0 0
\(241\) 320248. + 554686.i 0.355176 + 0.615183i 0.987148 0.159808i \(-0.0510876\pi\)
−0.631972 + 0.774991i \(0.717754\pi\)
\(242\) 0 0
\(243\) 29524.5 + 51137.9i 0.0320750 + 0.0555556i
\(244\) 0 0
\(245\) −902430. + 1.56306e6i −0.960502 + 1.66364i
\(246\) 0 0
\(247\) −71646.5 199901.i −0.0747227 0.208484i
\(248\) 0 0
\(249\) −541402. + 937737.i −0.553378 + 0.958479i
\(250\) 0 0
\(251\) −136563. 236534.i −0.136820 0.236978i 0.789471 0.613787i \(-0.210355\pi\)
−0.926291 + 0.376809i \(0.877021\pi\)
\(252\) 0 0
\(253\) −818903. 1.41838e6i −0.804325 1.39313i
\(254\) 0 0
\(255\) 103616. 0.0997877
\(256\) 0 0
\(257\) 29930.6 51841.3i 0.0282672 0.0489602i −0.851546 0.524280i \(-0.824334\pi\)
0.879813 + 0.475320i \(0.157668\pi\)
\(258\) 0 0
\(259\) 23046.5 0.0213480
\(260\) 0 0
\(261\) 602206. 0.547198
\(262\) 0 0
\(263\) 170710. 295679.i 0.152185 0.263591i −0.779846 0.625972i \(-0.784703\pi\)
0.932030 + 0.362380i \(0.118036\pi\)
\(264\) 0 0
\(265\) 725163. 0.634338
\(266\) 0 0
\(267\) −102614. 177732.i −0.0880903 0.152577i
\(268\) 0 0
\(269\) 978681. + 1.69513e6i 0.824633 + 1.42831i 0.902200 + 0.431319i \(0.141952\pi\)
−0.0775667 + 0.996987i \(0.524715\pi\)
\(270\) 0 0
\(271\) −413425. + 716073.i −0.341959 + 0.592290i −0.984796 0.173713i \(-0.944424\pi\)
0.642838 + 0.766002i \(0.277757\pi\)
\(272\) 0 0
\(273\) −1.24465e6 225783.i −1.01074 0.183352i
\(274\) 0 0
\(275\) −134939. + 233721.i −0.107598 + 0.186365i
\(276\) 0 0
\(277\) 226361. + 392069.i 0.177256 + 0.307017i 0.940940 0.338574i \(-0.109944\pi\)
−0.763683 + 0.645591i \(0.776611\pi\)
\(278\) 0 0
\(279\) 289882. + 502091.i 0.222952 + 0.386164i
\(280\) 0 0
\(281\) 889133. 0.671740 0.335870 0.941908i \(-0.390970\pi\)
0.335870 + 0.941908i \(0.390970\pi\)
\(282\) 0 0
\(283\) 993652. 1.72106e6i 0.737510 1.27741i −0.216103 0.976371i \(-0.569335\pi\)
0.953613 0.301035i \(-0.0973320\pi\)
\(284\) 0 0
\(285\) −155527. −0.113421
\(286\) 0 0
\(287\) −3.23202e6 −2.31616
\(288\) 0 0
\(289\) 682975. 1.18295e6i 0.481017 0.833146i
\(290\) 0 0
\(291\) −1.31902e6 −0.913102
\(292\) 0 0
\(293\) 950996. + 1.64717e6i 0.647157 + 1.12091i 0.983799 + 0.179276i \(0.0573755\pi\)
−0.336642 + 0.941633i \(0.609291\pi\)
\(294\) 0 0
\(295\) −894681. 1.54963e6i −0.598568 1.03675i
\(296\) 0 0
\(297\) −147668. + 255769.i −0.0971397 + 0.168251i
\(298\) 0 0
\(299\) 1.59269e6 1.87924e6i 1.03028 1.21564i
\(300\) 0 0
\(301\) 1.69341e6 2.93307e6i 1.07732 1.86598i
\(302\) 0 0
\(303\) −24691.3 42766.6i −0.0154503 0.0267607i
\(304\) 0 0
\(305\) −1.07561e6 1.86302e6i −0.662075 1.14675i
\(306\) 0 0
\(307\) 1.24800e6 0.755733 0.377866 0.925860i \(-0.376658\pi\)
0.377866 + 0.925860i \(0.376658\pi\)
\(308\) 0 0
\(309\) 529353. 916867.i 0.315391 0.546274i
\(310\) 0 0
\(311\) −418523. −0.245368 −0.122684 0.992446i \(-0.539150\pi\)
−0.122684 + 0.992446i \(0.539150\pi\)
\(312\) 0 0
\(313\) −1.44250e6 −0.832252 −0.416126 0.909307i \(-0.636612\pi\)
−0.416126 + 0.909307i \(0.636612\pi\)
\(314\) 0 0
\(315\) −463230. + 802338.i −0.263039 + 0.455597i
\(316\) 0 0
\(317\) −796659. −0.445271 −0.222636 0.974902i \(-0.571466\pi\)
−0.222636 + 0.974902i \(0.571466\pi\)
\(318\) 0 0
\(319\) 1.50599e6 + 2.60844e6i 0.828598 + 1.43517i
\(320\) 0 0
\(321\) 551628. + 955447.i 0.298802 + 0.517540i
\(322\) 0 0
\(323\) 40456.5 70072.8i 0.0215766 0.0373717i
\(324\) 0 0
\(325\) −399396. 72451.6i −0.209747 0.0380487i
\(326\) 0 0
\(327\) −404152. + 700011.i −0.209014 + 0.362023i
\(328\) 0 0
\(329\) −1.45974e6 2.52835e6i −0.743509 1.28779i
\(330\) 0 0
\(331\) 1.25187e6 + 2.16831e6i 0.628044 + 1.08780i 0.987944 + 0.154813i \(0.0494775\pi\)
−0.359900 + 0.932991i \(0.617189\pi\)
\(332\) 0 0
\(333\) 8093.09 0.00399948
\(334\) 0 0
\(335\) −700978. + 1.21413e6i −0.341266 + 0.591090i
\(336\) 0 0
\(337\) −317710. −0.152390 −0.0761950 0.997093i \(-0.524277\pi\)
−0.0761950 + 0.997093i \(0.524277\pi\)
\(338\) 0 0
\(339\) 2.03760e6 0.962987
\(340\) 0 0
\(341\) −1.44986e6 + 2.51124e6i −0.675214 + 1.16950i
\(342\) 0 0
\(343\) 4.51892e6 2.07395
\(344\) 0 0
\(345\) −902091. 1.56247e6i −0.408040 0.706746i
\(346\) 0 0
\(347\) −827156. 1.43268e6i −0.368777 0.638740i 0.620598 0.784129i \(-0.286890\pi\)
−0.989375 + 0.145389i \(0.953557\pi\)
\(348\) 0 0
\(349\) 629445. 1.09023e6i 0.276627 0.479131i −0.693918 0.720054i \(-0.744117\pi\)
0.970544 + 0.240923i \(0.0774502\pi\)
\(350\) 0 0
\(351\) −437074. 79286.6i −0.189360 0.0343504i
\(352\) 0 0
\(353\) −522756. + 905439.i −0.223286 + 0.386743i −0.955804 0.294005i \(-0.905012\pi\)
0.732518 + 0.680748i \(0.238345\pi\)
\(354\) 0 0
\(355\) −373866. 647554.i −0.157451 0.272713i
\(356\) 0 0
\(357\) −240995. 417416.i −0.100078 0.173340i
\(358\) 0 0
\(359\) −4.06398e6 −1.66424 −0.832120 0.554596i \(-0.812873\pi\)
−0.832120 + 0.554596i \(0.812873\pi\)
\(360\) 0 0
\(361\) 1.17732e6 2.03919e6i 0.475476 0.823548i
\(362\) 0 0
\(363\) −27685.9 −0.0110279
\(364\) 0 0
\(365\) 1.26506e6 0.497024
\(366\) 0 0
\(367\) 200743. 347698.i 0.0777994 0.134752i −0.824501 0.565861i \(-0.808544\pi\)
0.902300 + 0.431108i \(0.141877\pi\)
\(368\) 0 0
\(369\) −1.13496e6 −0.433927
\(370\) 0 0
\(371\) −1.68662e6 2.92131e6i −0.636183 1.10190i
\(372\) 0 0
\(373\) 1.74375e6 + 3.02026e6i 0.648950 + 1.12401i 0.983374 + 0.181592i \(0.0581249\pi\)
−0.334424 + 0.942423i \(0.608542\pi\)
\(374\) 0 0
\(375\) −845960. + 1.46525e6i −0.310650 + 0.538062i
\(376\) 0 0
\(377\) −2.92900e6 + 3.45598e6i −1.06137 + 1.25233i
\(378\) 0 0
\(379\) −782352. + 1.35507e6i −0.279772 + 0.484579i −0.971328 0.237744i \(-0.923592\pi\)
0.691556 + 0.722323i \(0.256926\pi\)
\(380\) 0 0
\(381\) −1.61692e6 2.80058e6i −0.570657 0.988406i
\(382\) 0 0
\(383\) 562258. + 973860.i 0.195857 + 0.339234i 0.947181 0.320699i \(-0.103918\pi\)
−0.751324 + 0.659933i \(0.770585\pi\)
\(384\) 0 0
\(385\) −4.63375e6 −1.59324
\(386\) 0 0
\(387\) 594663. 1.02999e6i 0.201834 0.349586i
\(388\) 0 0
\(389\) 5.41179e6 1.81329 0.906644 0.421897i \(-0.138635\pi\)
0.906644 + 0.421897i \(0.138635\pi\)
\(390\) 0 0
\(391\) 938625. 0.310492
\(392\) 0 0
\(393\) 520717. 901908.i 0.170067 0.294565i
\(394\) 0 0
\(395\) −3.37150e6 −1.08725
\(396\) 0 0
\(397\) 539068. + 933693.i 0.171659 + 0.297323i 0.939000 0.343917i \(-0.111754\pi\)
−0.767341 + 0.641239i \(0.778421\pi\)
\(398\) 0 0
\(399\) 361733. + 626540.i 0.113751 + 0.197023i
\(400\) 0 0
\(401\) 1.54097e6 2.66903e6i 0.478556 0.828883i −0.521142 0.853470i \(-0.674494\pi\)
0.999698 + 0.0245873i \(0.00782718\pi\)
\(402\) 0 0
\(403\) −4.29136e6 778465.i −1.31623 0.238768i
\(404\) 0 0
\(405\) −162669. + 281751.i −0.0492797 + 0.0853549i
\(406\) 0 0
\(407\) 20239.0 + 35055.0i 0.00605625 + 0.0104897i
\(408\) 0 0
\(409\) −661329. 1.14546e6i −0.195483 0.338587i 0.751576 0.659647i \(-0.229294\pi\)
−0.947059 + 0.321060i \(0.895961\pi\)
\(410\) 0 0
\(411\) −2.59234e6 −0.756986
\(412\) 0 0
\(413\) −4.16178e6 + 7.20842e6i −1.20062 + 2.07953i
\(414\) 0 0
\(415\) −5.96586e6 −1.70041
\(416\) 0 0
\(417\) −552727. −0.155658
\(418\) 0 0
\(419\) 1.10039e6 1.90593e6i 0.306205 0.530362i −0.671324 0.741164i \(-0.734274\pi\)
0.977529 + 0.210802i \(0.0676075\pi\)
\(420\) 0 0
\(421\) 5.39913e6 1.48463 0.742316 0.670051i \(-0.233728\pi\)
0.742316 + 0.670051i \(0.233728\pi\)
\(422\) 0 0
\(423\) −512607. 887861.i −0.139294 0.241265i
\(424\) 0 0
\(425\) −77333.1 133945.i −0.0207679 0.0359711i
\(426\) 0 0
\(427\) −5.00343e6 + 8.66619e6i −1.32800 + 2.30016i
\(428\) 0 0
\(429\) −749598. 2.09146e6i −0.196646 0.548663i
\(430\) 0 0
\(431\) 2.58738e6 4.48148e6i 0.670915 1.16206i −0.306730 0.951797i \(-0.599235\pi\)
0.977645 0.210262i \(-0.0674319\pi\)
\(432\) 0 0
\(433\) −3.81020e6 6.59946e6i −0.976625 1.69156i −0.674464 0.738308i \(-0.735625\pi\)
−0.302161 0.953257i \(-0.597708\pi\)
\(434\) 0 0
\(435\) 1.65897e6 + 2.87342e6i 0.420354 + 0.728075i
\(436\) 0 0
\(437\) −1.40887e6 −0.352913
\(438\) 0 0
\(439\) 2.70953e6 4.69304e6i 0.671015 1.16223i −0.306602 0.951838i \(-0.599192\pi\)
0.977617 0.210394i \(-0.0674747\pi\)
\(440\) 0 0
\(441\) 2.94824e6 0.721883
\(442\) 0 0
\(443\) −4.22896e6 −1.02382 −0.511911 0.859039i \(-0.671062\pi\)
−0.511911 + 0.859039i \(0.671062\pi\)
\(444\) 0 0
\(445\) 565365. 979241.i 0.135341 0.234417i
\(446\) 0 0
\(447\) −604580. −0.143115
\(448\) 0 0
\(449\) −2.84596e6 4.92935e6i −0.666214 1.15392i −0.978955 0.204078i \(-0.934581\pi\)
0.312741 0.949838i \(-0.398753\pi\)
\(450\) 0 0
\(451\) −2.83830e6 4.91607e6i −0.657077 1.13809i
\(452\) 0 0
\(453\) 1.19321e6 2.06671e6i 0.273195 0.473188i
\(454\) 0 0
\(455\) −2.35146e6 6.56081e6i −0.532487 1.48569i
\(456\) 0 0
\(457\) 1.53862e6 2.66496e6i 0.344619 0.596898i −0.640665 0.767820i \(-0.721341\pi\)
0.985285 + 0.170922i \(0.0546746\pi\)
\(458\) 0 0
\(459\) −84628.6 146581.i −0.0187493 0.0324748i
\(460\) 0 0
\(461\) 2.48159e6 + 4.29824e6i 0.543848 + 0.941972i 0.998678 + 0.0513940i \(0.0163664\pi\)
−0.454831 + 0.890578i \(0.650300\pi\)
\(462\) 0 0
\(463\) 8.20115e6 1.77796 0.888981 0.457945i \(-0.151414\pi\)
0.888981 + 0.457945i \(0.151414\pi\)
\(464\) 0 0
\(465\) −1.59715e6 + 2.76634e6i −0.342541 + 0.593298i
\(466\) 0 0
\(467\) 3.27493e6 0.694880 0.347440 0.937702i \(-0.387051\pi\)
0.347440 + 0.937702i \(0.387051\pi\)
\(468\) 0 0
\(469\) 6.52147e6 1.36903
\(470\) 0 0
\(471\) −291633. + 505123.i −0.0605737 + 0.104917i
\(472\) 0 0
\(473\) 5.94848e6 1.22251
\(474\) 0 0
\(475\) 116077. + 201051.i 0.0236054 + 0.0408857i
\(476\) 0 0
\(477\) −592278. 1.02585e6i −0.119187 0.206438i
\(478\) 0 0
\(479\) −2.24686e6 + 3.89167e6i −0.447442 + 0.774993i −0.998219 0.0596599i \(-0.980998\pi\)
0.550776 + 0.834653i \(0.314332\pi\)
\(480\) 0 0
\(481\) −39363.0 + 46445.1i −0.00775757 + 0.00915329i
\(482\) 0 0
\(483\) −4.19625e6 + 7.26812e6i −0.818453 + 1.41760i
\(484\) 0 0
\(485\) −3.63366e6 6.29369e6i −0.701440 1.21493i
\(486\) 0 0
\(487\) −2.86547e6 4.96313e6i −0.547486 0.948273i −0.998446 0.0557291i \(-0.982252\pi\)
0.450960 0.892544i \(-0.351082\pi\)
\(488\) 0 0
\(489\) 2.98893e6 0.565254
\(490\) 0 0
\(491\) −3.24813e6 + 5.62593e6i −0.608037 + 1.05315i 0.383526 + 0.923530i \(0.374709\pi\)
−0.991564 + 0.129621i \(0.958624\pi\)
\(492\) 0 0
\(493\) −1.72616e6 −0.319862
\(494\) 0 0
\(495\) −1.62720e6 −0.298489
\(496\) 0 0
\(497\) −1.73911e6 + 3.01222e6i −0.315817 + 0.547011i
\(498\) 0 0
\(499\) −2.15828e6 −0.388022 −0.194011 0.980999i \(-0.562150\pi\)
−0.194011 + 0.980999i \(0.562150\pi\)
\(500\) 0 0
\(501\) −508031. 879935.i −0.0904265 0.156623i
\(502\) 0 0
\(503\) 443631. + 768392.i 0.0781812 + 0.135414i 0.902465 0.430763i \(-0.141755\pi\)
−0.824284 + 0.566176i \(0.808422\pi\)
\(504\) 0 0
\(505\) 136040. 235628.i 0.0237377 0.0411149i
\(506\) 0 0
\(507\) 2.58085e6 2.12268e6i 0.445905 0.366745i
\(508\) 0 0
\(509\) 2.76523e6 4.78952e6i 0.473082 0.819403i −0.526443 0.850210i \(-0.676475\pi\)
0.999525 + 0.0308078i \(0.00980799\pi\)
\(510\) 0 0
\(511\) −2.94232e6 5.09625e6i −0.498469 0.863374i
\(512\) 0 0
\(513\) 127027. + 220017.i 0.0213110 + 0.0369117i
\(514\) 0 0
\(515\) 5.83309e6 0.969127
\(516\) 0 0
\(517\) 2.56383e6 4.44069e6i 0.421855 0.730674i
\(518\) 0 0
\(519\) 1.52090e6 0.247847
\(520\) 0 0
\(521\) −2.12885e6 −0.343598 −0.171799 0.985132i \(-0.554958\pi\)
−0.171799 + 0.985132i \(0.554958\pi\)
\(522\) 0 0
\(523\) −4.74981e6 + 8.22692e6i −0.759316 + 1.31517i 0.183885 + 0.982948i \(0.441133\pi\)
−0.943200 + 0.332225i \(0.892201\pi\)
\(524\) 0 0
\(525\) 1.38291e6 0.218976
\(526\) 0 0
\(527\) −830915. 1.43919e6i −0.130326 0.225731i
\(528\) 0 0
\(529\) −4.95357e6 8.57984e6i −0.769625 1.33303i
\(530\) 0 0
\(531\) −1.46146e6 + 2.53133e6i −0.224932 + 0.389594i
\(532\) 0 0
\(533\) 5.52022e6 6.51341e6i 0.841663 0.993094i
\(534\) 0 0
\(535\) −3.03927e6 + 5.26417e6i −0.459076 + 0.795143i
\(536\) 0 0
\(537\) 416480. + 721365.i 0.0623245 + 0.107949i
\(538\) 0 0
\(539\) 7.37290e6 + 1.27702e7i 1.09312 + 1.89333i
\(540\) 0 0
\(541\) −1.66231e6 −0.244185 −0.122092 0.992519i \(-0.538960\pi\)
−0.122092 + 0.992519i \(0.538960\pi\)
\(542\) 0 0
\(543\) −1.82568e6 + 3.16217e6i −0.265720 + 0.460241i
\(544\) 0 0
\(545\) −4.45346e6 −0.642253
\(546\) 0 0
\(547\) −6.76157e6 −0.966228 −0.483114 0.875558i \(-0.660494\pi\)
−0.483114 + 0.875558i \(0.660494\pi\)
\(548\) 0 0
\(549\) −1.75702e6 + 3.04324e6i −0.248797 + 0.430929i
\(550\) 0 0
\(551\) 2.59095e6 0.363564
\(552\) 0 0
\(553\) 7.84158e6 + 1.35820e7i 1.09041 + 1.88865i
\(554\) 0 0
\(555\) 22295.0 + 38616.0i 0.00307238 + 0.00532152i
\(556\) 0 0
\(557\) 461179. 798786.i 0.0629842 0.109092i −0.832814 0.553553i \(-0.813272\pi\)
0.895798 + 0.444461i \(0.146605\pi\)
\(558\) 0 0
\(559\) 3.01864e6 + 8.42232e6i 0.408585 + 1.13999i
\(560\) 0 0
\(561\) 423275. 733134.i 0.0567826 0.0983504i
\(562\) 0 0
\(563\) −4.19758e6 7.27043e6i −0.558121 0.966694i −0.997653 0.0684669i \(-0.978189\pi\)
0.439533 0.898227i \(-0.355144\pi\)
\(564\) 0 0
\(565\) 5.61323e6 + 9.72240e6i 0.739762 + 1.28130i
\(566\) 0 0
\(567\) 1.51337e6 0.197692
\(568\) 0 0
\(569\) 293870. 508998.i 0.0380518 0.0659076i −0.846372 0.532592i \(-0.821218\pi\)
0.884424 + 0.466684i \(0.154551\pi\)
\(570\) 0 0
\(571\) −2.40735e6 −0.308993 −0.154497 0.987993i \(-0.549376\pi\)
−0.154497 + 0.987993i \(0.549376\pi\)
\(572\) 0 0
\(573\) 2.09609e6 0.266700
\(574\) 0 0
\(575\) −1.34654e6 + 2.33227e6i −0.169843 + 0.294177i
\(576\) 0 0
\(577\) 4.85220e6 0.606735 0.303368 0.952874i \(-0.401889\pi\)
0.303368 + 0.952874i \(0.401889\pi\)
\(578\) 0 0
\(579\) −3.15174e6 5.45898e6i −0.390710 0.676730i
\(580\) 0 0
\(581\) 1.38757e7 + 2.40334e7i 1.70535 + 2.95376i
\(582\) 0 0
\(583\) 2.96231e6 5.13087e6i 0.360960 0.625201i
\(584\) 0 0
\(585\) −825745. 2.30391e6i −0.0997600 0.278341i
\(586\) 0 0
\(587\) 6.16410e6 1.06765e7i 0.738370 1.27890i −0.214858 0.976645i \(-0.568929\pi\)
0.953229 0.302250i \(-0.0977377\pi\)
\(588\) 0 0
\(589\) 1.24720e6 + 2.16021e6i 0.148132 + 0.256571i
\(590\) 0 0
\(591\) 2.29338e6 + 3.97224e6i 0.270089 + 0.467808i
\(592\) 0 0
\(593\) 3.25898e6 0.380579 0.190290 0.981728i \(-0.439057\pi\)
0.190290 + 0.981728i \(0.439057\pi\)
\(594\) 0 0
\(595\) 1.32780e6 2.29981e6i 0.153759 0.266318i
\(596\) 0 0
\(597\) 8.88262e6 1.02001
\(598\) 0 0
\(599\) 9.24697e6 1.05301 0.526505 0.850172i \(-0.323502\pi\)
0.526505 + 0.850172i \(0.323502\pi\)
\(600\) 0 0
\(601\) −413758. + 716651.i −0.0467262 + 0.0809322i −0.888443 0.458988i \(-0.848212\pi\)
0.841716 + 0.539920i \(0.181546\pi\)
\(602\) 0 0
\(603\) 2.29010e6 0.256484
\(604\) 0 0
\(605\) −76269.6 132103.i −0.00847155 0.0146732i
\(606\) 0 0
\(607\) 3.24829e6 + 5.62620e6i 0.357835 + 0.619788i 0.987599 0.156998i \(-0.0501818\pi\)
−0.629764 + 0.776786i \(0.716848\pi\)
\(608\) 0 0
\(609\) 7.71701e6 1.33663e7i 0.843152 1.46038i
\(610\) 0 0
\(611\) 7.58852e6 + 1.37658e6i 0.822345 + 0.149176i
\(612\) 0 0
\(613\) 717877. 1.24340e6i 0.0771611 0.133647i −0.824863 0.565333i \(-0.808748\pi\)
0.902024 + 0.431686i \(0.142081\pi\)
\(614\) 0 0
\(615\) −3.12662e6 5.41547e6i −0.333340 0.577362i
\(616\) 0 0
\(617\) 82138.6 + 142268.i 0.00868629 + 0.0150451i 0.870336 0.492459i \(-0.163902\pi\)
−0.861650 + 0.507504i \(0.830568\pi\)
\(618\) 0 0
\(619\) −1.09551e7 −1.14918 −0.574591 0.818441i \(-0.694839\pi\)
−0.574591 + 0.818441i \(0.694839\pi\)
\(620\) 0 0
\(621\) −1.47357e6 + 2.55229e6i −0.153335 + 0.265584i
\(622\) 0 0
\(623\) −5.25981e6 −0.542938
\(624\) 0 0
\(625\) −7.24012e6 −0.741389
\(626\) 0 0
\(627\) −635334. + 1.10043e6i −0.0645406 + 0.111788i
\(628\) 0 0
\(629\) −23197.9 −0.00233788
\(630\) 0 0
\(631\) 1.27240e6 + 2.20386e6i 0.127219 + 0.220349i 0.922598 0.385763i \(-0.126062\pi\)
−0.795379 + 0.606112i \(0.792728\pi\)
\(632\) 0 0
\(633\) −3.15046e6 5.45675e6i −0.312510 0.541283i
\(634\) 0 0
\(635\) 8.90862e6 1.54302e7i 0.876750 1.51858i
\(636\) 0 0
\(637\) −1.43396e7 + 1.69196e7i −1.40020 + 1.65212i
\(638\) 0 0
\(639\) −610710. + 1.05778e6i −0.0591675 + 0.102481i
\(640\) 0 0
\(641\) 5.65311e6 + 9.79147e6i 0.543428 + 0.941245i 0.998704 + 0.0508948i \(0.0162073\pi\)
−0.455276 + 0.890350i \(0.650459\pi\)
\(642\) 0 0
\(643\) 3.04907e6 + 5.28115e6i 0.290831 + 0.503733i 0.974006 0.226521i \(-0.0727350\pi\)
−0.683176 + 0.730254i \(0.739402\pi\)
\(644\) 0 0
\(645\) 6.55275e6 0.620190
\(646\) 0 0
\(647\) 9.27040e6 1.60568e7i 0.870638 1.50799i 0.00930040 0.999957i \(-0.497040\pi\)
0.861338 0.508033i \(-0.169627\pi\)
\(648\) 0 0
\(649\) −1.46192e7 −1.36242
\(650\) 0 0
\(651\) 1.48589e7 1.37415
\(652\) 0 0
\(653\) −5.21107e6 + 9.02583e6i −0.478238 + 0.828332i −0.999689 0.0249494i \(-0.992058\pi\)
0.521451 + 0.853281i \(0.325391\pi\)
\(654\) 0 0
\(655\) 5.73792e6 0.522578
\(656\) 0 0
\(657\) −1.03323e6 1.78962e6i −0.0933868 0.161751i
\(658\) 0 0
\(659\) −1.52031e6 2.63325e6i −0.136370 0.236199i 0.789750 0.613429i \(-0.210210\pi\)
−0.926120 + 0.377229i \(0.876877\pi\)
\(660\) 0 0
\(661\) 4.20245e6 7.27886e6i 0.374110 0.647978i −0.616083 0.787681i \(-0.711282\pi\)
0.990193 + 0.139703i \(0.0446149\pi\)
\(662\) 0 0
\(663\) 1.25282e6 + 227266.i 0.110689 + 0.0200794i
\(664\) 0 0
\(665\) −1.99302e6 + 3.45201e6i −0.174766 + 0.302704i
\(666\) 0 0
\(667\) 1.50281e7 + 2.60294e7i 1.30794 + 2.26542i
\(668\) 0 0
\(669\) −2.58215e6 4.47241e6i −0.223057 0.386346i
\(670\) 0 0
\(671\) −1.75757e7 −1.50697
\(672\) 0 0
\(673\) −7.76794e6 + 1.34545e7i −0.661101 + 1.14506i 0.319225 + 0.947679i \(0.396577\pi\)
−0.980327 + 0.197382i \(0.936756\pi\)
\(674\) 0 0
\(675\) 485628. 0.0410246
\(676\) 0 0
\(677\) 7.89626e6 0.662140 0.331070 0.943606i \(-0.392590\pi\)
0.331070 + 0.943606i \(0.392590\pi\)
\(678\) 0 0
\(679\) −1.69027e7 + 2.92763e7i −1.40696 + 2.43692i
\(680\) 0 0
\(681\) −5.34204e6 −0.441407
\(682\) 0 0
\(683\) −4.92619e6 8.53241e6i −0.404073 0.699875i 0.590140 0.807301i \(-0.299072\pi\)
−0.994213 + 0.107426i \(0.965739\pi\)
\(684\) 0 0
\(685\) −7.14143e6 1.23693e7i −0.581512 1.00721i
\(686\) 0 0
\(687\) 3.49995e6 6.06208e6i 0.282924 0.490038i
\(688\) 0 0
\(689\) 8.76795e6 + 1.59053e6i 0.703639 + 0.127642i
\(690\) 0 0
\(691\) 7.54612e6 1.30703e7i 0.601213 1.04133i −0.391425 0.920210i \(-0.628018\pi\)
0.992638 0.121121i \(-0.0386490\pi\)
\(692\) 0 0
\(693\) 3.78462e6 + 6.55515e6i 0.299356 + 0.518501i
\(694\) 0 0
\(695\) −1.52266e6 2.63733e6i −0.119575 0.207110i
\(696\) 0 0
\(697\) 3.25325e6 0.253650
\(698\) 0 0
\(699\) 1.31756e6 2.28209e6i 0.101995 0.176660i
\(700\) 0 0
\(701\) −1.18511e7 −0.910887 −0.455443 0.890265i \(-0.650519\pi\)
−0.455443 + 0.890265i \(0.650519\pi\)
\(702\) 0 0
\(703\) 34820.0 0.00265730
\(704\) 0 0
\(705\) 2.82428e6 4.89179e6i 0.214010 0.370677i
\(706\) 0 0
\(707\) −1.26563e6 −0.0952268
\(708\) 0 0
\(709\) 6.48050e6 + 1.12246e7i 0.484165 + 0.838598i 0.999835 0.0181897i \(-0.00579029\pi\)
−0.515670 + 0.856787i \(0.672457\pi\)
\(710\) 0 0
\(711\) 2.75367e6 + 4.76950e6i 0.204286 + 0.353834i
\(712\) 0 0
\(713\) −1.44680e7 + 2.50594e7i −1.06582 + 1.84606i
\(714\) 0 0
\(715\) 7.91434e6 9.33828e6i 0.578961 0.683127i
\(716\) 0 0
\(717\) 4.03906e6 6.99586e6i 0.293415 0.508210i
\(718\) 0 0
\(719\) 3.85829e6 + 6.68276e6i 0.278338 + 0.482096i 0.970972 0.239194i \(-0.0768831\pi\)
−0.692634 + 0.721290i \(0.743550\pi\)
\(720\) 0 0
\(721\) −1.35669e7 2.34985e7i −0.971945 1.68346i
\(722\) 0 0
\(723\) 5.76446e6 0.410122
\(724\) 0 0
\(725\) 2.47632e6 4.28911e6i 0.174969 0.303055i
\(726\) 0 0
\(727\) −2.55539e7 −1.79317 −0.896583 0.442876i \(-0.853958\pi\)
−0.896583 + 0.442876i \(0.853958\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) 0 0
\(731\) −1.70453e6 + 2.95234e6i −0.117981 + 0.204349i
\(732\) 0 0
\(733\) 9.02994e6 0.620762 0.310381 0.950612i \(-0.399543\pi\)
0.310381 + 0.950612i \(0.399543\pi\)
\(734\) 0 0
\(735\) 8.12187e6 + 1.40675e7i 0.554546 + 0.960502i
\(736\) 0 0
\(737\) 5.72703e6 + 9.91951e6i 0.388383 + 0.672700i
\(738\) 0 0
\(739\) −253779. + 439558.i −0.0170940 + 0.0296077i −0.874446 0.485123i \(-0.838775\pi\)
0.857352 + 0.514731i \(0.172108\pi\)
\(740\) 0 0
\(741\) −1.88048e6 341125.i −0.125812 0.0228228i
\(742\) 0 0
\(743\) −7.97646e6 + 1.38156e7i −0.530076 + 0.918119i 0.469308 + 0.883035i \(0.344503\pi\)
−0.999384 + 0.0350845i \(0.988830\pi\)
\(744\) 0 0
\(745\) −1.66551e6 2.88474e6i −0.109940 0.190422i
\(746\) 0 0
\(747\) 4.87262e6 + 8.43963e6i 0.319493 + 0.553378i
\(748\) 0 0
\(749\) 2.82755e7 1.84164
\(750\) 0 0
\(751\) 1.21597e7 2.10612e7i 0.786723 1.36265i −0.141241 0.989975i \(-0.545109\pi\)
0.927964 0.372670i \(-0.121558\pi\)
\(752\) 0 0
\(753\) −2.45813e6 −0.157986
\(754\) 0 0
\(755\) 1.31484e7 0.839468
\(756\) 0 0
\(757\) 6.16267e6 1.06741e7i 0.390867 0.677002i −0.601697 0.798724i \(-0.705508\pi\)
0.992564 + 0.121723i \(0.0388418\pi\)
\(758\) 0 0
\(759\) −1.47403e7 −0.928754
\(760\) 0 0
\(761\) −1.27189e7 2.20298e7i −0.796137 1.37895i −0.922115 0.386916i \(-0.873540\pi\)
0.125978 0.992033i \(-0.459793\pi\)
\(762\) 0 0
\(763\) 1.03581e7 + 1.79407e7i 0.644120 + 1.11565i
\(764\) 0 0
\(765\) 466273. 807608.i 0.0288062 0.0498939i
\(766\) 0 0
\(767\) −7.41871e6 2.06990e7i −0.455345 1.27046i
\(768\) 0 0
\(769\) 1.03862e7 1.79894e7i 0.633344 1.09698i −0.353520 0.935427i \(-0.615015\pi\)
0.986863 0.161556i \(-0.0516514\pi\)
\(770\) 0 0
\(771\) −269375. 466572.i −0.0163201 0.0282672i
\(772\) 0 0
\(773\) −2.00461e6 3.47209e6i −0.120665 0.208998i 0.799365 0.600846i \(-0.205169\pi\)
−0.920030 + 0.391848i \(0.871836\pi\)
\(774\) 0 0
\(775\) 4.76807e6 0.285160
\(776\) 0 0
\(777\) 103709. 179630.i 0.00616262 0.0106740i
\(778\) 0 0
\(779\) −4.88311e6 −0.288305
\(780\) 0 0
\(781\) −6.10900e6 −0.358379
\(782\) 0 0
\(783\) 2.70993e6 4.69373e6i 0.157962 0.273599i
\(784\) 0 0
\(785\) −3.21358e6 −0.186130
\(786\) 0 0
\(787\) 9.56737e6 + 1.65712e7i 0.550625 + 0.953710i 0.998230 + 0.0594783i \(0.0189437\pi\)
−0.447605 + 0.894231i \(0.647723\pi\)
\(788\) 0 0
\(789\) −1.53639e6 2.66111e6i −0.0878638 0.152185i
\(790\) 0 0
\(791\) 2.61110e7 4.52256e7i 1.48382 2.57006i
\(792\) 0 0
\(793\) −8.91902e6 2.48850e7i −0.503656 1.40525i
\(794\) 0 0
\(795\) 3.26323e6 5.65209e6i 0.183118 0.317169i
\(796\) 0 0
\(797\) −2.75865e6 4.77813e6i −0.153834 0.266448i 0.778800 0.627272i \(-0.215829\pi\)
−0.932634 + 0.360825i \(0.882495\pi\)
\(798\) 0 0
\(799\) 1.46933e6 + 2.54495e6i 0.0814239 + 0.141030i
\(800\) 0 0
\(801\) −1.84705e6 −0.101718
\(802\) 0 0
\(803\) 5.16778e6 8.95086e6i 0.282823 0.489865i
\(804\) 0 0
\(805\) −4.62396e7 −2.51492
\(806\) 0 0
\(807\) 1.76163e7 0.952204
\(808\) 0 0
\(809\) −6.81953e6 + 1.18118e7i −0.366339 + 0.634518i −0.988990 0.147982i \(-0.952722\pi\)
0.622651 + 0.782500i \(0.286056\pi\)
\(810\) 0 0
\(811\) −2.45217e7 −1.30917 −0.654587 0.755986i \(-0.727158\pi\)
−0.654587 + 0.755986i \(0.727158\pi\)
\(812\) 0 0
\(813\) 3.72083e6 + 6.44466e6i 0.197430 + 0.341959i
\(814\) 0 0
\(815\) 8.23396e6 + 1.42616e7i 0.434225 + 0.752099i
\(816\) 0 0
\(817\) 2.55850e6 4.43145e6i 0.134100 0.232268i
\(818\) 0 0
\(819\) −7.36072e6 + 8.68505e6i −0.383452 + 0.452442i
\(820\) 0 0
\(821\) −945954. + 1.63844e6i −0.0489793 + 0.0848346i −0.889476 0.456983i \(-0.848930\pi\)
0.840496 + 0.541817i \(0.182263\pi\)
\(822\) 0 0
\(823\) −1.33092e7 2.30522e7i −0.684938 1.18635i −0.973456 0.228873i \(-0.926496\pi\)
0.288518 0.957474i \(-0.406837\pi\)
\(824\) 0 0
\(825\) 1.21445e6 + 2.10348e6i 0.0621218 + 0.107598i
\(826\) 0 0
\(827\) −2.86078e7 −1.45452 −0.727261 0.686362i \(-0.759207\pi\)
−0.727261 + 0.686362i \(0.759207\pi\)
\(828\) 0 0
\(829\) −1.58973e7 + 2.75349e7i −0.803410 + 1.39155i 0.113950 + 0.993487i \(0.463650\pi\)
−0.917359 + 0.398060i \(0.869684\pi\)
\(830\) 0 0
\(831\) 4.07450e6 0.204678
\(832\) 0 0
\(833\) −8.45080e6 −0.421974
\(834\) 0 0
\(835\) 2.79906e6 4.84812e6i 0.138930 0.240634i
\(836\) 0 0
\(837\) 5.21788e6 0.257443
\(838\) 0 0
\(839\) 588888. + 1.01998e6i 0.0288820 + 0.0500251i 0.880105 0.474779i \(-0.157472\pi\)
−0.851223 + 0.524804i \(0.824139\pi\)
\(840\) 0 0
\(841\) −1.73814e7 3.01055e7i −0.847413 1.46776i
\(842\) 0 0
\(843\) 4.00110e6 6.93011e6i 0.193915 0.335870i
\(844\) 0 0
\(845\) 1.72381e7 + 6.46689e6i 0.830515 + 0.311569i
\(846\) 0 0
\(847\) −354783. + 614502.i −0.0169924 + 0.0294316i
\(848\) 0 0
\(849\) −8.94286e6 1.54895e7i −0.425802 0.737510i
\(850\) 0 0
\(851\) 201963. + 349810.i 0.00955977 + 0.0165580i
\(852\) 0 0
\(853\) 2.05782e7 0.968356 0.484178 0.874969i \(-0.339119\pi\)
0.484178 + 0.874969i \(0.339119\pi\)
\(854\) 0 0
\(855\) −699873. + 1.21222e6i −0.0327419 + 0.0567107i
\(856\) 0 0
\(857\) −3.33776e7 −1.55240 −0.776198 0.630489i \(-0.782855\pi\)
−0.776198 + 0.630489i \(0.782855\pi\)
\(858\) 0 0
\(859\) −2.39037e7 −1.10531 −0.552654 0.833411i \(-0.686385\pi\)
−0.552654 + 0.833411i \(0.686385\pi\)
\(860\) 0 0
\(861\) −1.45441e7 + 2.51911e7i −0.668618 + 1.15808i
\(862\) 0 0
\(863\) 1.90582e7 0.871075 0.435538 0.900171i \(-0.356558\pi\)
0.435538 + 0.900171i \(0.356558\pi\)
\(864\) 0 0
\(865\) 4.18981e6 + 7.25697e6i 0.190394 + 0.329773i
\(866\) 0 0
\(867\) −6.14678e6 1.06465e7i −0.277715 0.481017i
\(868\) 0 0
\(869\) −1.37727e7 + 2.38549e7i −0.618683 + 1.07159i
\(870\) 0 0
\(871\) −1.11385e7 + 1.31426e7i −0.497488 + 0.586995i
\(872\) 0 0
\(873\) −5.93559e6 + 1.02808e7i −0.263590 + 0.456551i
\(874\) 0 0
\(875\) 2.16812e7 + 3.75530e7i 0.957334 + 1.65815i
\(876\) 0 0
\(877\) 1.30726e7 + 2.26425e7i 0.573937 + 0.994088i 0.996156 + 0.0875945i \(0.0279180\pi\)
−0.422219 + 0.906494i \(0.638749\pi\)
\(878\) 0 0
\(879\) 1.71179e7 0.747273
\(880\) 0 0
\(881\) −2.22594e6 + 3.85545e6i −0.0966217 + 0.167354i −0.910284 0.413984i \(-0.864137\pi\)
0.813663 + 0.581337i \(0.197470\pi\)
\(882\) 0 0
\(883\) −3.06418e7 −1.32255 −0.661276 0.750143i \(-0.729985\pi\)
−0.661276 + 0.750143i \(0.729985\pi\)
\(884\) 0 0
\(885\) −1.61043e7 −0.691167
\(886\) 0 0
\(887\) 1.56704e7 2.71420e7i 0.668762 1.15833i −0.309489 0.950903i \(-0.600158\pi\)
0.978251 0.207426i \(-0.0665088\pi\)
\(888\) 0 0
\(889\) −8.28803e7 −3.51720
\(890\) 0 0
\(891\) 1.32902e6 + 2.30192e6i 0.0560836 + 0.0971397i
\(892\) 0 0
\(893\) −2.20546e6 3.81996e6i −0.0925486 0.160299i
\(894\) 0 0
\(895\) −2.29465e6 + 3.97446e6i −0.0957546 + 0.165852i
\(896\) 0 0
\(897\) −7.48016e6 2.08704e7i −0.310406 0.866063i
\(898\) 0 0
\(899\) 2.66071e7 4.60848e7i 1.09799 1.90177i
\(900\) 0 0
\(901\) 1.69770e6 + 2.94050e6i 0.0696703 + 0.120673i
\(902\) 0 0
\(903\) −1.52407e7 2.63977e7i −0.621993 1.07732i
\(904\) 0 0
\(905\) −2.01176e7 −0.816499
\(906\) 0 0
\(907\) 2.21987e7 3.84493e7i 0.896004 1.55192i 0.0634475 0.997985i \(-0.479790\pi\)
0.832557 0.553940i \(-0.186876\pi\)
\(908\) 0 0
\(909\) −444443. −0.0178405
\(910\) 0 0
\(911\) −2.39276e7 −0.955219 −0.477610 0.878572i \(-0.658497\pi\)
−0.477610 + 0.878572i \(0.658497\pi\)
\(912\) 0 0
\(913\) −2.43707e7 + 4.22113e7i −0.967589 + 1.67591i
\(914\) 0 0
\(915\) −1.93611e7 −0.764498
\(916\) 0 0
\(917\) −1.33455e7 2.31151e7i −0.524098 0.907764i
\(918\) 0 0
\(919\) 1.80912e7 + 3.13349e7i 0.706609 + 1.22388i 0.966108 + 0.258139i \(0.0831093\pi\)
−0.259499 + 0.965743i \(0.583557\pi\)
\(920\) 0 0
\(921\) 5.61600e6 9.72719e6i 0.218161 0.377866i
\(922\) 0 0
\(923\) −3.10010e6 8.64960e6i −0.119777 0.334189i
\(924\) 0 0
\(925\) 33279.4 57641.6i 0.00127885 0.00221504i
\(926\) 0 0
\(927\) −4.76418e6 8.25180e6i −0.182091 0.315391i
\(928\) 0 0
\(929\) 9.93627e6 + 1.72101e7i 0.377732 + 0.654252i 0.990732 0.135832i \(-0.0433706\pi\)
−0.613000 + 0.790083i \(0.710037\pi\)
\(930\) 0 0
\(931\) 1.26846e7 0.479626
\(932\) 0 0
\(933\) −1.88335e6 + 3.26207e6i −0.0708317 + 0.122684i
\(934\) 0 0
\(935\) 4.66418e6 0.174480
\(936\) 0 0
\(937\) 4.15734e7 1.54692 0.773458 0.633847i \(-0.218525\pi\)
0.773458 + 0.633847i \(0.218525\pi\)
\(938\) 0 0
\(939\) −6.49124e6 + 1.12432e7i −0.240250 + 0.416126i
\(940\) 0 0
\(941\) −6.96322e6 −0.256352 −0.128176 0.991751i \(-0.540912\pi\)
−0.128176 + 0.991751i \(0.540912\pi\)
\(942\) 0 0
\(943\) −2.83230e7 4.90569e7i −1.03720 1.79647i
\(944\) 0 0
\(945\) 4.16907e6 + 7.22105e6i 0.151866 + 0.263039i
\(946\) 0 0
\(947\) 1.63283e7 2.82815e7i 0.591653 1.02477i −0.402357 0.915483i \(-0.631809\pi\)
0.994010 0.109290i \(-0.0348577\pi\)
\(948\) 0 0
\(949\) 1.52958e7 + 2.77470e6i 0.551323 + 0.100012i
\(950\) 0 0
\(951\) −3.58497e6 + 6.20934e6i −0.128539 + 0.222636i
\(952\) 0 0
\(953\) −4.89665e6 8.48124e6i −0.174649 0.302501i 0.765391 0.643566i \(-0.222546\pi\)
−0.940040 + 0.341065i \(0.889212\pi\)
\(954\) 0 0
\(955\) 5.77435e6 + 1.00015e7i 0.204878 + 0.354859i
\(956\) 0 0
\(957\) 2.71077e7 0.956783
\(958\) 0 0
\(959\) −3.32197e7 + 5.75383e7i −1.16641 + 2.02027i
\(960\) 0 0
\(961\) 2.26019e7 0.789473
\(962\) 0 0
\(963\) 9.92930e6 0.345027
\(964\) 0 0
\(965\) 1.73650e7 3.00770e7i 0.600282 1.03972i
\(966\) 0 0
\(967\) 9.49538e6 0.326547 0.163274 0.986581i \(-0.447795\pi\)
0.163274 + 0.986581i \(0.447795\pi\)
\(968\) 0 0
\(969\) −364109. 630655.i −0.0124572 0.0215766i
\(970\) 0 0
\(971\) 466610. + 808192.i 0.0158820 + 0.0275085i 0.873857 0.486183i \(-0.161611\pi\)
−0.857975 + 0.513691i \(0.828278\pi\)
\(972\) 0 0
\(973\) −7.08295e6 + 1.22680e7i −0.239846 + 0.415425i
\(974\) 0 0
\(975\) −2.36199e6 + 2.78695e6i −0.0795730 + 0.0938897i
\(976\) 0 0
\(977\) 2.67300e7 4.62977e7i 0.895906 1.55175i 0.0632259 0.997999i \(-0.479861\pi\)
0.832680 0.553755i \(-0.186806\pi\)
\(978\) 0 0
\(979\) −4.61906e6 8.00045e6i −0.154027 0.266783i
\(980\) 0 0
\(981\) 3.63736e6 + 6.30010e6i 0.120674 + 0.209014i
\(982\) 0 0
\(983\) 6.86792e6 0.226695 0.113347 0.993555i \(-0.463843\pi\)
0.113347 + 0.993555i \(0.463843\pi\)
\(984\) 0 0
\(985\) −1.26357e7 + 2.18856e7i −0.414961 + 0.718734i
\(986\) 0 0
\(987\) −2.62753e7 −0.858530
\(988\) 0 0
\(989\) 5.93592e7 1.92973
\(990\) 0 0
\(991\) −247836. + 429265.i −0.00801642 + 0.0138849i −0.870006 0.493042i \(-0.835885\pi\)
0.861989 + 0.506926i \(0.169218\pi\)
\(992\) 0 0
\(993\) 2.25337e7 0.725203
\(994\) 0 0
\(995\) 2.44700e7 + 4.23833e7i 0.783568 + 1.35718i
\(996\) 0 0
\(997\) 2.34073e7 + 4.05426e7i 0.745785 + 1.29174i 0.949827 + 0.312775i \(0.101259\pi\)
−0.204042 + 0.978962i \(0.565408\pi\)
\(998\) 0 0
\(999\) 36418.9 63079.4i 0.00115455 0.00199974i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 312.6.q.d.217.8 20
13.3 even 3 inner 312.6.q.d.289.8 yes 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.6.q.d.217.8 20 1.1 even 1 trivial
312.6.q.d.289.8 yes 20 13.3 even 3 inner