Properties

Label 312.6.q.d
Level $312$
Weight $6$
Character orbit 312.q
Analytic conductor $50.040$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [312,6,Mod(217,312)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("312.217"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(312, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 4])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 312 = 2^{3} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 312.q (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,90] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(50.0397517816\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 45625 x^{18} - 258130 x^{17} + 874261585 x^{16} + 8836032648 x^{15} - 9129028858830 x^{14} + \cdots + 26\!\cdots\!43 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{44}\cdot 3\cdot 13 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{19}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - 9 \beta_1 + 9) q^{3} + (\beta_{2} - 1) q^{5} + ( - \beta_{8} - \beta_1) q^{7} - 81 \beta_1 q^{9} + ( - \beta_{11} - \beta_{7} + \beta_{2} + \cdots + 7) q^{11} + (\beta_{8} - \beta_{7} + \beta_{6} + \cdots + 28) q^{13}+ \cdots + ( - 81 \beta_{10} - 81 \beta_{2} - 567) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 90 q^{3} - 10 q^{5} - 9 q^{7} - 810 q^{9} + 72 q^{11} + 182 q^{13} - 45 q^{15} + 937 q^{17} + 566 q^{19} - 162 q^{21} - 324 q^{23} + 28770 q^{25} - 14580 q^{27} - 5599 q^{29} - 5342 q^{31} - 648 q^{33}+ \cdots - 11664 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{20} - 45625 x^{18} - 258130 x^{17} + 874261585 x^{16} + 8836032648 x^{15} - 9129028858830 x^{14} + \cdots + 26\!\cdots\!43 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( - 56\!\cdots\!40 \nu^{19} + \cdots + 11\!\cdots\!22 ) / 59\!\cdots\!92 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 56\!\cdots\!40 \nu^{19} + \cdots + 11\!\cdots\!22 ) / 59\!\cdots\!92 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 18\!\cdots\!04 \nu^{19} + \cdots - 27\!\cdots\!53 ) / 63\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 12\!\cdots\!13 \nu^{19} + \cdots + 18\!\cdots\!65 ) / 31\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 16\!\cdots\!47 \nu^{19} + \cdots + 37\!\cdots\!75 ) / 31\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 29\!\cdots\!29 \nu^{19} + \cdots + 10\!\cdots\!84 ) / 31\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 18\!\cdots\!55 \nu^{19} + \cdots + 50\!\cdots\!76 ) / 19\!\cdots\!64 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 12\!\cdots\!07 \nu^{19} + \cdots + 11\!\cdots\!88 ) / 63\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 13\!\cdots\!97 \nu^{19} + \cdots + 17\!\cdots\!26 ) / 63\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - 49\!\cdots\!68 \nu^{19} + \cdots - 37\!\cdots\!61 ) / 21\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( - 10\!\cdots\!13 \nu^{19} + \cdots - 41\!\cdots\!15 ) / 21\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( - 30\!\cdots\!07 \nu^{19} + \cdots - 16\!\cdots\!41 ) / 31\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( 31\!\cdots\!19 \nu^{19} + \cdots - 72\!\cdots\!67 ) / 31\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( - 35\!\cdots\!32 \nu^{19} + \cdots - 91\!\cdots\!79 ) / 31\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( 22\!\cdots\!44 \nu^{19} + \cdots + 21\!\cdots\!77 ) / 15\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{16}\)\(=\) \( ( - 48\!\cdots\!96 \nu^{19} + \cdots + 50\!\cdots\!77 ) / 31\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{17}\)\(=\) \( ( - 14\!\cdots\!90 \nu^{19} + \cdots + 14\!\cdots\!17 ) / 63\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{18}\)\(=\) \( ( 39\!\cdots\!65 \nu^{19} + \cdots - 12\!\cdots\!01 ) / 15\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{19}\)\(=\) \( ( - 23\!\cdots\!92 \nu^{19} + \cdots + 16\!\cdots\!35 ) / 15\!\cdots\!00 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_{2} - \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{16} + \beta_{15} + \beta_{13} + \beta_{12} - 2\beta_{10} - 2\beta_{7} + 4\beta_{3} + 9\beta_{2} - \beta _1 + 4557 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 3 \beta_{19} - 18 \beta_{18} - 15 \beta_{17} - \beta_{16} + 52 \beta_{15} + 68 \beta_{14} + 32 \beta_{13} + \cdots + 41902 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 62 \beta_{19} - 1537 \beta_{18} + 575 \beta_{17} + 5666 \beta_{16} + 9313 \beta_{15} - 873 \beta_{14} + \cdots + 33289604 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 50600 \beta_{19} - 295960 \beta_{18} - 289315 \beta_{17} + 46048 \beta_{16} + 626358 \beta_{15} + \cdots + 787745018 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 972903 \beta_{19} - 19230088 \beta_{18} + 9267040 \beta_{17} + 40177133 \beta_{16} + 84296586 \beta_{15} + \cdots + 280676315589 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 662797443 \beta_{19} - 3486759673 \beta_{18} - 3083419265 \beta_{17} + 519414790 \beta_{16} + \cdots + 10235486877754 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( 14285496436 \beta_{19} - 214507860521 \beta_{18} + 109726407175 \beta_{17} + 316879703174 \beta_{16} + \cdots + 25\!\cdots\!19 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( 7912432213164 \beta_{19} - 37505511814134 \beta_{18} - 28500878504995 \beta_{17} + 3347382841890 \beta_{16} + \cdots + 11\!\cdots\!78 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( 201778647786939 \beta_{19} + \cdots + 23\!\cdots\!70 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( 89\!\cdots\!84 \beta_{19} + \cdots + 12\!\cdots\!12 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( 26\!\cdots\!06 \beta_{19} + \cdots + 21\!\cdots\!25 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( 98\!\cdots\!22 \beta_{19} + \cdots + 13\!\cdots\!84 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( 34\!\cdots\!80 \beta_{19} + \cdots + 20\!\cdots\!65 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( 10\!\cdots\!01 \beta_{19} + \cdots + 13\!\cdots\!78 \) Copy content Toggle raw display
\(\nu^{16}\)\(=\) \( 41\!\cdots\!40 \beta_{19} + \cdots + 19\!\cdots\!96 \) Copy content Toggle raw display
\(\nu^{17}\)\(=\) \( 11\!\cdots\!32 \beta_{19} + \cdots + 13\!\cdots\!54 \) Copy content Toggle raw display
\(\nu^{18}\)\(=\) \( 49\!\cdots\!09 \beta_{19} + \cdots + 18\!\cdots\!25 \) Copy content Toggle raw display
\(\nu^{19}\)\(=\) \( 11\!\cdots\!89 \beta_{19} + \cdots + 13\!\cdots\!22 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/312\mathbb{Z}\right)^\times\).

\(n\) \(79\) \(145\) \(157\) \(209\)
\(\chi(n)\) \(1\) \(-\beta_{1}\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
217.1
−92.7733 0.866025i
−77.3611 0.866025i
−68.9773 0.866025i
−47.4558 0.866025i
−18.4393 0.866025i
20.6255 0.866025i
37.6294 0.866025i
50.0867 0.866025i
97.2646 0.866025i
99.4007 0.866025i
−92.7733 + 0.866025i
−77.3611 + 0.866025i
−68.9773 + 0.866025i
−47.4558 + 0.866025i
−18.4393 + 0.866025i
20.6255 + 0.866025i
37.6294 + 0.866025i
50.0867 + 0.866025i
97.2646 + 0.866025i
99.4007 + 0.866025i
0 4.50000 7.79423i 0 −93.2733 0 77.8524 + 134.844i 0 −40.5000 70.1481i 0
217.2 0 4.50000 7.79423i 0 −77.8611 0 −121.385 210.245i 0 −40.5000 70.1481i 0
217.3 0 4.50000 7.79423i 0 −69.4773 0 13.6072 + 23.5684i 0 −40.5000 70.1481i 0
217.4 0 4.50000 7.79423i 0 −47.9558 0 5.03066 + 8.71335i 0 −40.5000 70.1481i 0
217.5 0 4.50000 7.79423i 0 −18.9393 0 73.8949 + 127.990i 0 −40.5000 70.1481i 0
217.6 0 4.50000 7.79423i 0 20.1255 0 −0.0613073 0.106187i 0 −40.5000 70.1481i 0
217.7 0 4.50000 7.79423i 0 37.1294 0 −2.34912 4.06879i 0 −40.5000 70.1481i 0
217.8 0 4.50000 7.79423i 0 49.5867 0 −115.331 199.759i 0 −40.5000 70.1481i 0
217.9 0 4.50000 7.79423i 0 96.7646 0 100.937 + 174.827i 0 −40.5000 70.1481i 0
217.10 0 4.50000 7.79423i 0 98.9007 0 −36.6954 63.5582i 0 −40.5000 70.1481i 0
289.1 0 4.50000 + 7.79423i 0 −93.2733 0 77.8524 134.844i 0 −40.5000 + 70.1481i 0
289.2 0 4.50000 + 7.79423i 0 −77.8611 0 −121.385 + 210.245i 0 −40.5000 + 70.1481i 0
289.3 0 4.50000 + 7.79423i 0 −69.4773 0 13.6072 23.5684i 0 −40.5000 + 70.1481i 0
289.4 0 4.50000 + 7.79423i 0 −47.9558 0 5.03066 8.71335i 0 −40.5000 + 70.1481i 0
289.5 0 4.50000 + 7.79423i 0 −18.9393 0 73.8949 127.990i 0 −40.5000 + 70.1481i 0
289.6 0 4.50000 + 7.79423i 0 20.1255 0 −0.0613073 + 0.106187i 0 −40.5000 + 70.1481i 0
289.7 0 4.50000 + 7.79423i 0 37.1294 0 −2.34912 + 4.06879i 0 −40.5000 + 70.1481i 0
289.8 0 4.50000 + 7.79423i 0 49.5867 0 −115.331 + 199.759i 0 −40.5000 + 70.1481i 0
289.9 0 4.50000 + 7.79423i 0 96.7646 0 100.937 174.827i 0 −40.5000 + 70.1481i 0
289.10 0 4.50000 + 7.79423i 0 98.9007 0 −36.6954 + 63.5582i 0 −40.5000 + 70.1481i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 217.10
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 312.6.q.d 20
13.c even 3 1 inner 312.6.q.d 20
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
312.6.q.d 20 1.a even 1 1 trivial
312.6.q.d 20 13.c even 3 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{10} + 5 T_{5}^{9} - 22805 T_{5}^{8} - 220315 T_{5}^{7} + 176348505 T_{5}^{6} + \cdots - 16\!\cdots\!96 \) acting on \(S_{6}^{\mathrm{new}}(312, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{20} \) Copy content Toggle raw display
$3$ \( (T^{2} - 9 T + 81)^{10} \) Copy content Toggle raw display
$5$ \( (T^{10} + \cdots - 16\!\cdots\!96)^{2} \) Copy content Toggle raw display
$7$ \( T^{20} + \cdots + 90\!\cdots\!24 \) Copy content Toggle raw display
$11$ \( T^{20} + \cdots + 72\!\cdots\!00 \) Copy content Toggle raw display
$13$ \( T^{20} + \cdots + 49\!\cdots\!49 \) Copy content Toggle raw display
$17$ \( T^{20} + \cdots + 50\!\cdots\!00 \) Copy content Toggle raw display
$19$ \( T^{20} + \cdots + 25\!\cdots\!00 \) Copy content Toggle raw display
$23$ \( T^{20} + \cdots + 25\!\cdots\!96 \) Copy content Toggle raw display
$29$ \( T^{20} + \cdots + 18\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( (T^{10} + \cdots - 12\!\cdots\!40)^{2} \) Copy content Toggle raw display
$37$ \( T^{20} + \cdots + 10\!\cdots\!84 \) Copy content Toggle raw display
$41$ \( T^{20} + \cdots + 23\!\cdots\!00 \) Copy content Toggle raw display
$43$ \( T^{20} + \cdots + 38\!\cdots\!44 \) Copy content Toggle raw display
$47$ \( (T^{10} + \cdots - 37\!\cdots\!88)^{2} \) Copy content Toggle raw display
$53$ \( (T^{10} + \cdots - 25\!\cdots\!00)^{2} \) Copy content Toggle raw display
$59$ \( T^{20} + \cdots + 23\!\cdots\!96 \) Copy content Toggle raw display
$61$ \( T^{20} + \cdots + 19\!\cdots\!25 \) Copy content Toggle raw display
$67$ \( T^{20} + \cdots + 95\!\cdots\!16 \) Copy content Toggle raw display
$71$ \( T^{20} + \cdots + 33\!\cdots\!76 \) Copy content Toggle raw display
$73$ \( (T^{10} + \cdots + 10\!\cdots\!75)^{2} \) Copy content Toggle raw display
$79$ \( (T^{10} + \cdots - 37\!\cdots\!00)^{2} \) Copy content Toggle raw display
$83$ \( (T^{10} + \cdots + 61\!\cdots\!96)^{2} \) Copy content Toggle raw display
$89$ \( T^{20} + \cdots + 15\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{20} + \cdots + 84\!\cdots\!96 \) Copy content Toggle raw display
show more
show less