Properties

Label 312.6
Level 312
Weight 6
Dimension 5560
Nonzero newspaces 18
Sturm bound 32256
Trace bound 10

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 312 = 2^{3} \cdot 3 \cdot 13 \)
Weight: \( k \) = \( 6 \)
Nonzero newspaces: \( 18 \)
Sturm bound: \(32256\)
Trace bound: \(10\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_1(312))\).

Total New Old
Modular forms 13728 5648 8080
Cusp forms 13152 5560 7592
Eisenstein series 576 88 488

Trace form

\( 5560 q - 4 q^{2} + 10 q^{3} + 64 q^{4} - 196 q^{5} - 368 q^{6} + 320 q^{7} - 136 q^{8} + 1114 q^{9} + 1376 q^{10} - 40 q^{11} + 964 q^{12} + 102 q^{13} - 7384 q^{14} - 1416 q^{15} - 5720 q^{16} + 8066 q^{17}+ \cdots - 918484 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_1(312))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
312.6.a \(\chi_{312}(1, \cdot)\) 312.6.a.a 1 1
312.6.a.b 2
312.6.a.c 2
312.6.a.d 2
312.6.a.e 3
312.6.a.f 4
312.6.a.g 4
312.6.a.h 4
312.6.a.i 4
312.6.a.j 4
312.6.c \(\chi_{312}(25, \cdot)\) 312.6.c.a 16 1
312.6.c.b 18
312.6.d \(\chi_{312}(287, \cdot)\) None 0 1
312.6.g \(\chi_{312}(157, \cdot)\) n/a 120 1
312.6.h \(\chi_{312}(155, \cdot)\) n/a 276 1
312.6.j \(\chi_{312}(131, \cdot)\) n/a 240 1
312.6.m \(\chi_{312}(181, \cdot)\) n/a 140 1
312.6.n \(\chi_{312}(311, \cdot)\) None 0 1
312.6.q \(\chi_{312}(217, \cdot)\) 312.6.q.a 16 2
312.6.q.b 18
312.6.q.c 18
312.6.q.d 20
312.6.t \(\chi_{312}(187, \cdot)\) n/a 280 2
312.6.u \(\chi_{312}(31, \cdot)\) None 0 2
312.6.x \(\chi_{312}(161, \cdot)\) n/a 140 2
312.6.y \(\chi_{312}(5, \cdot)\) n/a 552 2
312.6.ba \(\chi_{312}(179, \cdot)\) n/a 552 2
312.6.bb \(\chi_{312}(61, \cdot)\) n/a 280 2
312.6.be \(\chi_{312}(191, \cdot)\) None 0 2
312.6.bf \(\chi_{312}(49, \cdot)\) 312.6.bf.a 32 2
312.6.bf.b 36
312.6.bj \(\chi_{312}(23, \cdot)\) None 0 2
312.6.bk \(\chi_{312}(205, \cdot)\) n/a 280 2
312.6.bn \(\chi_{312}(35, \cdot)\) n/a 552 2
312.6.bo \(\chi_{312}(149, \cdot)\) n/a 1104 4
312.6.bp \(\chi_{312}(41, \cdot)\) n/a 280 4
312.6.bs \(\chi_{312}(7, \cdot)\) None 0 4
312.6.bt \(\chi_{312}(19, \cdot)\) n/a 560 4

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_1(312))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_1(312)) \cong \) \(S_{6}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 16}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(26))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(39))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(52))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(78))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(104))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(156))\)\(^{\oplus 2}\)