Properties

Label 312.4.q.e.217.3
Level $312$
Weight $4$
Character 312.217
Analytic conductor $18.409$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [312,4,Mod(217,312)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(312, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 4])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("312.217"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 312 = 2^{3} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 312.q (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.4085959218\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 161 x^{10} - 1480 x^{9} + 25918 x^{8} - 119864 x^{7} + 547597 x^{6} - 230908 x^{5} + \cdots + 59049 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{20} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 217.3
Root \(-0.206972 + 0.358486i\) of defining polynomial
Character \(\chi\) \(=\) 312.217
Dual form 312.4.q.e.289.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.50000 + 2.59808i) q^{3} -3.80742 q^{5} +(1.42598 + 2.46987i) q^{7} +(-4.50000 - 7.79423i) q^{9} +(15.6183 - 27.0517i) q^{11} +(41.2830 - 22.1971i) q^{13} +(5.71114 - 9.89198i) q^{15} +(28.8372 + 49.9474i) q^{17} +(36.2462 + 62.7803i) q^{19} -8.55588 q^{21} +(-104.854 + 181.612i) q^{23} -110.504 q^{25} +27.0000 q^{27} +(66.1062 - 114.499i) q^{29} +275.352 q^{31} +(46.8548 + 81.1550i) q^{33} +(-5.42931 - 9.40385i) q^{35} +(-183.197 + 317.306i) q^{37} +(-4.25473 + 140.552i) q^{39} +(-84.5698 + 146.479i) q^{41} +(166.089 + 287.675i) q^{43} +(17.1334 + 29.6759i) q^{45} +183.320 q^{47} +(167.433 - 290.003i) q^{49} -173.023 q^{51} -502.390 q^{53} +(-59.4654 + 102.997i) q^{55} -217.477 q^{57} +(443.397 + 767.986i) q^{59} +(452.914 + 784.470i) q^{61} +(12.8338 - 22.2288i) q^{63} +(-157.182 + 84.5138i) q^{65} +(59.8583 - 103.678i) q^{67} +(-314.561 - 544.835i) q^{69} +(-231.484 - 400.942i) q^{71} -63.0078 q^{73} +(165.755 - 287.097i) q^{75} +89.0855 q^{77} +791.154 q^{79} +(-40.5000 + 70.1481i) q^{81} +171.481 q^{83} +(-109.795 - 190.171i) q^{85} +(198.319 + 343.498i) q^{87} +(92.6713 - 160.511i) q^{89} +(113.693 + 70.3111i) q^{91} +(-413.028 + 715.386i) q^{93} +(-138.005 - 239.031i) q^{95} +(-363.951 - 630.381i) q^{97} -281.129 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 18 q^{3} + 8 q^{5} - 10 q^{7} - 54 q^{9} - 60 q^{11} + 86 q^{13} - 12 q^{15} - 56 q^{17} - 48 q^{19} + 60 q^{21} + 80 q^{23} + 508 q^{25} + 324 q^{27} - 164 q^{29} + 668 q^{31} - 180 q^{33} + 552 q^{35}+ \cdots + 1080 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/312\mathbb{Z}\right)^\times\).

\(n\) \(79\) \(145\) \(157\) \(209\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.50000 + 2.59808i −0.288675 + 0.500000i
\(4\) 0 0
\(5\) −3.80742 −0.340546 −0.170273 0.985397i \(-0.554465\pi\)
−0.170273 + 0.985397i \(0.554465\pi\)
\(6\) 0 0
\(7\) 1.42598 + 2.46987i 0.0769957 + 0.133360i 0.901952 0.431835i \(-0.142134\pi\)
−0.824957 + 0.565196i \(0.808801\pi\)
\(8\) 0 0
\(9\) −4.50000 7.79423i −0.166667 0.288675i
\(10\) 0 0
\(11\) 15.6183 27.0517i 0.428099 0.741489i −0.568605 0.822611i \(-0.692517\pi\)
0.996704 + 0.0811214i \(0.0258501\pi\)
\(12\) 0 0
\(13\) 41.2830 22.1971i 0.880758 0.473567i
\(14\) 0 0
\(15\) 5.71114 9.89198i 0.0983073 0.170273i
\(16\) 0 0
\(17\) 28.8372 + 49.9474i 0.411414 + 0.712590i 0.995045 0.0994294i \(-0.0317017\pi\)
−0.583631 + 0.812019i \(0.698368\pi\)
\(18\) 0 0
\(19\) 36.2462 + 62.7803i 0.437655 + 0.758042i 0.997508 0.0705506i \(-0.0224756\pi\)
−0.559853 + 0.828592i \(0.689142\pi\)
\(20\) 0 0
\(21\) −8.55588 −0.0889070
\(22\) 0 0
\(23\) −104.854 + 181.612i −0.950586 + 1.64646i −0.206425 + 0.978462i \(0.566183\pi\)
−0.744161 + 0.668001i \(0.767150\pi\)
\(24\) 0 0
\(25\) −110.504 −0.884028
\(26\) 0 0
\(27\) 27.0000 0.192450
\(28\) 0 0
\(29\) 66.1062 114.499i 0.423297 0.733172i −0.572963 0.819581i \(-0.694206\pi\)
0.996260 + 0.0864097i \(0.0275394\pi\)
\(30\) 0 0
\(31\) 275.352 1.59531 0.797657 0.603112i \(-0.206073\pi\)
0.797657 + 0.603112i \(0.206073\pi\)
\(32\) 0 0
\(33\) 46.8548 + 81.1550i 0.247163 + 0.428099i
\(34\) 0 0
\(35\) −5.42931 9.40385i −0.0262206 0.0454154i
\(36\) 0 0
\(37\) −183.197 + 317.306i −0.813982 + 1.40986i 0.0960748 + 0.995374i \(0.469371\pi\)
−0.910057 + 0.414484i \(0.863962\pi\)
\(38\) 0 0
\(39\) −4.25473 + 140.552i −0.0174693 + 0.577086i
\(40\) 0 0
\(41\) −84.5698 + 146.479i −0.322136 + 0.557956i −0.980929 0.194369i \(-0.937734\pi\)
0.658793 + 0.752325i \(0.271068\pi\)
\(42\) 0 0
\(43\) 166.089 + 287.675i 0.589032 + 1.02023i 0.994359 + 0.106062i \(0.0338243\pi\)
−0.405327 + 0.914172i \(0.632842\pi\)
\(44\) 0 0
\(45\) 17.1334 + 29.6759i 0.0567577 + 0.0983073i
\(46\) 0 0
\(47\) 183.320 0.568937 0.284468 0.958685i \(-0.408183\pi\)
0.284468 + 0.958685i \(0.408183\pi\)
\(48\) 0 0
\(49\) 167.433 290.003i 0.488143 0.845489i
\(50\) 0 0
\(51\) −173.023 −0.475060
\(52\) 0 0
\(53\) −502.390 −1.30205 −0.651024 0.759057i \(-0.725660\pi\)
−0.651024 + 0.759057i \(0.725660\pi\)
\(54\) 0 0
\(55\) −59.4654 + 102.997i −0.145788 + 0.252511i
\(56\) 0 0
\(57\) −217.477 −0.505361
\(58\) 0 0
\(59\) 443.397 + 767.986i 0.978396 + 1.69463i 0.668239 + 0.743947i \(0.267049\pi\)
0.310158 + 0.950685i \(0.399618\pi\)
\(60\) 0 0
\(61\) 452.914 + 784.470i 0.950651 + 1.64657i 0.744022 + 0.668156i \(0.232916\pi\)
0.206629 + 0.978419i \(0.433751\pi\)
\(62\) 0 0
\(63\) 12.8338 22.2288i 0.0256652 0.0444535i
\(64\) 0 0
\(65\) −157.182 + 84.5138i −0.299939 + 0.161272i
\(66\) 0 0
\(67\) 59.8583 103.678i 0.109147 0.189048i −0.806278 0.591537i \(-0.798521\pi\)
0.915425 + 0.402489i \(0.131855\pi\)
\(68\) 0 0
\(69\) −314.561 544.835i −0.548821 0.950586i
\(70\) 0 0
\(71\) −231.484 400.942i −0.386931 0.670184i 0.605104 0.796146i \(-0.293132\pi\)
−0.992035 + 0.125962i \(0.959798\pi\)
\(72\) 0 0
\(73\) −63.0078 −0.101021 −0.0505103 0.998724i \(-0.516085\pi\)
−0.0505103 + 0.998724i \(0.516085\pi\)
\(74\) 0 0
\(75\) 165.755 287.097i 0.255197 0.442014i
\(76\) 0 0
\(77\) 89.0855 0.131847
\(78\) 0 0
\(79\) 791.154 1.12673 0.563366 0.826207i \(-0.309506\pi\)
0.563366 + 0.826207i \(0.309506\pi\)
\(80\) 0 0
\(81\) −40.5000 + 70.1481i −0.0555556 + 0.0962250i
\(82\) 0 0
\(83\) 171.481 0.226776 0.113388 0.993551i \(-0.463830\pi\)
0.113388 + 0.993551i \(0.463830\pi\)
\(84\) 0 0
\(85\) −109.795 190.171i −0.140106 0.242670i
\(86\) 0 0
\(87\) 198.319 + 343.498i 0.244391 + 0.423297i
\(88\) 0 0
\(89\) 92.6713 160.511i 0.110372 0.191171i −0.805548 0.592530i \(-0.798129\pi\)
0.915920 + 0.401360i \(0.131462\pi\)
\(90\) 0 0
\(91\) 113.693 + 70.3111i 0.130970 + 0.0809956i
\(92\) 0 0
\(93\) −413.028 + 715.386i −0.460527 + 0.797657i
\(94\) 0 0
\(95\) −138.005 239.031i −0.149042 0.258148i
\(96\) 0 0
\(97\) −363.951 630.381i −0.380965 0.659851i 0.610235 0.792220i \(-0.291075\pi\)
−0.991200 + 0.132369i \(0.957742\pi\)
\(98\) 0 0
\(99\) −281.129 −0.285399
\(100\) 0 0
\(101\) −162.970 + 282.272i −0.160555 + 0.278090i −0.935068 0.354469i \(-0.884662\pi\)
0.774513 + 0.632558i \(0.217995\pi\)
\(102\) 0 0
\(103\) 1673.67 1.60109 0.800543 0.599275i \(-0.204544\pi\)
0.800543 + 0.599275i \(0.204544\pi\)
\(104\) 0 0
\(105\) 32.5759 0.0302770
\(106\) 0 0
\(107\) −37.7049 + 65.3068i −0.0340661 + 0.0590042i −0.882556 0.470208i \(-0.844179\pi\)
0.848490 + 0.529212i \(0.177512\pi\)
\(108\) 0 0
\(109\) 236.140 0.207505 0.103753 0.994603i \(-0.466915\pi\)
0.103753 + 0.994603i \(0.466915\pi\)
\(110\) 0 0
\(111\) −549.590 951.917i −0.469953 0.813982i
\(112\) 0 0
\(113\) −1061.93 1839.32i −0.884054 1.53123i −0.846794 0.531920i \(-0.821471\pi\)
−0.0372595 0.999306i \(-0.511863\pi\)
\(114\) 0 0
\(115\) 399.222 691.473i 0.323719 0.560697i
\(116\) 0 0
\(117\) −358.783 221.882i −0.283500 0.175325i
\(118\) 0 0
\(119\) −82.2424 + 142.448i −0.0633542 + 0.109733i
\(120\) 0 0
\(121\) 177.639 + 307.679i 0.133463 + 0.231164i
\(122\) 0 0
\(123\) −253.709 439.437i −0.185985 0.322136i
\(124\) 0 0
\(125\) 896.662 0.641599
\(126\) 0 0
\(127\) 425.946 737.761i 0.297611 0.515478i −0.677978 0.735083i \(-0.737143\pi\)
0.975589 + 0.219605i \(0.0704767\pi\)
\(128\) 0 0
\(129\) −996.536 −0.680156
\(130\) 0 0
\(131\) −2154.16 −1.43672 −0.718360 0.695672i \(-0.755107\pi\)
−0.718360 + 0.695672i \(0.755107\pi\)
\(132\) 0 0
\(133\) −103.373 + 179.047i −0.0673952 + 0.116732i
\(134\) 0 0
\(135\) −102.800 −0.0655382
\(136\) 0 0
\(137\) −882.673 1528.84i −0.550452 0.953410i −0.998242 0.0592716i \(-0.981122\pi\)
0.447790 0.894139i \(-0.352211\pi\)
\(138\) 0 0
\(139\) −248.502 430.419i −0.151638 0.262645i 0.780192 0.625540i \(-0.215121\pi\)
−0.931830 + 0.362896i \(0.881788\pi\)
\(140\) 0 0
\(141\) −274.981 + 476.281i −0.164238 + 0.284468i
\(142\) 0 0
\(143\) 44.3010 1463.45i 0.0259065 0.855806i
\(144\) 0 0
\(145\) −251.694 + 435.947i −0.144152 + 0.249679i
\(146\) 0 0
\(147\) 502.299 + 870.008i 0.281830 + 0.488143i
\(148\) 0 0
\(149\) −225.926 391.315i −0.124218 0.215153i 0.797209 0.603704i \(-0.206309\pi\)
−0.921427 + 0.388551i \(0.872976\pi\)
\(150\) 0 0
\(151\) 1567.08 0.844553 0.422277 0.906467i \(-0.361231\pi\)
0.422277 + 0.906467i \(0.361231\pi\)
\(152\) 0 0
\(153\) 259.534 449.527i 0.137138 0.237530i
\(154\) 0 0
\(155\) −1048.38 −0.543278
\(156\) 0 0
\(157\) −583.320 −0.296522 −0.148261 0.988948i \(-0.547368\pi\)
−0.148261 + 0.988948i \(0.547368\pi\)
\(158\) 0 0
\(159\) 753.584 1305.25i 0.375869 0.651024i
\(160\) 0 0
\(161\) −598.077 −0.292764
\(162\) 0 0
\(163\) 1244.61 + 2155.73i 0.598070 + 1.03589i 0.993106 + 0.117222i \(0.0373988\pi\)
−0.395036 + 0.918666i \(0.629268\pi\)
\(164\) 0 0
\(165\) −178.396 308.991i −0.0841705 0.145788i
\(166\) 0 0
\(167\) −763.667 + 1322.71i −0.353858 + 0.612900i −0.986922 0.161199i \(-0.948464\pi\)
0.633064 + 0.774100i \(0.281797\pi\)
\(168\) 0 0
\(169\) 1211.58 1832.73i 0.551468 0.834196i
\(170\) 0 0
\(171\) 326.216 565.023i 0.145885 0.252681i
\(172\) 0 0
\(173\) −1323.09 2291.66i −0.581461 1.00712i −0.995307 0.0967725i \(-0.969148\pi\)
0.413846 0.910347i \(-0.364185\pi\)
\(174\) 0 0
\(175\) −157.576 272.929i −0.0680664 0.117894i
\(176\) 0 0
\(177\) −2660.38 −1.12975
\(178\) 0 0
\(179\) −973.528 + 1686.20i −0.406508 + 0.704092i −0.994496 0.104778i \(-0.966587\pi\)
0.587988 + 0.808870i \(0.299920\pi\)
\(180\) 0 0
\(181\) 2883.62 1.18419 0.592093 0.805869i \(-0.298302\pi\)
0.592093 + 0.805869i \(0.298302\pi\)
\(182\) 0 0
\(183\) −2717.48 −1.09772
\(184\) 0 0
\(185\) 697.507 1208.12i 0.277199 0.480122i
\(186\) 0 0
\(187\) 1801.55 0.704504
\(188\) 0 0
\(189\) 38.5015 + 66.6865i 0.0148178 + 0.0256652i
\(190\) 0 0
\(191\) 1368.50 + 2370.31i 0.518434 + 0.897954i 0.999771 + 0.0214184i \(0.00681822\pi\)
−0.481336 + 0.876536i \(0.659848\pi\)
\(192\) 0 0
\(193\) −669.007 + 1158.75i −0.249514 + 0.432171i −0.963391 0.268100i \(-0.913604\pi\)
0.713877 + 0.700271i \(0.246937\pi\)
\(194\) 0 0
\(195\) 16.1995 535.142i 0.00594910 0.196525i
\(196\) 0 0
\(197\) −852.088 + 1475.86i −0.308166 + 0.533759i −0.977961 0.208787i \(-0.933049\pi\)
0.669795 + 0.742546i \(0.266382\pi\)
\(198\) 0 0
\(199\) −1639.73 2840.10i −0.584108 1.01171i −0.994986 0.100015i \(-0.968111\pi\)
0.410878 0.911690i \(-0.365222\pi\)
\(200\) 0 0
\(201\) 179.575 + 311.033i 0.0630162 + 0.109147i
\(202\) 0 0
\(203\) 377.065 0.130368
\(204\) 0 0
\(205\) 321.993 557.708i 0.109702 0.190010i
\(206\) 0 0
\(207\) 1887.36 0.633724
\(208\) 0 0
\(209\) 2264.41 0.749439
\(210\) 0 0
\(211\) 1549.42 2683.68i 0.505530 0.875603i −0.494450 0.869206i \(-0.664631\pi\)
0.999980 0.00639673i \(-0.00203616\pi\)
\(212\) 0 0
\(213\) 1388.90 0.446790
\(214\) 0 0
\(215\) −632.373 1095.30i −0.200593 0.347437i
\(216\) 0 0
\(217\) 392.647 + 680.085i 0.122832 + 0.212752i
\(218\) 0 0
\(219\) 94.5118 163.699i 0.0291622 0.0505103i
\(220\) 0 0
\(221\) 2299.17 + 1421.88i 0.699815 + 0.432787i
\(222\) 0 0
\(223\) −3003.48 + 5202.18i −0.901918 + 1.56217i −0.0769169 + 0.997038i \(0.524508\pi\)
−0.825001 + 0.565131i \(0.808826\pi\)
\(224\) 0 0
\(225\) 497.266 + 861.290i 0.147338 + 0.255197i
\(226\) 0 0
\(227\) −1966.15 3405.47i −0.574881 0.995723i −0.996055 0.0887427i \(-0.971715\pi\)
0.421174 0.906980i \(-0.361618\pi\)
\(228\) 0 0
\(229\) −1587.69 −0.458156 −0.229078 0.973408i \(-0.573571\pi\)
−0.229078 + 0.973408i \(0.573571\pi\)
\(230\) 0 0
\(231\) −133.628 + 231.451i −0.0380610 + 0.0659236i
\(232\) 0 0
\(233\) 3963.88 1.11452 0.557259 0.830339i \(-0.311853\pi\)
0.557259 + 0.830339i \(0.311853\pi\)
\(234\) 0 0
\(235\) −697.979 −0.193749
\(236\) 0 0
\(237\) −1186.73 + 2055.48i −0.325260 + 0.563366i
\(238\) 0 0
\(239\) −2034.66 −0.550676 −0.275338 0.961348i \(-0.588790\pi\)
−0.275338 + 0.961348i \(0.588790\pi\)
\(240\) 0 0
\(241\) −200.880 347.934i −0.0536922 0.0929975i 0.837930 0.545778i \(-0.183766\pi\)
−0.891622 + 0.452780i \(0.850432\pi\)
\(242\) 0 0
\(243\) −121.500 210.444i −0.0320750 0.0555556i
\(244\) 0 0
\(245\) −637.489 + 1104.16i −0.166235 + 0.287928i
\(246\) 0 0
\(247\) 2889.90 + 1787.20i 0.744452 + 0.460392i
\(248\) 0 0
\(249\) −257.221 + 445.520i −0.0654647 + 0.113388i
\(250\) 0 0
\(251\) −643.211 1114.07i −0.161749 0.280158i 0.773747 0.633495i \(-0.218380\pi\)
−0.935496 + 0.353337i \(0.885047\pi\)
\(252\) 0 0
\(253\) 3275.26 + 5672.92i 0.813890 + 1.40970i
\(254\) 0 0
\(255\) 658.772 0.161780
\(256\) 0 0
\(257\) 2994.40 5186.45i 0.726792 1.25884i −0.231440 0.972849i \(-0.574344\pi\)
0.958232 0.285992i \(-0.0923229\pi\)
\(258\) 0 0
\(259\) −1044.94 −0.250692
\(260\) 0 0
\(261\) −1189.91 −0.282198
\(262\) 0 0
\(263\) −3696.75 + 6402.96i −0.866735 + 1.50123i −0.00142176 + 0.999999i \(0.500453\pi\)
−0.865314 + 0.501231i \(0.832881\pi\)
\(264\) 0 0
\(265\) 1912.81 0.443408
\(266\) 0 0
\(267\) 278.014 + 481.534i 0.0637235 + 0.110372i
\(268\) 0 0
\(269\) 523.627 + 906.949i 0.118684 + 0.205567i 0.919247 0.393682i \(-0.128799\pi\)
−0.800562 + 0.599250i \(0.795466\pi\)
\(270\) 0 0
\(271\) 1257.46 2177.98i 0.281863 0.488202i −0.689980 0.723828i \(-0.742381\pi\)
0.971844 + 0.235626i \(0.0757142\pi\)
\(272\) 0 0
\(273\) −353.213 + 189.916i −0.0783055 + 0.0421034i
\(274\) 0 0
\(275\) −1725.87 + 2989.30i −0.378452 + 0.655497i
\(276\) 0 0
\(277\) 3998.12 + 6924.95i 0.867234 + 1.50209i 0.864812 + 0.502097i \(0.167438\pi\)
0.00242261 + 0.999997i \(0.499229\pi\)
\(278\) 0 0
\(279\) −1239.09 2146.16i −0.265886 0.460527i
\(280\) 0 0
\(281\) −49.7096 −0.0105531 −0.00527656 0.999986i \(-0.501680\pi\)
−0.00527656 + 0.999986i \(0.501680\pi\)
\(282\) 0 0
\(283\) −1039.15 + 1799.86i −0.218272 + 0.378059i −0.954280 0.298914i \(-0.903375\pi\)
0.736007 + 0.676973i \(0.236709\pi\)
\(284\) 0 0
\(285\) 828.029 0.172099
\(286\) 0 0
\(287\) −482.379 −0.0992124
\(288\) 0 0
\(289\) 793.337 1374.10i 0.161477 0.279687i
\(290\) 0 0
\(291\) 2183.70 0.439901
\(292\) 0 0
\(293\) 4757.28 + 8239.85i 0.948544 + 1.64293i 0.748495 + 0.663141i \(0.230777\pi\)
0.200049 + 0.979786i \(0.435890\pi\)
\(294\) 0 0
\(295\) −1688.20 2924.05i −0.333189 0.577101i
\(296\) 0 0
\(297\) 421.694 730.395i 0.0823877 0.142700i
\(298\) 0 0
\(299\) −297.415 + 9824.93i −0.0575250 + 1.90030i
\(300\) 0 0
\(301\) −473.680 + 820.439i −0.0907059 + 0.157107i
\(302\) 0 0
\(303\) −488.909 846.815i −0.0926966 0.160555i
\(304\) 0 0
\(305\) −1724.44 2986.81i −0.323741 0.560735i
\(306\) 0 0
\(307\) −4400.52 −0.818082 −0.409041 0.912516i \(-0.634137\pi\)
−0.409041 + 0.912516i \(0.634137\pi\)
\(308\) 0 0
\(309\) −2510.51 + 4348.33i −0.462194 + 0.800543i
\(310\) 0 0
\(311\) 1884.39 0.343581 0.171791 0.985133i \(-0.445045\pi\)
0.171791 + 0.985133i \(0.445045\pi\)
\(312\) 0 0
\(313\) −8261.53 −1.49191 −0.745957 0.665994i \(-0.768008\pi\)
−0.745957 + 0.665994i \(0.768008\pi\)
\(314\) 0 0
\(315\) −48.8638 + 84.6346i −0.00874020 + 0.0151385i
\(316\) 0 0
\(317\) 10463.5 1.85391 0.926956 0.375170i \(-0.122416\pi\)
0.926956 + 0.375170i \(0.122416\pi\)
\(318\) 0 0
\(319\) −2064.93 3576.56i −0.362426 0.627740i
\(320\) 0 0
\(321\) −113.115 195.920i −0.0196681 0.0340661i
\(322\) 0 0
\(323\) −2090.48 + 3620.81i −0.360115 + 0.623738i
\(324\) 0 0
\(325\) −4561.92 + 2452.86i −0.778615 + 0.418647i
\(326\) 0 0
\(327\) −354.209 + 613.508i −0.0599016 + 0.103753i
\(328\) 0 0
\(329\) 261.411 + 452.778i 0.0438057 + 0.0758737i
\(330\) 0 0
\(331\) −2605.86 4513.48i −0.432722 0.749496i 0.564385 0.825512i \(-0.309113\pi\)
−0.997107 + 0.0760157i \(0.975780\pi\)
\(332\) 0 0
\(333\) 3297.54 0.542655
\(334\) 0 0
\(335\) −227.906 + 394.745i −0.0371697 + 0.0643798i
\(336\) 0 0
\(337\) 2781.65 0.449632 0.224816 0.974401i \(-0.427822\pi\)
0.224816 + 0.974401i \(0.427822\pi\)
\(338\) 0 0
\(339\) 6371.59 1.02082
\(340\) 0 0
\(341\) 4300.53 7448.73i 0.682952 1.18291i
\(342\) 0 0
\(343\) 1933.25 0.304331
\(344\) 0 0
\(345\) 1197.67 + 2074.42i 0.186899 + 0.323719i
\(346\) 0 0
\(347\) −5170.88 8956.22i −0.799963 1.38558i −0.919639 0.392764i \(-0.871519\pi\)
0.119676 0.992813i \(-0.461814\pi\)
\(348\) 0 0
\(349\) −4379.50 + 7585.52i −0.671717 + 1.16345i 0.305700 + 0.952128i \(0.401110\pi\)
−0.977417 + 0.211320i \(0.932224\pi\)
\(350\) 0 0
\(351\) 1114.64 599.322i 0.169502 0.0911380i
\(352\) 0 0
\(353\) −3671.12 + 6358.56i −0.553523 + 0.958731i 0.444493 + 0.895782i \(0.353384\pi\)
−0.998017 + 0.0629485i \(0.979950\pi\)
\(354\) 0 0
\(355\) 881.358 + 1526.56i 0.131768 + 0.228229i
\(356\) 0 0
\(357\) −246.727 427.344i −0.0365776 0.0633542i
\(358\) 0 0
\(359\) 2103.58 0.309256 0.154628 0.987973i \(-0.450582\pi\)
0.154628 + 0.987973i \(0.450582\pi\)
\(360\) 0 0
\(361\) 801.923 1388.97i 0.116915 0.202503i
\(362\) 0 0
\(363\) −1065.83 −0.154109
\(364\) 0 0
\(365\) 239.898 0.0344022
\(366\) 0 0
\(367\) −209.519 + 362.898i −0.0298006 + 0.0516162i −0.880541 0.473970i \(-0.842821\pi\)
0.850740 + 0.525586i \(0.176154\pi\)
\(368\) 0 0
\(369\) 1522.26 0.214757
\(370\) 0 0
\(371\) −716.398 1240.84i −0.100252 0.173642i
\(372\) 0 0
\(373\) −3458.15 5989.70i −0.480044 0.831460i 0.519694 0.854352i \(-0.326046\pi\)
−0.999738 + 0.0228921i \(0.992713\pi\)
\(374\) 0 0
\(375\) −1344.99 + 2329.60i −0.185214 + 0.320799i
\(376\) 0 0
\(377\) 187.509 6194.24i 0.0256159 0.846206i
\(378\) 0 0
\(379\) 1126.13 1950.51i 0.152626 0.264356i −0.779566 0.626320i \(-0.784560\pi\)
0.932192 + 0.361964i \(0.117894\pi\)
\(380\) 0 0
\(381\) 1277.84 + 2213.28i 0.171826 + 0.297611i
\(382\) 0 0
\(383\) −2049.99 3550.69i −0.273498 0.473712i 0.696257 0.717792i \(-0.254847\pi\)
−0.969755 + 0.244080i \(0.921514\pi\)
\(384\) 0 0
\(385\) −339.186 −0.0449001
\(386\) 0 0
\(387\) 1494.80 2589.08i 0.196344 0.340078i
\(388\) 0 0
\(389\) 9346.70 1.21824 0.609121 0.793077i \(-0.291522\pi\)
0.609121 + 0.793077i \(0.291522\pi\)
\(390\) 0 0
\(391\) −12094.7 −1.56434
\(392\) 0 0
\(393\) 3231.25 5596.68i 0.414745 0.718360i
\(394\) 0 0
\(395\) −3012.26 −0.383705
\(396\) 0 0
\(397\) −3464.14 6000.07i −0.437935 0.758526i 0.559595 0.828766i \(-0.310957\pi\)
−0.997530 + 0.0702404i \(0.977623\pi\)
\(398\) 0 0
\(399\) −310.118 537.141i −0.0389106 0.0673952i
\(400\) 0 0
\(401\) 3622.23 6273.89i 0.451087 0.781305i −0.547367 0.836893i \(-0.684370\pi\)
0.998454 + 0.0555875i \(0.0177032\pi\)
\(402\) 0 0
\(403\) 11367.4 6112.03i 1.40508 0.755488i
\(404\) 0 0
\(405\) 154.201 267.083i 0.0189192 0.0327691i
\(406\) 0 0
\(407\) 5722.43 + 9911.54i 0.696930 + 1.20712i
\(408\) 0 0
\(409\) −6210.24 10756.5i −0.750798 1.30042i −0.947436 0.319945i \(-0.896336\pi\)
0.196638 0.980476i \(-0.436998\pi\)
\(410\) 0 0
\(411\) 5296.04 0.635607
\(412\) 0 0
\(413\) −1264.55 + 2190.27i −0.150665 + 0.260959i
\(414\) 0 0
\(415\) −652.899 −0.0772279
\(416\) 0 0
\(417\) 1491.01 0.175097
\(418\) 0 0
\(419\) 5807.38 10058.7i 0.677110 1.17279i −0.298737 0.954335i \(-0.596565\pi\)
0.975847 0.218454i \(-0.0701012\pi\)
\(420\) 0 0
\(421\) −2091.69 −0.242144 −0.121072 0.992644i \(-0.538633\pi\)
−0.121072 + 0.992644i \(0.538633\pi\)
\(422\) 0 0
\(423\) −824.942 1428.84i −0.0948228 0.164238i
\(424\) 0 0
\(425\) −3186.61 5519.37i −0.363702 0.629950i
\(426\) 0 0
\(427\) −1291.69 + 2237.28i −0.146392 + 0.253558i
\(428\) 0 0
\(429\) 3735.72 + 2310.28i 0.420424 + 0.260003i
\(430\) 0 0
\(431\) −4469.65 + 7741.65i −0.499525 + 0.865203i −1.00000 0.000548435i \(-0.999825\pi\)
0.500475 + 0.865751i \(0.333159\pi\)
\(432\) 0 0
\(433\) −7285.29 12618.5i −0.808565 1.40048i −0.913858 0.406035i \(-0.866911\pi\)
0.105293 0.994441i \(-0.466422\pi\)
\(434\) 0 0
\(435\) −755.083 1307.84i −0.0832263 0.144152i
\(436\) 0 0
\(437\) −15202.2 −1.66412
\(438\) 0 0
\(439\) −1053.74 + 1825.14i −0.114561 + 0.198426i −0.917604 0.397495i \(-0.869880\pi\)
0.803043 + 0.595921i \(0.203213\pi\)
\(440\) 0 0
\(441\) −3013.80 −0.325429
\(442\) 0 0
\(443\) 1575.08 0.168926 0.0844632 0.996427i \(-0.473082\pi\)
0.0844632 + 0.996427i \(0.473082\pi\)
\(444\) 0 0
\(445\) −352.839 + 611.135i −0.0375869 + 0.0651024i
\(446\) 0 0
\(447\) 1355.55 0.143435
\(448\) 0 0
\(449\) −8510.83 14741.2i −0.894545 1.54940i −0.834366 0.551210i \(-0.814166\pi\)
−0.0601792 0.998188i \(-0.519167\pi\)
\(450\) 0 0
\(451\) 2641.67 + 4575.50i 0.275812 + 0.477721i
\(452\) 0 0
\(453\) −2350.63 + 4071.41i −0.243802 + 0.422277i
\(454\) 0 0
\(455\) −432.877 267.704i −0.0446013 0.0275828i
\(456\) 0 0
\(457\) −3121.54 + 5406.67i −0.319518 + 0.553421i −0.980387 0.197080i \(-0.936854\pi\)
0.660870 + 0.750501i \(0.270188\pi\)
\(458\) 0 0
\(459\) 778.603 + 1348.58i 0.0791767 + 0.137138i
\(460\) 0 0
\(461\) 1202.67 + 2083.08i 0.121505 + 0.210453i 0.920361 0.391069i \(-0.127895\pi\)
−0.798856 + 0.601522i \(0.794561\pi\)
\(462\) 0 0
\(463\) −1528.85 −0.153460 −0.0767299 0.997052i \(-0.524448\pi\)
−0.0767299 + 0.997052i \(0.524448\pi\)
\(464\) 0 0
\(465\) 1572.57 2723.78i 0.156831 0.271639i
\(466\) 0 0
\(467\) 9991.32 0.990028 0.495014 0.868885i \(-0.335163\pi\)
0.495014 + 0.868885i \(0.335163\pi\)
\(468\) 0 0
\(469\) 341.427 0.0336155
\(470\) 0 0
\(471\) 874.980 1515.51i 0.0855986 0.148261i
\(472\) 0 0
\(473\) 10376.1 1.00866
\(474\) 0 0
\(475\) −4005.34 6937.44i −0.386900 0.670130i
\(476\) 0 0
\(477\) 2260.75 + 3915.74i 0.217008 + 0.375869i
\(478\) 0 0
\(479\) 8790.88 15226.2i 0.838550 1.45241i −0.0525568 0.998618i \(-0.516737\pi\)
0.891107 0.453793i \(-0.149930\pi\)
\(480\) 0 0
\(481\) −519.634 + 17165.8i −0.0492584 + 1.62722i
\(482\) 0 0
\(483\) 897.115 1553.85i 0.0845137 0.146382i
\(484\) 0 0
\(485\) 1385.72 + 2400.13i 0.129736 + 0.224710i
\(486\) 0 0
\(487\) −6741.70 11677.0i −0.627301 1.08652i −0.988091 0.153870i \(-0.950826\pi\)
0.360790 0.932647i \(-0.382507\pi\)
\(488\) 0 0
\(489\) −7467.66 −0.690592
\(490\) 0 0
\(491\) −3370.36 + 5837.64i −0.309781 + 0.536556i −0.978314 0.207126i \(-0.933589\pi\)
0.668533 + 0.743682i \(0.266922\pi\)
\(492\) 0 0
\(493\) 7625.26 0.696601
\(494\) 0 0
\(495\) 1070.38 0.0971917
\(496\) 0 0
\(497\) 660.184 1143.47i 0.0595841 0.103203i
\(498\) 0 0
\(499\) −21556.6 −1.93388 −0.966941 0.255002i \(-0.917924\pi\)
−0.966941 + 0.255002i \(0.917924\pi\)
\(500\) 0 0
\(501\) −2291.00 3968.13i −0.204300 0.353858i
\(502\) 0 0
\(503\) 2270.63 + 3932.84i 0.201277 + 0.348622i 0.948940 0.315456i \(-0.102158\pi\)
−0.747663 + 0.664078i \(0.768824\pi\)
\(504\) 0 0
\(505\) 620.494 1074.73i 0.0546765 0.0947025i
\(506\) 0 0
\(507\) 2944.20 + 5896.86i 0.257903 + 0.516546i
\(508\) 0 0
\(509\) −970.420 + 1680.82i −0.0845051 + 0.146367i −0.905180 0.425028i \(-0.860264\pi\)
0.820675 + 0.571395i \(0.193598\pi\)
\(510\) 0 0
\(511\) −89.8480 155.621i −0.00777816 0.0134722i
\(512\) 0 0
\(513\) 978.648 + 1695.07i 0.0842268 + 0.145885i
\(514\) 0 0
\(515\) −6372.38 −0.545244
\(516\) 0 0
\(517\) 2863.15 4959.12i 0.243561 0.421861i
\(518\) 0 0
\(519\) 7938.54 0.671413
\(520\) 0 0
\(521\) −3134.43 −0.263574 −0.131787 0.991278i \(-0.542071\pi\)
−0.131787 + 0.991278i \(0.542071\pi\)
\(522\) 0 0
\(523\) 410.124 710.355i 0.0342896 0.0593913i −0.848371 0.529402i \(-0.822416\pi\)
0.882661 + 0.470010i \(0.155750\pi\)
\(524\) 0 0
\(525\) 945.455 0.0785963
\(526\) 0 0
\(527\) 7940.38 + 13753.1i 0.656334 + 1.13680i
\(528\) 0 0
\(529\) −15905.0 27548.3i −1.30723 2.26418i
\(530\) 0 0
\(531\) 3990.57 6911.88i 0.326132 0.564877i
\(532\) 0 0
\(533\) −239.881 + 7924.31i −0.0194942 + 0.643977i
\(534\) 0 0
\(535\) 143.559 248.651i 0.0116011 0.0200937i
\(536\) 0 0
\(537\) −2920.58 5058.60i −0.234697 0.406508i
\(538\) 0 0
\(539\) −5230.04 9058.69i −0.417947 0.723906i
\(540\) 0 0
\(541\) −19160.0 −1.52265 −0.761326 0.648369i \(-0.775451\pi\)
−0.761326 + 0.648369i \(0.775451\pi\)
\(542\) 0 0
\(543\) −4325.43 + 7491.86i −0.341845 + 0.592093i
\(544\) 0 0
\(545\) −899.083 −0.0706651
\(546\) 0 0
\(547\) 5356.62 0.418707 0.209353 0.977840i \(-0.432864\pi\)
0.209353 + 0.977840i \(0.432864\pi\)
\(548\) 0 0
\(549\) 4076.23 7060.23i 0.316884 0.548858i
\(550\) 0 0
\(551\) 9584.40 0.741033
\(552\) 0 0
\(553\) 1128.17 + 1954.05i 0.0867535 + 0.150262i
\(554\) 0 0
\(555\) 2092.52 + 3624.35i 0.160041 + 0.277199i
\(556\) 0 0
\(557\) −5067.83 + 8777.74i −0.385513 + 0.667728i −0.991840 0.127487i \(-0.959309\pi\)
0.606327 + 0.795215i \(0.292642\pi\)
\(558\) 0 0
\(559\) 13242.2 + 8189.40i 1.00194 + 0.619633i
\(560\) 0 0
\(561\) −2702.32 + 4680.56i −0.203373 + 0.352252i
\(562\) 0 0
\(563\) 7936.19 + 13745.9i 0.594086 + 1.02899i 0.993675 + 0.112293i \(0.0358195\pi\)
−0.399589 + 0.916694i \(0.630847\pi\)
\(564\) 0 0
\(565\) 4043.22 + 7003.07i 0.301061 + 0.521453i
\(566\) 0 0
\(567\) −231.009 −0.0171102
\(568\) 0 0
\(569\) −1129.68 + 1956.66i −0.0832314 + 0.144161i −0.904636 0.426185i \(-0.859857\pi\)
0.821405 + 0.570346i \(0.193191\pi\)
\(570\) 0 0
\(571\) 19081.9 1.39851 0.699256 0.714871i \(-0.253515\pi\)
0.699256 + 0.714871i \(0.253515\pi\)
\(572\) 0 0
\(573\) −8210.98 −0.598636
\(574\) 0 0
\(575\) 11586.7 20068.7i 0.840345 1.45552i
\(576\) 0 0
\(577\) −14477.9 −1.04458 −0.522291 0.852767i \(-0.674923\pi\)
−0.522291 + 0.852767i \(0.674923\pi\)
\(578\) 0 0
\(579\) −2007.02 3476.26i −0.144057 0.249514i
\(580\) 0 0
\(581\) 244.528 + 423.535i 0.0174608 + 0.0302430i
\(582\) 0 0
\(583\) −7846.46 + 13590.5i −0.557405 + 0.965454i
\(584\) 0 0
\(585\) 1366.04 + 844.800i 0.0965449 + 0.0597063i
\(586\) 0 0
\(587\) −8153.14 + 14121.6i −0.573281 + 0.992952i 0.422945 + 0.906155i \(0.360996\pi\)
−0.996226 + 0.0867965i \(0.972337\pi\)
\(588\) 0 0
\(589\) 9980.48 + 17286.7i 0.698198 + 1.20931i
\(590\) 0 0
\(591\) −2556.26 4427.58i −0.177920 0.308166i
\(592\) 0 0
\(593\) 2307.13 0.159768 0.0798840 0.996804i \(-0.474545\pi\)
0.0798840 + 0.996804i \(0.474545\pi\)
\(594\) 0 0
\(595\) 313.132 542.360i 0.0215751 0.0373691i
\(596\) 0 0
\(597\) 9838.39 0.674470
\(598\) 0 0
\(599\) −9313.70 −0.635305 −0.317652 0.948207i \(-0.602894\pi\)
−0.317652 + 0.948207i \(0.602894\pi\)
\(600\) 0 0
\(601\) 5914.14 10243.6i 0.401402 0.695249i −0.592493 0.805575i \(-0.701856\pi\)
0.993895 + 0.110326i \(0.0351896\pi\)
\(602\) 0 0
\(603\) −1077.45 −0.0727648
\(604\) 0 0
\(605\) −676.346 1171.47i −0.0454502 0.0787220i
\(606\) 0 0
\(607\) −7773.53 13464.2i −0.519799 0.900318i −0.999735 0.0230147i \(-0.992674\pi\)
0.479936 0.877303i \(-0.340660\pi\)
\(608\) 0 0
\(609\) −565.597 + 979.642i −0.0376341 + 0.0651841i
\(610\) 0 0
\(611\) 7568.02 4069.19i 0.501096 0.269430i
\(612\) 0 0
\(613\) −9238.88 + 16002.2i −0.608736 + 1.05436i 0.382713 + 0.923867i \(0.374990\pi\)
−0.991449 + 0.130494i \(0.958344\pi\)
\(614\) 0 0
\(615\) 965.979 + 1673.12i 0.0633366 + 0.109702i
\(616\) 0 0
\(617\) 2107.40 + 3650.13i 0.137505 + 0.238167i 0.926552 0.376167i \(-0.122758\pi\)
−0.789046 + 0.614334i \(0.789425\pi\)
\(618\) 0 0
\(619\) 16719.1 1.08562 0.542809 0.839856i \(-0.317361\pi\)
0.542809 + 0.839856i \(0.317361\pi\)
\(620\) 0 0
\(621\) −2831.05 + 4903.52i −0.182940 + 0.316862i
\(622\) 0 0
\(623\) 528.590 0.0339928
\(624\) 0 0
\(625\) 10399.0 0.665534
\(626\) 0 0
\(627\) −3396.62 + 5883.12i −0.216345 + 0.374720i
\(628\) 0 0
\(629\) −21131.5 −1.33953
\(630\) 0 0
\(631\) 11348.9 + 19656.9i 0.715996 + 1.24014i 0.962574 + 0.271019i \(0.0873606\pi\)
−0.246578 + 0.969123i \(0.579306\pi\)
\(632\) 0 0
\(633\) 4648.27 + 8051.04i 0.291868 + 0.505530i
\(634\) 0 0
\(635\) −1621.76 + 2808.97i −0.101350 + 0.175544i
\(636\) 0 0
\(637\) 474.921 15688.7i 0.0295401 0.975840i
\(638\) 0 0
\(639\) −2083.36 + 3608.48i −0.128977 + 0.223395i
\(640\) 0 0
\(641\) 5530.69 + 9579.44i 0.340794 + 0.590273i 0.984580 0.174932i \(-0.0559707\pi\)
−0.643786 + 0.765205i \(0.722637\pi\)
\(642\) 0 0
\(643\) 2692.21 + 4663.04i 0.165117 + 0.285991i 0.936697 0.350141i \(-0.113866\pi\)
−0.771580 + 0.636133i \(0.780533\pi\)
\(644\) 0 0
\(645\) 3794.24 0.231625
\(646\) 0 0
\(647\) 5658.67 9801.10i 0.343841 0.595550i −0.641302 0.767289i \(-0.721605\pi\)
0.985142 + 0.171739i \(0.0549386\pi\)
\(648\) 0 0
\(649\) 27700.4 1.67540
\(650\) 0 0
\(651\) −2355.88 −0.141835
\(652\) 0 0
\(653\) 3858.15 6682.51i 0.231212 0.400470i −0.726953 0.686687i \(-0.759064\pi\)
0.958165 + 0.286217i \(0.0923977\pi\)
\(654\) 0 0
\(655\) 8201.82 0.489270
\(656\) 0 0
\(657\) 283.535 + 491.098i 0.0168368 + 0.0291622i
\(658\) 0 0
\(659\) −7112.70 12319.6i −0.420442 0.728228i 0.575540 0.817773i \(-0.304792\pi\)
−0.995983 + 0.0895458i \(0.971458\pi\)
\(660\) 0 0
\(661\) −3887.18 + 6732.80i −0.228735 + 0.396181i −0.957433 0.288654i \(-0.906792\pi\)
0.728698 + 0.684835i \(0.240126\pi\)
\(662\) 0 0
\(663\) −7142.91 + 3840.61i −0.418413 + 0.224973i
\(664\) 0 0
\(665\) 393.584 681.708i 0.0229512 0.0397526i
\(666\) 0 0
\(667\) 13862.9 + 24011.3i 0.804760 + 1.39389i
\(668\) 0 0
\(669\) −9010.43 15606.5i −0.520723 0.901918i
\(670\) 0 0
\(671\) 28294.9 1.62789
\(672\) 0 0
\(673\) −6311.47 + 10931.8i −0.361500 + 0.626136i −0.988208 0.153118i \(-0.951069\pi\)
0.626708 + 0.779254i \(0.284402\pi\)
\(674\) 0 0
\(675\) −2983.60 −0.170131
\(676\) 0 0
\(677\) 10632.0 0.603574 0.301787 0.953375i \(-0.402417\pi\)
0.301787 + 0.953375i \(0.402417\pi\)
\(678\) 0 0
\(679\) 1037.97 1797.82i 0.0586653 0.101611i
\(680\) 0 0
\(681\) 11796.9 0.663815
\(682\) 0 0
\(683\) −9960.33 17251.8i −0.558011 0.966504i −0.997662 0.0683351i \(-0.978231\pi\)
0.439651 0.898169i \(-0.355102\pi\)
\(684\) 0 0
\(685\) 3360.71 + 5820.92i 0.187454 + 0.324680i
\(686\) 0 0
\(687\) 2381.54 4124.95i 0.132258 0.229078i
\(688\) 0 0
\(689\) −20740.2 + 11151.6i −1.14679 + 0.616607i
\(690\) 0 0
\(691\) −9881.94 + 17116.0i −0.544033 + 0.942292i 0.454634 + 0.890678i \(0.349770\pi\)
−0.998667 + 0.0516141i \(0.983563\pi\)
\(692\) 0 0
\(693\) −400.885 694.352i −0.0219745 0.0380610i
\(694\) 0 0
\(695\) 946.154 + 1638.79i 0.0516398 + 0.0894427i
\(696\) 0 0
\(697\) −9755.00 −0.530125
\(698\) 0 0
\(699\) −5945.82 + 10298.5i −0.321733 + 0.557259i
\(700\) 0 0
\(701\) 13316.9 0.717505 0.358752 0.933433i \(-0.383202\pi\)
0.358752 + 0.933433i \(0.383202\pi\)
\(702\) 0 0
\(703\) −26560.7 −1.42497
\(704\) 0 0
\(705\) 1046.97 1813.40i 0.0559306 0.0968747i
\(706\) 0 0
\(707\) −929.566 −0.0494483
\(708\) 0 0
\(709\) 2858.93 + 4951.81i 0.151438 + 0.262298i 0.931756 0.363084i \(-0.118276\pi\)
−0.780318 + 0.625382i \(0.784943\pi\)
\(710\) 0 0
\(711\) −3560.20 6166.44i −0.187789 0.325260i
\(712\) 0 0
\(713\) −28871.7 + 50007.2i −1.51648 + 2.62663i
\(714\) 0 0
\(715\) −168.673 + 5571.99i −0.00882238 + 0.291442i
\(716\) 0 0
\(717\) 3052.00 5286.21i 0.158966 0.275338i
\(718\) 0 0
\(719\) 1638.00 + 2837.09i 0.0849610 + 0.147157i 0.905375 0.424614i \(-0.139590\pi\)
−0.820414 + 0.571771i \(0.806257\pi\)
\(720\) 0 0
\(721\) 2386.63 + 4133.76i 0.123277 + 0.213522i
\(722\) 0 0
\(723\) 1205.28 0.0619984
\(724\) 0 0
\(725\) −7304.97 + 12652.6i −0.374206 + 0.648144i
\(726\) 0 0
\(727\) −1495.17 −0.0762762 −0.0381381 0.999272i \(-0.512143\pi\)
−0.0381381 + 0.999272i \(0.512143\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) −9579.09 + 16591.5i −0.484672 + 0.839477i
\(732\) 0 0
\(733\) 35552.7 1.79150 0.895750 0.444558i \(-0.146639\pi\)
0.895750 + 0.444558i \(0.146639\pi\)
\(734\) 0 0
\(735\) −1912.47 3312.49i −0.0959761 0.166235i
\(736\) 0 0
\(737\) −1869.77 3238.53i −0.0934516 0.161863i
\(738\) 0 0
\(739\) 11145.6 19304.7i 0.554799 0.960939i −0.443121 0.896462i \(-0.646129\pi\)
0.997919 0.0644772i \(-0.0205380\pi\)
\(740\) 0 0
\(741\) −8978.12 + 4827.37i −0.445101 + 0.239322i
\(742\) 0 0
\(743\) −3814.99 + 6607.76i −0.188369 + 0.326265i −0.944707 0.327916i \(-0.893654\pi\)
0.756337 + 0.654182i \(0.226987\pi\)
\(744\) 0 0
\(745\) 860.194 + 1489.90i 0.0423021 + 0.0732694i
\(746\) 0 0
\(747\) −771.663 1336.56i −0.0377961 0.0654647i
\(748\) 0 0
\(749\) −215.066 −0.0104918
\(750\) 0 0
\(751\) 17810.5 30848.7i 0.865398 1.49891i −0.00125352 0.999999i \(-0.500399\pi\)
0.866651 0.498914i \(-0.166268\pi\)
\(752\) 0 0
\(753\) 3859.27 0.186772
\(754\) 0 0
\(755\) −5966.56 −0.287610
\(756\) 0 0
\(757\) 10149.2 17578.9i 0.487290 0.844011i −0.512603 0.858626i \(-0.671319\pi\)
0.999893 + 0.0146145i \(0.00465210\pi\)
\(758\) 0 0
\(759\) −19651.6 −0.939799
\(760\) 0 0
\(761\) −8097.40 14025.1i −0.385717 0.668081i 0.606152 0.795349i \(-0.292712\pi\)
−0.991868 + 0.127268i \(0.959379\pi\)
\(762\) 0 0
\(763\) 336.730 + 583.234i 0.0159770 + 0.0276730i
\(764\) 0 0
\(765\) −988.158 + 1711.54i −0.0467018 + 0.0808900i
\(766\) 0 0
\(767\) 35351.9 + 21862.7i 1.66425 + 1.02922i
\(768\) 0 0
\(769\) 16696.9 28920.0i 0.782974 1.35615i −0.147228 0.989103i \(-0.547035\pi\)
0.930202 0.367049i \(-0.119632\pi\)
\(770\) 0 0
\(771\) 8983.20 + 15559.4i 0.419614 + 0.726792i
\(772\) 0 0
\(773\) −13267.6 22980.1i −0.617337 1.06926i −0.989970 0.141280i \(-0.954878\pi\)
0.372633 0.927979i \(-0.378455\pi\)
\(774\) 0 0
\(775\) −30427.4 −1.41030
\(776\) 0 0
\(777\) 1567.41 2714.83i 0.0723687 0.125346i
\(778\) 0 0
\(779\) −12261.3 −0.563938
\(780\) 0 0
\(781\) −14461.5 −0.662579
\(782\) 0 0
\(783\) 1784.87 3091.48i 0.0814635 0.141099i
\(784\) 0 0
\(785\) 2220.95 0.100980
\(786\) 0 0
\(787\) 8821.73 + 15279.7i 0.399569 + 0.692073i 0.993673 0.112315i \(-0.0358265\pi\)
−0.594104 + 0.804388i \(0.702493\pi\)
\(788\) 0 0
\(789\) −11090.3 19208.9i −0.500410 0.866735i
\(790\) 0 0
\(791\) 3028.59 5245.67i 0.136137 0.235796i
\(792\) 0 0
\(793\) 36110.6 + 22331.9i 1.61706 + 1.00004i
\(794\) 0 0
\(795\) −2869.22 + 4969.63i −0.128001 + 0.221704i
\(796\) 0 0
\(797\) −12555.6 21747.0i −0.558022 0.966523i −0.997661 0.0683486i \(-0.978227\pi\)
0.439639 0.898175i \(-0.355106\pi\)
\(798\) 0 0
\(799\) 5286.44 + 9156.38i 0.234069 + 0.405419i
\(800\) 0 0
\(801\) −1668.08 −0.0735816
\(802\) 0 0
\(803\) −984.074 + 1704.47i −0.0432469 + 0.0749057i
\(804\) 0 0
\(805\) 2277.13 0.0996998
\(806\) 0 0
\(807\) −3141.76 −0.137045
\(808\) 0 0
\(809\) 12842.0 22242.9i 0.558095 0.966649i −0.439560 0.898213i \(-0.644866\pi\)
0.997656 0.0684361i \(-0.0218009\pi\)
\(810\) 0 0
\(811\) −13001.9 −0.562959 −0.281480 0.959567i \(-0.590825\pi\)
−0.281480 + 0.959567i \(0.590825\pi\)
\(812\) 0 0
\(813\) 3772.37 + 6533.93i 0.162734 + 0.281863i
\(814\) 0 0
\(815\) −4738.76 8207.77i −0.203671 0.352768i
\(816\) 0 0
\(817\) −12040.2 + 20854.3i −0.515586 + 0.893022i
\(818\) 0 0
\(819\) 36.4029 1202.55i 0.00155314 0.0513070i
\(820\) 0 0
\(821\) −15274.8 + 26456.7i −0.649322 + 1.12466i 0.333963 + 0.942586i \(0.391614\pi\)
−0.983285 + 0.182073i \(0.941719\pi\)
\(822\) 0 0
\(823\) 10099.8 + 17493.4i 0.427773 + 0.740924i 0.996675 0.0814813i \(-0.0259651\pi\)
−0.568902 + 0.822405i \(0.692632\pi\)
\(824\) 0 0
\(825\) −5177.62 8967.91i −0.218499 0.378452i
\(826\) 0 0
\(827\) −43905.1 −1.84611 −0.923054 0.384670i \(-0.874315\pi\)
−0.923054 + 0.384670i \(0.874315\pi\)
\(828\) 0 0
\(829\) 16815.3 29125.0i 0.704488 1.22021i −0.262388 0.964963i \(-0.584510\pi\)
0.966876 0.255247i \(-0.0821568\pi\)
\(830\) 0 0
\(831\) −23988.7 −1.00140
\(832\) 0 0
\(833\) 19313.2 0.803316
\(834\) 0 0
\(835\) 2907.60 5036.12i 0.120505 0.208721i
\(836\) 0 0
\(837\) 7434.51 0.307018
\(838\) 0 0
\(839\) −4030.10 6980.33i −0.165834 0.287232i 0.771117 0.636693i \(-0.219698\pi\)
−0.936951 + 0.349461i \(0.886365\pi\)
\(840\) 0 0
\(841\) 3454.45 + 5983.28i 0.141640 + 0.245327i
\(842\) 0 0
\(843\) 74.5644 129.149i 0.00304642 0.00527656i
\(844\) 0 0
\(845\) −4612.98 + 6977.97i −0.187801 + 0.284082i
\(846\) 0 0
\(847\) −506.619 + 877.489i −0.0205521 + 0.0355973i
\(848\) 0 0
\(849\) −3117.45 5399.59i −0.126020 0.218272i
\(850\) 0 0
\(851\) −38417.6 66541.3i −1.54752 2.68038i
\(852\) 0 0
\(853\) 10203.0 0.409547 0.204774 0.978809i \(-0.434354\pi\)
0.204774 + 0.978809i \(0.434354\pi\)
\(854\) 0 0
\(855\) −1242.04 + 2151.28i −0.0496807 + 0.0860494i
\(856\) 0 0
\(857\) 16302.0 0.649786 0.324893 0.945751i \(-0.394672\pi\)
0.324893 + 0.945751i \(0.394672\pi\)
\(858\) 0 0
\(859\) −15836.3 −0.629019 −0.314509 0.949254i \(-0.601840\pi\)
−0.314509 + 0.949254i \(0.601840\pi\)
\(860\) 0 0
\(861\) 723.569 1253.26i 0.0286401 0.0496062i
\(862\) 0 0
\(863\) 4868.59 0.192038 0.0960190 0.995380i \(-0.469389\pi\)
0.0960190 + 0.995380i \(0.469389\pi\)
\(864\) 0 0
\(865\) 5037.57 + 8725.32i 0.198014 + 0.342971i
\(866\) 0 0
\(867\) 2380.01 + 4122.30i 0.0932288 + 0.161477i
\(868\) 0 0
\(869\) 12356.5 21402.0i 0.482353 0.835460i
\(870\) 0 0
\(871\) 169.787 5608.81i 0.00660508 0.218194i
\(872\) 0 0
\(873\) −3275.56 + 5673.43i −0.126988 + 0.219950i
\(874\) 0 0
\(875\) 1278.62 + 2214.64i 0.0494004 + 0.0855640i
\(876\) 0 0
\(877\) 8526.79 + 14768.8i 0.328312 + 0.568652i 0.982177 0.187959i \(-0.0601871\pi\)
−0.653865 + 0.756611i \(0.726854\pi\)
\(878\) 0 0
\(879\) −28543.7 −1.09528
\(880\) 0 0
\(881\) −12258.6 + 21232.4i −0.468787 + 0.811963i −0.999363 0.0356741i \(-0.988642\pi\)
0.530576 + 0.847637i \(0.321976\pi\)
\(882\) 0 0
\(883\) 28530.6 1.08735 0.543676 0.839295i \(-0.317032\pi\)
0.543676 + 0.839295i \(0.317032\pi\)
\(884\) 0 0
\(885\) 10129.2 0.384734
\(886\) 0 0
\(887\) 11508.2 19932.8i 0.435634 0.754540i −0.561713 0.827332i \(-0.689858\pi\)
0.997347 + 0.0727922i \(0.0231910\pi\)
\(888\) 0 0
\(889\) 2429.57 0.0916592
\(890\) 0 0
\(891\) 1265.08 + 2191.18i 0.0475666 + 0.0823877i
\(892\) 0 0
\(893\) 6644.67 + 11508.9i 0.248998 + 0.431278i
\(894\) 0 0
\(895\) 3706.63 6420.08i 0.138435 0.239776i
\(896\) 0 0
\(897\) −25079.8 15510.1i −0.933545 0.577332i
\(898\) 0 0
\(899\) 18202.5 31527.6i 0.675291 1.16964i
\(900\) 0 0
\(901\) −14487.5 25093.1i −0.535681 0.927826i
\(902\) 0 0
\(903\) −1421.04 2461.32i −0.0523691 0.0907059i
\(904\) 0 0
\(905\) −10979.2 −0.403270
\(906\) 0 0
\(907\) 2268.15 3928.55i 0.0830350 0.143821i −0.821517 0.570184i \(-0.806872\pi\)
0.904552 + 0.426363i \(0.140205\pi\)
\(908\) 0 0
\(909\) 2933.45 0.107037
\(910\) 0 0
\(911\) 15771.7 0.573590 0.286795 0.957992i \(-0.407410\pi\)
0.286795 + 0.957992i \(0.407410\pi\)
\(912\) 0 0
\(913\) 2678.23 4638.83i 0.0970827 0.168152i
\(914\) 0 0
\(915\) 10346.6 0.373823
\(916\) 0 0
\(917\) −3071.80 5320.51i −0.110621 0.191602i
\(918\) 0 0
\(919\) −3513.63 6085.78i −0.126119 0.218445i 0.796051 0.605230i \(-0.206919\pi\)
−0.922170 + 0.386785i \(0.873586\pi\)
\(920\) 0 0
\(921\) 6600.78 11432.9i 0.236160 0.409041i
\(922\) 0 0
\(923\) −18456.1 11413.8i −0.658170 0.407032i
\(924\) 0 0
\(925\) 20243.9 35063.4i 0.719583 1.24635i
\(926\) 0 0
\(927\) −7531.53 13045.0i −0.266848 0.462194i
\(928\) 0 0
\(929\) 10563.5 + 18296.5i 0.373064 + 0.646167i 0.990035 0.140819i \(-0.0449737\pi\)
−0.616971 + 0.786986i \(0.711640\pi\)
\(930\) 0 0
\(931\) 24275.3 0.854554
\(932\) 0 0
\(933\) −2826.58 + 4895.78i −0.0991834 + 0.171791i
\(934\) 0 0
\(935\) −6859.25 −0.239916
\(936\) 0 0
\(937\) −3740.82 −0.130424 −0.0652120 0.997871i \(-0.520772\pi\)
−0.0652120 + 0.997871i \(0.520772\pi\)
\(938\) 0 0
\(939\) 12392.3 21464.1i 0.430679 0.745957i
\(940\) 0 0
\(941\) 19247.6 0.666794 0.333397 0.942786i \(-0.391805\pi\)
0.333397 + 0.942786i \(0.391805\pi\)
\(942\) 0 0
\(943\) −17734.9 30717.7i −0.612436 1.06077i
\(944\) 0 0
\(945\) −146.591 253.904i −0.00504616 0.00874020i
\(946\) 0 0
\(947\) 2308.36 3998.20i 0.0792098 0.137195i −0.823699 0.567027i \(-0.808094\pi\)
0.902909 + 0.429831i \(0.141427\pi\)
\(948\) 0 0
\(949\) −2601.15 + 1398.59i −0.0889748 + 0.0478401i
\(950\) 0 0
\(951\) −15695.3 + 27185.0i −0.535178 + 0.926956i
\(952\) 0 0
\(953\) −18465.3 31982.8i −0.627648 1.08712i −0.988022 0.154311i \(-0.950684\pi\)
0.360374 0.932808i \(-0.382649\pi\)
\(954\) 0 0
\(955\) −5210.45 9024.76i −0.176551 0.305795i
\(956\) 0 0
\(957\) 12389.6 0.418493
\(958\) 0 0
\(959\) 2517.35 4360.18i 0.0847648 0.146817i
\(960\) 0 0
\(961\) 46027.9 1.54503
\(962\) 0 0
\(963\) 678.688 0.0227107
\(964\) 0 0
\(965\) 2547.19 4411.87i 0.0849711 0.147174i
\(966\) 0 0
\(967\) −46234.2 −1.53753 −0.768764 0.639532i \(-0.779128\pi\)
−0.768764 + 0.639532i \(0.779128\pi\)
\(968\) 0 0
\(969\) −6271.43 10862.4i −0.207913 0.360115i
\(970\) 0 0
\(971\) 4182.77 + 7244.77i 0.138240 + 0.239439i 0.926831 0.375480i \(-0.122522\pi\)
−0.788590 + 0.614919i \(0.789189\pi\)
\(972\) 0 0
\(973\) 708.719 1227.54i 0.0233510 0.0404451i
\(974\) 0 0
\(975\) 470.162 15531.5i 0.0154433 0.510160i
\(976\) 0 0
\(977\) −17324.2 + 30006.5i −0.567300 + 0.982592i 0.429532 + 0.903052i \(0.358679\pi\)
−0.996832 + 0.0795401i \(0.974655\pi\)
\(978\) 0 0
\(979\) −2894.73 5013.82i −0.0945006 0.163680i
\(980\) 0 0
\(981\) −1062.63 1840.53i −0.0345842 0.0599016i
\(982\) 0 0
\(983\) 18374.0 0.596174 0.298087 0.954539i \(-0.403651\pi\)
0.298087 + 0.954539i \(0.403651\pi\)
\(984\) 0 0
\(985\) 3244.26 5619.22i 0.104945 0.181770i
\(986\) 0 0
\(987\) −1568.47 −0.0505825
\(988\) 0 0
\(989\) −69660.2 −2.23970
\(990\) 0 0
\(991\) −7812.32 + 13531.3i −0.250420 + 0.433741i −0.963642 0.267198i \(-0.913902\pi\)
0.713221 + 0.700939i \(0.247235\pi\)
\(992\) 0 0
\(993\) 15635.1 0.499664
\(994\) 0 0
\(995\) 6243.16 + 10813.5i 0.198916 + 0.344533i
\(996\) 0 0
\(997\) −23308.2 40370.9i −0.740399 1.28241i −0.952314 0.305120i \(-0.901303\pi\)
0.211915 0.977288i \(-0.432030\pi\)
\(998\) 0 0
\(999\) −4946.31 + 8567.26i −0.156651 + 0.271327i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 312.4.q.e.217.3 12
4.3 odd 2 624.4.q.n.529.3 12
13.3 even 3 inner 312.4.q.e.289.3 yes 12
52.3 odd 6 624.4.q.n.289.3 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.4.q.e.217.3 12 1.1 even 1 trivial
312.4.q.e.289.3 yes 12 13.3 even 3 inner
624.4.q.n.289.3 12 52.3 odd 6
624.4.q.n.529.3 12 4.3 odd 2