Properties

Label 312.4.q.e.289.3
Level $312$
Weight $4$
Character 312.289
Analytic conductor $18.409$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [312,4,Mod(217,312)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(312, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 4])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("312.217"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 312 = 2^{3} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 312.q (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.4085959218\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 161 x^{10} - 1480 x^{9} + 25918 x^{8} - 119864 x^{7} + 547597 x^{6} - 230908 x^{5} + \cdots + 59049 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{20} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 289.3
Root \(-0.206972 - 0.358486i\) of defining polynomial
Character \(\chi\) \(=\) 312.289
Dual form 312.4.q.e.217.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.50000 - 2.59808i) q^{3} -3.80742 q^{5} +(1.42598 - 2.46987i) q^{7} +(-4.50000 + 7.79423i) q^{9} +(15.6183 + 27.0517i) q^{11} +(41.2830 + 22.1971i) q^{13} +(5.71114 + 9.89198i) q^{15} +(28.8372 - 49.9474i) q^{17} +(36.2462 - 62.7803i) q^{19} -8.55588 q^{21} +(-104.854 - 181.612i) q^{23} -110.504 q^{25} +27.0000 q^{27} +(66.1062 + 114.499i) q^{29} +275.352 q^{31} +(46.8548 - 81.1550i) q^{33} +(-5.42931 + 9.40385i) q^{35} +(-183.197 - 317.306i) q^{37} +(-4.25473 - 140.552i) q^{39} +(-84.5698 - 146.479i) q^{41} +(166.089 - 287.675i) q^{43} +(17.1334 - 29.6759i) q^{45} +183.320 q^{47} +(167.433 + 290.003i) q^{49} -173.023 q^{51} -502.390 q^{53} +(-59.4654 - 102.997i) q^{55} -217.477 q^{57} +(443.397 - 767.986i) q^{59} +(452.914 - 784.470i) q^{61} +(12.8338 + 22.2288i) q^{63} +(-157.182 - 84.5138i) q^{65} +(59.8583 + 103.678i) q^{67} +(-314.561 + 544.835i) q^{69} +(-231.484 + 400.942i) q^{71} -63.0078 q^{73} +(165.755 + 287.097i) q^{75} +89.0855 q^{77} +791.154 q^{79} +(-40.5000 - 70.1481i) q^{81} +171.481 q^{83} +(-109.795 + 190.171i) q^{85} +(198.319 - 343.498i) q^{87} +(92.6713 + 160.511i) q^{89} +(113.693 - 70.3111i) q^{91} +(-413.028 - 715.386i) q^{93} +(-138.005 + 239.031i) q^{95} +(-363.951 + 630.381i) q^{97} -281.129 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 18 q^{3} + 8 q^{5} - 10 q^{7} - 54 q^{9} - 60 q^{11} + 86 q^{13} - 12 q^{15} - 56 q^{17} - 48 q^{19} + 60 q^{21} + 80 q^{23} + 508 q^{25} + 324 q^{27} - 164 q^{29} + 668 q^{31} - 180 q^{33} + 552 q^{35}+ \cdots + 1080 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/312\mathbb{Z}\right)^\times\).

\(n\) \(79\) \(145\) \(157\) \(209\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.50000 2.59808i −0.288675 0.500000i
\(4\) 0 0
\(5\) −3.80742 −0.340546 −0.170273 0.985397i \(-0.554465\pi\)
−0.170273 + 0.985397i \(0.554465\pi\)
\(6\) 0 0
\(7\) 1.42598 2.46987i 0.0769957 0.133360i −0.824957 0.565196i \(-0.808801\pi\)
0.901952 + 0.431835i \(0.142134\pi\)
\(8\) 0 0
\(9\) −4.50000 + 7.79423i −0.166667 + 0.288675i
\(10\) 0 0
\(11\) 15.6183 + 27.0517i 0.428099 + 0.741489i 0.996704 0.0811214i \(-0.0258501\pi\)
−0.568605 + 0.822611i \(0.692517\pi\)
\(12\) 0 0
\(13\) 41.2830 + 22.1971i 0.880758 + 0.473567i
\(14\) 0 0
\(15\) 5.71114 + 9.89198i 0.0983073 + 0.170273i
\(16\) 0 0
\(17\) 28.8372 49.9474i 0.411414 0.712590i −0.583631 0.812019i \(-0.698368\pi\)
0.995045 + 0.0994294i \(0.0317017\pi\)
\(18\) 0 0
\(19\) 36.2462 62.7803i 0.437655 0.758042i −0.559853 0.828592i \(-0.689142\pi\)
0.997508 + 0.0705506i \(0.0224756\pi\)
\(20\) 0 0
\(21\) −8.55588 −0.0889070
\(22\) 0 0
\(23\) −104.854 181.612i −0.950586 1.64646i −0.744161 0.668001i \(-0.767150\pi\)
−0.206425 0.978462i \(-0.566183\pi\)
\(24\) 0 0
\(25\) −110.504 −0.884028
\(26\) 0 0
\(27\) 27.0000 0.192450
\(28\) 0 0
\(29\) 66.1062 + 114.499i 0.423297 + 0.733172i 0.996260 0.0864097i \(-0.0275394\pi\)
−0.572963 + 0.819581i \(0.694206\pi\)
\(30\) 0 0
\(31\) 275.352 1.59531 0.797657 0.603112i \(-0.206073\pi\)
0.797657 + 0.603112i \(0.206073\pi\)
\(32\) 0 0
\(33\) 46.8548 81.1550i 0.247163 0.428099i
\(34\) 0 0
\(35\) −5.42931 + 9.40385i −0.0262206 + 0.0454154i
\(36\) 0 0
\(37\) −183.197 317.306i −0.813982 1.40986i −0.910057 0.414484i \(-0.863962\pi\)
0.0960748 0.995374i \(-0.469371\pi\)
\(38\) 0 0
\(39\) −4.25473 140.552i −0.0174693 0.577086i
\(40\) 0 0
\(41\) −84.5698 146.479i −0.322136 0.557956i 0.658793 0.752325i \(-0.271068\pi\)
−0.980929 + 0.194369i \(0.937734\pi\)
\(42\) 0 0
\(43\) 166.089 287.675i 0.589032 1.02023i −0.405327 0.914172i \(-0.632842\pi\)
0.994359 0.106062i \(-0.0338243\pi\)
\(44\) 0 0
\(45\) 17.1334 29.6759i 0.0567577 0.0983073i
\(46\) 0 0
\(47\) 183.320 0.568937 0.284468 0.958685i \(-0.408183\pi\)
0.284468 + 0.958685i \(0.408183\pi\)
\(48\) 0 0
\(49\) 167.433 + 290.003i 0.488143 + 0.845489i
\(50\) 0 0
\(51\) −173.023 −0.475060
\(52\) 0 0
\(53\) −502.390 −1.30205 −0.651024 0.759057i \(-0.725660\pi\)
−0.651024 + 0.759057i \(0.725660\pi\)
\(54\) 0 0
\(55\) −59.4654 102.997i −0.145788 0.252511i
\(56\) 0 0
\(57\) −217.477 −0.505361
\(58\) 0 0
\(59\) 443.397 767.986i 0.978396 1.69463i 0.310158 0.950685i \(-0.399618\pi\)
0.668239 0.743947i \(-0.267049\pi\)
\(60\) 0 0
\(61\) 452.914 784.470i 0.950651 1.64657i 0.206629 0.978419i \(-0.433751\pi\)
0.744022 0.668156i \(-0.232916\pi\)
\(62\) 0 0
\(63\) 12.8338 + 22.2288i 0.0256652 + 0.0444535i
\(64\) 0 0
\(65\) −157.182 84.5138i −0.299939 0.161272i
\(66\) 0 0
\(67\) 59.8583 + 103.678i 0.109147 + 0.189048i 0.915425 0.402489i \(-0.131855\pi\)
−0.806278 + 0.591537i \(0.798521\pi\)
\(68\) 0 0
\(69\) −314.561 + 544.835i −0.548821 + 0.950586i
\(70\) 0 0
\(71\) −231.484 + 400.942i −0.386931 + 0.670184i −0.992035 0.125962i \(-0.959798\pi\)
0.605104 + 0.796146i \(0.293132\pi\)
\(72\) 0 0
\(73\) −63.0078 −0.101021 −0.0505103 0.998724i \(-0.516085\pi\)
−0.0505103 + 0.998724i \(0.516085\pi\)
\(74\) 0 0
\(75\) 165.755 + 287.097i 0.255197 + 0.442014i
\(76\) 0 0
\(77\) 89.0855 0.131847
\(78\) 0 0
\(79\) 791.154 1.12673 0.563366 0.826207i \(-0.309506\pi\)
0.563366 + 0.826207i \(0.309506\pi\)
\(80\) 0 0
\(81\) −40.5000 70.1481i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) 171.481 0.226776 0.113388 0.993551i \(-0.463830\pi\)
0.113388 + 0.993551i \(0.463830\pi\)
\(84\) 0 0
\(85\) −109.795 + 190.171i −0.140106 + 0.242670i
\(86\) 0 0
\(87\) 198.319 343.498i 0.244391 0.423297i
\(88\) 0 0
\(89\) 92.6713 + 160.511i 0.110372 + 0.191171i 0.915920 0.401360i \(-0.131462\pi\)
−0.805548 + 0.592530i \(0.798129\pi\)
\(90\) 0 0
\(91\) 113.693 70.3111i 0.130970 0.0809956i
\(92\) 0 0
\(93\) −413.028 715.386i −0.460527 0.797657i
\(94\) 0 0
\(95\) −138.005 + 239.031i −0.149042 + 0.258148i
\(96\) 0 0
\(97\) −363.951 + 630.381i −0.380965 + 0.659851i −0.991200 0.132369i \(-0.957742\pi\)
0.610235 + 0.792220i \(0.291075\pi\)
\(98\) 0 0
\(99\) −281.129 −0.285399
\(100\) 0 0
\(101\) −162.970 282.272i −0.160555 0.278090i 0.774513 0.632558i \(-0.217995\pi\)
−0.935068 + 0.354469i \(0.884662\pi\)
\(102\) 0 0
\(103\) 1673.67 1.60109 0.800543 0.599275i \(-0.204544\pi\)
0.800543 + 0.599275i \(0.204544\pi\)
\(104\) 0 0
\(105\) 32.5759 0.0302770
\(106\) 0 0
\(107\) −37.7049 65.3068i −0.0340661 0.0590042i 0.848490 0.529212i \(-0.177512\pi\)
−0.882556 + 0.470208i \(0.844179\pi\)
\(108\) 0 0
\(109\) 236.140 0.207505 0.103753 0.994603i \(-0.466915\pi\)
0.103753 + 0.994603i \(0.466915\pi\)
\(110\) 0 0
\(111\) −549.590 + 951.917i −0.469953 + 0.813982i
\(112\) 0 0
\(113\) −1061.93 + 1839.32i −0.884054 + 1.53123i −0.0372595 + 0.999306i \(0.511863\pi\)
−0.846794 + 0.531920i \(0.821471\pi\)
\(114\) 0 0
\(115\) 399.222 + 691.473i 0.323719 + 0.560697i
\(116\) 0 0
\(117\) −358.783 + 221.882i −0.283500 + 0.175325i
\(118\) 0 0
\(119\) −82.2424 142.448i −0.0633542 0.109733i
\(120\) 0 0
\(121\) 177.639 307.679i 0.133463 0.231164i
\(122\) 0 0
\(123\) −253.709 + 439.437i −0.185985 + 0.322136i
\(124\) 0 0
\(125\) 896.662 0.641599
\(126\) 0 0
\(127\) 425.946 + 737.761i 0.297611 + 0.515478i 0.975589 0.219605i \(-0.0704767\pi\)
−0.677978 + 0.735083i \(0.737143\pi\)
\(128\) 0 0
\(129\) −996.536 −0.680156
\(130\) 0 0
\(131\) −2154.16 −1.43672 −0.718360 0.695672i \(-0.755107\pi\)
−0.718360 + 0.695672i \(0.755107\pi\)
\(132\) 0 0
\(133\) −103.373 179.047i −0.0673952 0.116732i
\(134\) 0 0
\(135\) −102.800 −0.0655382
\(136\) 0 0
\(137\) −882.673 + 1528.84i −0.550452 + 0.953410i 0.447790 + 0.894139i \(0.352211\pi\)
−0.998242 + 0.0592716i \(0.981122\pi\)
\(138\) 0 0
\(139\) −248.502 + 430.419i −0.151638 + 0.262645i −0.931830 0.362896i \(-0.881788\pi\)
0.780192 + 0.625540i \(0.215121\pi\)
\(140\) 0 0
\(141\) −274.981 476.281i −0.164238 0.284468i
\(142\) 0 0
\(143\) 44.3010 + 1463.45i 0.0259065 + 0.855806i
\(144\) 0 0
\(145\) −251.694 435.947i −0.144152 0.249679i
\(146\) 0 0
\(147\) 502.299 870.008i 0.281830 0.488143i
\(148\) 0 0
\(149\) −225.926 + 391.315i −0.124218 + 0.215153i −0.921427 0.388551i \(-0.872976\pi\)
0.797209 + 0.603704i \(0.206309\pi\)
\(150\) 0 0
\(151\) 1567.08 0.844553 0.422277 0.906467i \(-0.361231\pi\)
0.422277 + 0.906467i \(0.361231\pi\)
\(152\) 0 0
\(153\) 259.534 + 449.527i 0.137138 + 0.237530i
\(154\) 0 0
\(155\) −1048.38 −0.543278
\(156\) 0 0
\(157\) −583.320 −0.296522 −0.148261 0.988948i \(-0.547368\pi\)
−0.148261 + 0.988948i \(0.547368\pi\)
\(158\) 0 0
\(159\) 753.584 + 1305.25i 0.375869 + 0.651024i
\(160\) 0 0
\(161\) −598.077 −0.292764
\(162\) 0 0
\(163\) 1244.61 2155.73i 0.598070 1.03589i −0.395036 0.918666i \(-0.629268\pi\)
0.993106 0.117222i \(-0.0373988\pi\)
\(164\) 0 0
\(165\) −178.396 + 308.991i −0.0841705 + 0.145788i
\(166\) 0 0
\(167\) −763.667 1322.71i −0.353858 0.612900i 0.633064 0.774100i \(-0.281797\pi\)
−0.986922 + 0.161199i \(0.948464\pi\)
\(168\) 0 0
\(169\) 1211.58 + 1832.73i 0.551468 + 0.834196i
\(170\) 0 0
\(171\) 326.216 + 565.023i 0.145885 + 0.252681i
\(172\) 0 0
\(173\) −1323.09 + 2291.66i −0.581461 + 1.00712i 0.413846 + 0.910347i \(0.364185\pi\)
−0.995307 + 0.0967725i \(0.969148\pi\)
\(174\) 0 0
\(175\) −157.576 + 272.929i −0.0680664 + 0.117894i
\(176\) 0 0
\(177\) −2660.38 −1.12975
\(178\) 0 0
\(179\) −973.528 1686.20i −0.406508 0.704092i 0.587988 0.808870i \(-0.299920\pi\)
−0.994496 + 0.104778i \(0.966587\pi\)
\(180\) 0 0
\(181\) 2883.62 1.18419 0.592093 0.805869i \(-0.298302\pi\)
0.592093 + 0.805869i \(0.298302\pi\)
\(182\) 0 0
\(183\) −2717.48 −1.09772
\(184\) 0 0
\(185\) 697.507 + 1208.12i 0.277199 + 0.480122i
\(186\) 0 0
\(187\) 1801.55 0.704504
\(188\) 0 0
\(189\) 38.5015 66.6865i 0.0148178 0.0256652i
\(190\) 0 0
\(191\) 1368.50 2370.31i 0.518434 0.897954i −0.481336 0.876536i \(-0.659848\pi\)
0.999771 0.0214184i \(-0.00681822\pi\)
\(192\) 0 0
\(193\) −669.007 1158.75i −0.249514 0.432171i 0.713877 0.700271i \(-0.246937\pi\)
−0.963391 + 0.268100i \(0.913604\pi\)
\(194\) 0 0
\(195\) 16.1995 + 535.142i 0.00594910 + 0.196525i
\(196\) 0 0
\(197\) −852.088 1475.86i −0.308166 0.533759i 0.669795 0.742546i \(-0.266382\pi\)
−0.977961 + 0.208787i \(0.933049\pi\)
\(198\) 0 0
\(199\) −1639.73 + 2840.10i −0.584108 + 1.01171i 0.410878 + 0.911690i \(0.365222\pi\)
−0.994986 + 0.100015i \(0.968111\pi\)
\(200\) 0 0
\(201\) 179.575 311.033i 0.0630162 0.109147i
\(202\) 0 0
\(203\) 377.065 0.130368
\(204\) 0 0
\(205\) 321.993 + 557.708i 0.109702 + 0.190010i
\(206\) 0 0
\(207\) 1887.36 0.633724
\(208\) 0 0
\(209\) 2264.41 0.749439
\(210\) 0 0
\(211\) 1549.42 + 2683.68i 0.505530 + 0.875603i 0.999980 + 0.00639673i \(0.00203616\pi\)
−0.494450 + 0.869206i \(0.664631\pi\)
\(212\) 0 0
\(213\) 1388.90 0.446790
\(214\) 0 0
\(215\) −632.373 + 1095.30i −0.200593 + 0.347437i
\(216\) 0 0
\(217\) 392.647 680.085i 0.122832 0.212752i
\(218\) 0 0
\(219\) 94.5118 + 163.699i 0.0291622 + 0.0505103i
\(220\) 0 0
\(221\) 2299.17 1421.88i 0.699815 0.432787i
\(222\) 0 0
\(223\) −3003.48 5202.18i −0.901918 1.56217i −0.825001 0.565131i \(-0.808826\pi\)
−0.0769169 0.997038i \(-0.524508\pi\)
\(224\) 0 0
\(225\) 497.266 861.290i 0.147338 0.255197i
\(226\) 0 0
\(227\) −1966.15 + 3405.47i −0.574881 + 0.995723i 0.421174 + 0.906980i \(0.361618\pi\)
−0.996055 + 0.0887427i \(0.971715\pi\)
\(228\) 0 0
\(229\) −1587.69 −0.458156 −0.229078 0.973408i \(-0.573571\pi\)
−0.229078 + 0.973408i \(0.573571\pi\)
\(230\) 0 0
\(231\) −133.628 231.451i −0.0380610 0.0659236i
\(232\) 0 0
\(233\) 3963.88 1.11452 0.557259 0.830339i \(-0.311853\pi\)
0.557259 + 0.830339i \(0.311853\pi\)
\(234\) 0 0
\(235\) −697.979 −0.193749
\(236\) 0 0
\(237\) −1186.73 2055.48i −0.325260 0.563366i
\(238\) 0 0
\(239\) −2034.66 −0.550676 −0.275338 0.961348i \(-0.588790\pi\)
−0.275338 + 0.961348i \(0.588790\pi\)
\(240\) 0 0
\(241\) −200.880 + 347.934i −0.0536922 + 0.0929975i −0.891622 0.452780i \(-0.850432\pi\)
0.837930 + 0.545778i \(0.183766\pi\)
\(242\) 0 0
\(243\) −121.500 + 210.444i −0.0320750 + 0.0555556i
\(244\) 0 0
\(245\) −637.489 1104.16i −0.166235 0.287928i
\(246\) 0 0
\(247\) 2889.90 1787.20i 0.744452 0.460392i
\(248\) 0 0
\(249\) −257.221 445.520i −0.0654647 0.113388i
\(250\) 0 0
\(251\) −643.211 + 1114.07i −0.161749 + 0.280158i −0.935496 0.353337i \(-0.885047\pi\)
0.773747 + 0.633495i \(0.218380\pi\)
\(252\) 0 0
\(253\) 3275.26 5672.92i 0.813890 1.40970i
\(254\) 0 0
\(255\) 658.772 0.161780
\(256\) 0 0
\(257\) 2994.40 + 5186.45i 0.726792 + 1.25884i 0.958232 + 0.285992i \(0.0923229\pi\)
−0.231440 + 0.972849i \(0.574344\pi\)
\(258\) 0 0
\(259\) −1044.94 −0.250692
\(260\) 0 0
\(261\) −1189.91 −0.282198
\(262\) 0 0
\(263\) −3696.75 6402.96i −0.866735 1.50123i −0.865314 0.501231i \(-0.832881\pi\)
−0.00142176 0.999999i \(-0.500453\pi\)
\(264\) 0 0
\(265\) 1912.81 0.443408
\(266\) 0 0
\(267\) 278.014 481.534i 0.0637235 0.110372i
\(268\) 0 0
\(269\) 523.627 906.949i 0.118684 0.205567i −0.800562 0.599250i \(-0.795466\pi\)
0.919247 + 0.393682i \(0.128799\pi\)
\(270\) 0 0
\(271\) 1257.46 + 2177.98i 0.281863 + 0.488202i 0.971844 0.235626i \(-0.0757142\pi\)
−0.689980 + 0.723828i \(0.742381\pi\)
\(272\) 0 0
\(273\) −353.213 189.916i −0.0783055 0.0421034i
\(274\) 0 0
\(275\) −1725.87 2989.30i −0.378452 0.655497i
\(276\) 0 0
\(277\) 3998.12 6924.95i 0.867234 1.50209i 0.00242261 0.999997i \(-0.499229\pi\)
0.864812 0.502097i \(-0.167438\pi\)
\(278\) 0 0
\(279\) −1239.09 + 2146.16i −0.265886 + 0.460527i
\(280\) 0 0
\(281\) −49.7096 −0.0105531 −0.00527656 0.999986i \(-0.501680\pi\)
−0.00527656 + 0.999986i \(0.501680\pi\)
\(282\) 0 0
\(283\) −1039.15 1799.86i −0.218272 0.378059i 0.736007 0.676973i \(-0.236709\pi\)
−0.954280 + 0.298914i \(0.903375\pi\)
\(284\) 0 0
\(285\) 828.029 0.172099
\(286\) 0 0
\(287\) −482.379 −0.0992124
\(288\) 0 0
\(289\) 793.337 + 1374.10i 0.161477 + 0.279687i
\(290\) 0 0
\(291\) 2183.70 0.439901
\(292\) 0 0
\(293\) 4757.28 8239.85i 0.948544 1.64293i 0.200049 0.979786i \(-0.435890\pi\)
0.748495 0.663141i \(-0.230777\pi\)
\(294\) 0 0
\(295\) −1688.20 + 2924.05i −0.333189 + 0.577101i
\(296\) 0 0
\(297\) 421.694 + 730.395i 0.0823877 + 0.142700i
\(298\) 0 0
\(299\) −297.415 9824.93i −0.0575250 1.90030i
\(300\) 0 0
\(301\) −473.680 820.439i −0.0907059 0.157107i
\(302\) 0 0
\(303\) −488.909 + 846.815i −0.0926966 + 0.160555i
\(304\) 0 0
\(305\) −1724.44 + 2986.81i −0.323741 + 0.560735i
\(306\) 0 0
\(307\) −4400.52 −0.818082 −0.409041 0.912516i \(-0.634137\pi\)
−0.409041 + 0.912516i \(0.634137\pi\)
\(308\) 0 0
\(309\) −2510.51 4348.33i −0.462194 0.800543i
\(310\) 0 0
\(311\) 1884.39 0.343581 0.171791 0.985133i \(-0.445045\pi\)
0.171791 + 0.985133i \(0.445045\pi\)
\(312\) 0 0
\(313\) −8261.53 −1.49191 −0.745957 0.665994i \(-0.768008\pi\)
−0.745957 + 0.665994i \(0.768008\pi\)
\(314\) 0 0
\(315\) −48.8638 84.6346i −0.00874020 0.0151385i
\(316\) 0 0
\(317\) 10463.5 1.85391 0.926956 0.375170i \(-0.122416\pi\)
0.926956 + 0.375170i \(0.122416\pi\)
\(318\) 0 0
\(319\) −2064.93 + 3576.56i −0.362426 + 0.627740i
\(320\) 0 0
\(321\) −113.115 + 195.920i −0.0196681 + 0.0340661i
\(322\) 0 0
\(323\) −2090.48 3620.81i −0.360115 0.623738i
\(324\) 0 0
\(325\) −4561.92 2452.86i −0.778615 0.418647i
\(326\) 0 0
\(327\) −354.209 613.508i −0.0599016 0.103753i
\(328\) 0 0
\(329\) 261.411 452.778i 0.0438057 0.0758737i
\(330\) 0 0
\(331\) −2605.86 + 4513.48i −0.432722 + 0.749496i −0.997107 0.0760157i \(-0.975780\pi\)
0.564385 + 0.825512i \(0.309113\pi\)
\(332\) 0 0
\(333\) 3297.54 0.542655
\(334\) 0 0
\(335\) −227.906 394.745i −0.0371697 0.0643798i
\(336\) 0 0
\(337\) 2781.65 0.449632 0.224816 0.974401i \(-0.427822\pi\)
0.224816 + 0.974401i \(0.427822\pi\)
\(338\) 0 0
\(339\) 6371.59 1.02082
\(340\) 0 0
\(341\) 4300.53 + 7448.73i 0.682952 + 1.18291i
\(342\) 0 0
\(343\) 1933.25 0.304331
\(344\) 0 0
\(345\) 1197.67 2074.42i 0.186899 0.323719i
\(346\) 0 0
\(347\) −5170.88 + 8956.22i −0.799963 + 1.38558i 0.119676 + 0.992813i \(0.461814\pi\)
−0.919639 + 0.392764i \(0.871519\pi\)
\(348\) 0 0
\(349\) −4379.50 7585.52i −0.671717 1.16345i −0.977417 0.211320i \(-0.932224\pi\)
0.305700 0.952128i \(-0.401110\pi\)
\(350\) 0 0
\(351\) 1114.64 + 599.322i 0.169502 + 0.0911380i
\(352\) 0 0
\(353\) −3671.12 6358.56i −0.553523 0.958731i −0.998017 0.0629485i \(-0.979950\pi\)
0.444493 0.895782i \(-0.353384\pi\)
\(354\) 0 0
\(355\) 881.358 1526.56i 0.131768 0.228229i
\(356\) 0 0
\(357\) −246.727 + 427.344i −0.0365776 + 0.0633542i
\(358\) 0 0
\(359\) 2103.58 0.309256 0.154628 0.987973i \(-0.450582\pi\)
0.154628 + 0.987973i \(0.450582\pi\)
\(360\) 0 0
\(361\) 801.923 + 1388.97i 0.116915 + 0.202503i
\(362\) 0 0
\(363\) −1065.83 −0.154109
\(364\) 0 0
\(365\) 239.898 0.0344022
\(366\) 0 0
\(367\) −209.519 362.898i −0.0298006 0.0516162i 0.850740 0.525586i \(-0.176154\pi\)
−0.880541 + 0.473970i \(0.842821\pi\)
\(368\) 0 0
\(369\) 1522.26 0.214757
\(370\) 0 0
\(371\) −716.398 + 1240.84i −0.100252 + 0.173642i
\(372\) 0 0
\(373\) −3458.15 + 5989.70i −0.480044 + 0.831460i −0.999738 0.0228921i \(-0.992713\pi\)
0.519694 + 0.854352i \(0.326046\pi\)
\(374\) 0 0
\(375\) −1344.99 2329.60i −0.185214 0.320799i
\(376\) 0 0
\(377\) 187.509 + 6194.24i 0.0256159 + 0.846206i
\(378\) 0 0
\(379\) 1126.13 + 1950.51i 0.152626 + 0.264356i 0.932192 0.361964i \(-0.117894\pi\)
−0.779566 + 0.626320i \(0.784560\pi\)
\(380\) 0 0
\(381\) 1277.84 2213.28i 0.171826 0.297611i
\(382\) 0 0
\(383\) −2049.99 + 3550.69i −0.273498 + 0.473712i −0.969755 0.244080i \(-0.921514\pi\)
0.696257 + 0.717792i \(0.254847\pi\)
\(384\) 0 0
\(385\) −339.186 −0.0449001
\(386\) 0 0
\(387\) 1494.80 + 2589.08i 0.196344 + 0.340078i
\(388\) 0 0
\(389\) 9346.70 1.21824 0.609121 0.793077i \(-0.291522\pi\)
0.609121 + 0.793077i \(0.291522\pi\)
\(390\) 0 0
\(391\) −12094.7 −1.56434
\(392\) 0 0
\(393\) 3231.25 + 5596.68i 0.414745 + 0.718360i
\(394\) 0 0
\(395\) −3012.26 −0.383705
\(396\) 0 0
\(397\) −3464.14 + 6000.07i −0.437935 + 0.758526i −0.997530 0.0702404i \(-0.977623\pi\)
0.559595 + 0.828766i \(0.310957\pi\)
\(398\) 0 0
\(399\) −310.118 + 537.141i −0.0389106 + 0.0673952i
\(400\) 0 0
\(401\) 3622.23 + 6273.89i 0.451087 + 0.781305i 0.998454 0.0555875i \(-0.0177032\pi\)
−0.547367 + 0.836893i \(0.684370\pi\)
\(402\) 0 0
\(403\) 11367.4 + 6112.03i 1.40508 + 0.755488i
\(404\) 0 0
\(405\) 154.201 + 267.083i 0.0189192 + 0.0327691i
\(406\) 0 0
\(407\) 5722.43 9911.54i 0.696930 1.20712i
\(408\) 0 0
\(409\) −6210.24 + 10756.5i −0.750798 + 1.30042i 0.196638 + 0.980476i \(0.436998\pi\)
−0.947436 + 0.319945i \(0.896336\pi\)
\(410\) 0 0
\(411\) 5296.04 0.635607
\(412\) 0 0
\(413\) −1264.55 2190.27i −0.150665 0.260959i
\(414\) 0 0
\(415\) −652.899 −0.0772279
\(416\) 0 0
\(417\) 1491.01 0.175097
\(418\) 0 0
\(419\) 5807.38 + 10058.7i 0.677110 + 1.17279i 0.975847 + 0.218454i \(0.0701012\pi\)
−0.298737 + 0.954335i \(0.596565\pi\)
\(420\) 0 0
\(421\) −2091.69 −0.242144 −0.121072 0.992644i \(-0.538633\pi\)
−0.121072 + 0.992644i \(0.538633\pi\)
\(422\) 0 0
\(423\) −824.942 + 1428.84i −0.0948228 + 0.164238i
\(424\) 0 0
\(425\) −3186.61 + 5519.37i −0.363702 + 0.629950i
\(426\) 0 0
\(427\) −1291.69 2237.28i −0.146392 0.253558i
\(428\) 0 0
\(429\) 3735.72 2310.28i 0.420424 0.260003i
\(430\) 0 0
\(431\) −4469.65 7741.65i −0.499525 0.865203i 0.500475 0.865751i \(-0.333159\pi\)
−1.00000 0.000548435i \(0.999825\pi\)
\(432\) 0 0
\(433\) −7285.29 + 12618.5i −0.808565 + 1.40048i 0.105293 + 0.994441i \(0.466422\pi\)
−0.913858 + 0.406035i \(0.866911\pi\)
\(434\) 0 0
\(435\) −755.083 + 1307.84i −0.0832263 + 0.144152i
\(436\) 0 0
\(437\) −15202.2 −1.66412
\(438\) 0 0
\(439\) −1053.74 1825.14i −0.114561 0.198426i 0.803043 0.595921i \(-0.203213\pi\)
−0.917604 + 0.397495i \(0.869880\pi\)
\(440\) 0 0
\(441\) −3013.80 −0.325429
\(442\) 0 0
\(443\) 1575.08 0.168926 0.0844632 0.996427i \(-0.473082\pi\)
0.0844632 + 0.996427i \(0.473082\pi\)
\(444\) 0 0
\(445\) −352.839 611.135i −0.0375869 0.0651024i
\(446\) 0 0
\(447\) 1355.55 0.143435
\(448\) 0 0
\(449\) −8510.83 + 14741.2i −0.894545 + 1.54940i −0.0601792 + 0.998188i \(0.519167\pi\)
−0.834366 + 0.551210i \(0.814166\pi\)
\(450\) 0 0
\(451\) 2641.67 4575.50i 0.275812 0.477721i
\(452\) 0 0
\(453\) −2350.63 4071.41i −0.243802 0.422277i
\(454\) 0 0
\(455\) −432.877 + 267.704i −0.0446013 + 0.0275828i
\(456\) 0 0
\(457\) −3121.54 5406.67i −0.319518 0.553421i 0.660870 0.750501i \(-0.270188\pi\)
−0.980387 + 0.197080i \(0.936854\pi\)
\(458\) 0 0
\(459\) 778.603 1348.58i 0.0791767 0.137138i
\(460\) 0 0
\(461\) 1202.67 2083.08i 0.121505 0.210453i −0.798856 0.601522i \(-0.794561\pi\)
0.920361 + 0.391069i \(0.127895\pi\)
\(462\) 0 0
\(463\) −1528.85 −0.153460 −0.0767299 0.997052i \(-0.524448\pi\)
−0.0767299 + 0.997052i \(0.524448\pi\)
\(464\) 0 0
\(465\) 1572.57 + 2723.78i 0.156831 + 0.271639i
\(466\) 0 0
\(467\) 9991.32 0.990028 0.495014 0.868885i \(-0.335163\pi\)
0.495014 + 0.868885i \(0.335163\pi\)
\(468\) 0 0
\(469\) 341.427 0.0336155
\(470\) 0 0
\(471\) 874.980 + 1515.51i 0.0855986 + 0.148261i
\(472\) 0 0
\(473\) 10376.1 1.00866
\(474\) 0 0
\(475\) −4005.34 + 6937.44i −0.386900 + 0.670130i
\(476\) 0 0
\(477\) 2260.75 3915.74i 0.217008 0.375869i
\(478\) 0 0
\(479\) 8790.88 + 15226.2i 0.838550 + 1.45241i 0.891107 + 0.453793i \(0.149930\pi\)
−0.0525568 + 0.998618i \(0.516737\pi\)
\(480\) 0 0
\(481\) −519.634 17165.8i −0.0492584 1.62722i
\(482\) 0 0
\(483\) 897.115 + 1553.85i 0.0845137 + 0.146382i
\(484\) 0 0
\(485\) 1385.72 2400.13i 0.129736 0.224710i
\(486\) 0 0
\(487\) −6741.70 + 11677.0i −0.627301 + 1.08652i 0.360790 + 0.932647i \(0.382507\pi\)
−0.988091 + 0.153870i \(0.950826\pi\)
\(488\) 0 0
\(489\) −7467.66 −0.690592
\(490\) 0 0
\(491\) −3370.36 5837.64i −0.309781 0.536556i 0.668533 0.743682i \(-0.266922\pi\)
−0.978314 + 0.207126i \(0.933589\pi\)
\(492\) 0 0
\(493\) 7625.26 0.696601
\(494\) 0 0
\(495\) 1070.38 0.0971917
\(496\) 0 0
\(497\) 660.184 + 1143.47i 0.0595841 + 0.103203i
\(498\) 0 0
\(499\) −21556.6 −1.93388 −0.966941 0.255002i \(-0.917924\pi\)
−0.966941 + 0.255002i \(0.917924\pi\)
\(500\) 0 0
\(501\) −2291.00 + 3968.13i −0.204300 + 0.353858i
\(502\) 0 0
\(503\) 2270.63 3932.84i 0.201277 0.348622i −0.747663 0.664078i \(-0.768824\pi\)
0.948940 + 0.315456i \(0.102158\pi\)
\(504\) 0 0
\(505\) 620.494 + 1074.73i 0.0546765 + 0.0947025i
\(506\) 0 0
\(507\) 2944.20 5896.86i 0.257903 0.516546i
\(508\) 0 0
\(509\) −970.420 1680.82i −0.0845051 0.146367i 0.820675 0.571395i \(-0.193598\pi\)
−0.905180 + 0.425028i \(0.860264\pi\)
\(510\) 0 0
\(511\) −89.8480 + 155.621i −0.00777816 + 0.0134722i
\(512\) 0 0
\(513\) 978.648 1695.07i 0.0842268 0.145885i
\(514\) 0 0
\(515\) −6372.38 −0.545244
\(516\) 0 0
\(517\) 2863.15 + 4959.12i 0.243561 + 0.421861i
\(518\) 0 0
\(519\) 7938.54 0.671413
\(520\) 0 0
\(521\) −3134.43 −0.263574 −0.131787 0.991278i \(-0.542071\pi\)
−0.131787 + 0.991278i \(0.542071\pi\)
\(522\) 0 0
\(523\) 410.124 + 710.355i 0.0342896 + 0.0593913i 0.882661 0.470010i \(-0.155750\pi\)
−0.848371 + 0.529402i \(0.822416\pi\)
\(524\) 0 0
\(525\) 945.455 0.0785963
\(526\) 0 0
\(527\) 7940.38 13753.1i 0.656334 1.13680i
\(528\) 0 0
\(529\) −15905.0 + 27548.3i −1.30723 + 2.26418i
\(530\) 0 0
\(531\) 3990.57 + 6911.88i 0.326132 + 0.564877i
\(532\) 0 0
\(533\) −239.881 7924.31i −0.0194942 0.643977i
\(534\) 0 0
\(535\) 143.559 + 248.651i 0.0116011 + 0.0200937i
\(536\) 0 0
\(537\) −2920.58 + 5058.60i −0.234697 + 0.406508i
\(538\) 0 0
\(539\) −5230.04 + 9058.69i −0.417947 + 0.723906i
\(540\) 0 0
\(541\) −19160.0 −1.52265 −0.761326 0.648369i \(-0.775451\pi\)
−0.761326 + 0.648369i \(0.775451\pi\)
\(542\) 0 0
\(543\) −4325.43 7491.86i −0.341845 0.592093i
\(544\) 0 0
\(545\) −899.083 −0.0706651
\(546\) 0 0
\(547\) 5356.62 0.418707 0.209353 0.977840i \(-0.432864\pi\)
0.209353 + 0.977840i \(0.432864\pi\)
\(548\) 0 0
\(549\) 4076.23 + 7060.23i 0.316884 + 0.548858i
\(550\) 0 0
\(551\) 9584.40 0.741033
\(552\) 0 0
\(553\) 1128.17 1954.05i 0.0867535 0.150262i
\(554\) 0 0
\(555\) 2092.52 3624.35i 0.160041 0.277199i
\(556\) 0 0
\(557\) −5067.83 8777.74i −0.385513 0.667728i 0.606327 0.795215i \(-0.292642\pi\)
−0.991840 + 0.127487i \(0.959309\pi\)
\(558\) 0 0
\(559\) 13242.2 8189.40i 1.00194 0.619633i
\(560\) 0 0
\(561\) −2702.32 4680.56i −0.203373 0.352252i
\(562\) 0 0
\(563\) 7936.19 13745.9i 0.594086 1.02899i −0.399589 0.916694i \(-0.630847\pi\)
0.993675 0.112293i \(-0.0358195\pi\)
\(564\) 0 0
\(565\) 4043.22 7003.07i 0.301061 0.521453i
\(566\) 0 0
\(567\) −231.009 −0.0171102
\(568\) 0 0
\(569\) −1129.68 1956.66i −0.0832314 0.144161i 0.821405 0.570346i \(-0.193191\pi\)
−0.904636 + 0.426185i \(0.859857\pi\)
\(570\) 0 0
\(571\) 19081.9 1.39851 0.699256 0.714871i \(-0.253515\pi\)
0.699256 + 0.714871i \(0.253515\pi\)
\(572\) 0 0
\(573\) −8210.98 −0.598636
\(574\) 0 0
\(575\) 11586.7 + 20068.7i 0.840345 + 1.45552i
\(576\) 0 0
\(577\) −14477.9 −1.04458 −0.522291 0.852767i \(-0.674923\pi\)
−0.522291 + 0.852767i \(0.674923\pi\)
\(578\) 0 0
\(579\) −2007.02 + 3476.26i −0.144057 + 0.249514i
\(580\) 0 0
\(581\) 244.528 423.535i 0.0174608 0.0302430i
\(582\) 0 0
\(583\) −7846.46 13590.5i −0.557405 0.965454i
\(584\) 0 0
\(585\) 1366.04 844.800i 0.0965449 0.0597063i
\(586\) 0 0
\(587\) −8153.14 14121.6i −0.573281 0.992952i −0.996226 0.0867965i \(-0.972337\pi\)
0.422945 0.906155i \(-0.360996\pi\)
\(588\) 0 0
\(589\) 9980.48 17286.7i 0.698198 1.20931i
\(590\) 0 0
\(591\) −2556.26 + 4427.58i −0.177920 + 0.308166i
\(592\) 0 0
\(593\) 2307.13 0.159768 0.0798840 0.996804i \(-0.474545\pi\)
0.0798840 + 0.996804i \(0.474545\pi\)
\(594\) 0 0
\(595\) 313.132 + 542.360i 0.0215751 + 0.0373691i
\(596\) 0 0
\(597\) 9838.39 0.674470
\(598\) 0 0
\(599\) −9313.70 −0.635305 −0.317652 0.948207i \(-0.602894\pi\)
−0.317652 + 0.948207i \(0.602894\pi\)
\(600\) 0 0
\(601\) 5914.14 + 10243.6i 0.401402 + 0.695249i 0.993895 0.110326i \(-0.0351896\pi\)
−0.592493 + 0.805575i \(0.701856\pi\)
\(602\) 0 0
\(603\) −1077.45 −0.0727648
\(604\) 0 0
\(605\) −676.346 + 1171.47i −0.0454502 + 0.0787220i
\(606\) 0 0
\(607\) −7773.53 + 13464.2i −0.519799 + 0.900318i 0.479936 + 0.877303i \(0.340660\pi\)
−0.999735 + 0.0230147i \(0.992674\pi\)
\(608\) 0 0
\(609\) −565.597 979.642i −0.0376341 0.0651841i
\(610\) 0 0
\(611\) 7568.02 + 4069.19i 0.501096 + 0.269430i
\(612\) 0 0
\(613\) −9238.88 16002.2i −0.608736 1.05436i −0.991449 0.130494i \(-0.958344\pi\)
0.382713 0.923867i \(-0.374990\pi\)
\(614\) 0 0
\(615\) 965.979 1673.12i 0.0633366 0.109702i
\(616\) 0 0
\(617\) 2107.40 3650.13i 0.137505 0.238167i −0.789046 0.614334i \(-0.789425\pi\)
0.926552 + 0.376167i \(0.122758\pi\)
\(618\) 0 0
\(619\) 16719.1 1.08562 0.542809 0.839856i \(-0.317361\pi\)
0.542809 + 0.839856i \(0.317361\pi\)
\(620\) 0 0
\(621\) −2831.05 4903.52i −0.182940 0.316862i
\(622\) 0 0
\(623\) 528.590 0.0339928
\(624\) 0 0
\(625\) 10399.0 0.665534
\(626\) 0 0
\(627\) −3396.62 5883.12i −0.216345 0.374720i
\(628\) 0 0
\(629\) −21131.5 −1.33953
\(630\) 0 0
\(631\) 11348.9 19656.9i 0.715996 1.24014i −0.246578 0.969123i \(-0.579306\pi\)
0.962574 0.271019i \(-0.0873606\pi\)
\(632\) 0 0
\(633\) 4648.27 8051.04i 0.291868 0.505530i
\(634\) 0 0
\(635\) −1621.76 2808.97i −0.101350 0.175544i
\(636\) 0 0
\(637\) 474.921 + 15688.7i 0.0295401 + 0.975840i
\(638\) 0 0
\(639\) −2083.36 3608.48i −0.128977 0.223395i
\(640\) 0 0
\(641\) 5530.69 9579.44i 0.340794 0.590273i −0.643786 0.765205i \(-0.722637\pi\)
0.984580 + 0.174932i \(0.0559707\pi\)
\(642\) 0 0
\(643\) 2692.21 4663.04i 0.165117 0.285991i −0.771580 0.636133i \(-0.780533\pi\)
0.936697 + 0.350141i \(0.113866\pi\)
\(644\) 0 0
\(645\) 3794.24 0.231625
\(646\) 0 0
\(647\) 5658.67 + 9801.10i 0.343841 + 0.595550i 0.985142 0.171739i \(-0.0549386\pi\)
−0.641302 + 0.767289i \(0.721605\pi\)
\(648\) 0 0
\(649\) 27700.4 1.67540
\(650\) 0 0
\(651\) −2355.88 −0.141835
\(652\) 0 0
\(653\) 3858.15 + 6682.51i 0.231212 + 0.400470i 0.958165 0.286217i \(-0.0923977\pi\)
−0.726953 + 0.686687i \(0.759064\pi\)
\(654\) 0 0
\(655\) 8201.82 0.489270
\(656\) 0 0
\(657\) 283.535 491.098i 0.0168368 0.0291622i
\(658\) 0 0
\(659\) −7112.70 + 12319.6i −0.420442 + 0.728228i −0.995983 0.0895458i \(-0.971458\pi\)
0.575540 + 0.817773i \(0.304792\pi\)
\(660\) 0 0
\(661\) −3887.18 6732.80i −0.228735 0.396181i 0.728698 0.684835i \(-0.240126\pi\)
−0.957433 + 0.288654i \(0.906792\pi\)
\(662\) 0 0
\(663\) −7142.91 3840.61i −0.418413 0.224973i
\(664\) 0 0
\(665\) 393.584 + 681.708i 0.0229512 + 0.0397526i
\(666\) 0 0
\(667\) 13862.9 24011.3i 0.804760 1.39389i
\(668\) 0 0
\(669\) −9010.43 + 15606.5i −0.520723 + 0.901918i
\(670\) 0 0
\(671\) 28294.9 1.62789
\(672\) 0 0
\(673\) −6311.47 10931.8i −0.361500 0.626136i 0.626708 0.779254i \(-0.284402\pi\)
−0.988208 + 0.153118i \(0.951069\pi\)
\(674\) 0 0
\(675\) −2983.60 −0.170131
\(676\) 0 0
\(677\) 10632.0 0.603574 0.301787 0.953375i \(-0.402417\pi\)
0.301787 + 0.953375i \(0.402417\pi\)
\(678\) 0 0
\(679\) 1037.97 + 1797.82i 0.0586653 + 0.101611i
\(680\) 0 0
\(681\) 11796.9 0.663815
\(682\) 0 0
\(683\) −9960.33 + 17251.8i −0.558011 + 0.966504i 0.439651 + 0.898169i \(0.355102\pi\)
−0.997662 + 0.0683351i \(0.978231\pi\)
\(684\) 0 0
\(685\) 3360.71 5820.92i 0.187454 0.324680i
\(686\) 0 0
\(687\) 2381.54 + 4124.95i 0.132258 + 0.229078i
\(688\) 0 0
\(689\) −20740.2 11151.6i −1.14679 0.616607i
\(690\) 0 0
\(691\) −9881.94 17116.0i −0.544033 0.942292i −0.998667 0.0516141i \(-0.983563\pi\)
0.454634 0.890678i \(-0.349770\pi\)
\(692\) 0 0
\(693\) −400.885 + 694.352i −0.0219745 + 0.0380610i
\(694\) 0 0
\(695\) 946.154 1638.79i 0.0516398 0.0894427i
\(696\) 0 0
\(697\) −9755.00 −0.530125
\(698\) 0 0
\(699\) −5945.82 10298.5i −0.321733 0.557259i
\(700\) 0 0
\(701\) 13316.9 0.717505 0.358752 0.933433i \(-0.383202\pi\)
0.358752 + 0.933433i \(0.383202\pi\)
\(702\) 0 0
\(703\) −26560.7 −1.42497
\(704\) 0 0
\(705\) 1046.97 + 1813.40i 0.0559306 + 0.0968747i
\(706\) 0 0
\(707\) −929.566 −0.0494483
\(708\) 0 0
\(709\) 2858.93 4951.81i 0.151438 0.262298i −0.780318 0.625382i \(-0.784943\pi\)
0.931756 + 0.363084i \(0.118276\pi\)
\(710\) 0 0
\(711\) −3560.20 + 6166.44i −0.187789 + 0.325260i
\(712\) 0 0
\(713\) −28871.7 50007.2i −1.51648 2.62663i
\(714\) 0 0
\(715\) −168.673 5571.99i −0.00882238 0.291442i
\(716\) 0 0
\(717\) 3052.00 + 5286.21i 0.158966 + 0.275338i
\(718\) 0 0
\(719\) 1638.00 2837.09i 0.0849610 0.147157i −0.820414 0.571771i \(-0.806257\pi\)
0.905375 + 0.424614i \(0.139590\pi\)
\(720\) 0 0
\(721\) 2386.63 4133.76i 0.123277 0.213522i
\(722\) 0 0
\(723\) 1205.28 0.0619984
\(724\) 0 0
\(725\) −7304.97 12652.6i −0.374206 0.648144i
\(726\) 0 0
\(727\) −1495.17 −0.0762762 −0.0381381 0.999272i \(-0.512143\pi\)
−0.0381381 + 0.999272i \(0.512143\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) −9579.09 16591.5i −0.484672 0.839477i
\(732\) 0 0
\(733\) 35552.7 1.79150 0.895750 0.444558i \(-0.146639\pi\)
0.895750 + 0.444558i \(0.146639\pi\)
\(734\) 0 0
\(735\) −1912.47 + 3312.49i −0.0959761 + 0.166235i
\(736\) 0 0
\(737\) −1869.77 + 3238.53i −0.0934516 + 0.161863i
\(738\) 0 0
\(739\) 11145.6 + 19304.7i 0.554799 + 0.960939i 0.997919 + 0.0644772i \(0.0205380\pi\)
−0.443121 + 0.896462i \(0.646129\pi\)
\(740\) 0 0
\(741\) −8978.12 4827.37i −0.445101 0.239322i
\(742\) 0 0
\(743\) −3814.99 6607.76i −0.188369 0.326265i 0.756337 0.654182i \(-0.226987\pi\)
−0.944707 + 0.327916i \(0.893654\pi\)
\(744\) 0 0
\(745\) 860.194 1489.90i 0.0423021 0.0732694i
\(746\) 0 0
\(747\) −771.663 + 1336.56i −0.0377961 + 0.0654647i
\(748\) 0 0
\(749\) −215.066 −0.0104918
\(750\) 0 0
\(751\) 17810.5 + 30848.7i 0.865398 + 1.49891i 0.866651 + 0.498914i \(0.166268\pi\)
−0.00125352 + 0.999999i \(0.500399\pi\)
\(752\) 0 0
\(753\) 3859.27 0.186772
\(754\) 0 0
\(755\) −5966.56 −0.287610
\(756\) 0 0
\(757\) 10149.2 + 17578.9i 0.487290 + 0.844011i 0.999893 0.0146145i \(-0.00465210\pi\)
−0.512603 + 0.858626i \(0.671319\pi\)
\(758\) 0 0
\(759\) −19651.6 −0.939799
\(760\) 0 0
\(761\) −8097.40 + 14025.1i −0.385717 + 0.668081i −0.991868 0.127268i \(-0.959379\pi\)
0.606152 + 0.795349i \(0.292712\pi\)
\(762\) 0 0
\(763\) 336.730 583.234i 0.0159770 0.0276730i
\(764\) 0 0
\(765\) −988.158 1711.54i −0.0467018 0.0808900i
\(766\) 0 0
\(767\) 35351.9 21862.7i 1.66425 1.02922i
\(768\) 0 0
\(769\) 16696.9 + 28920.0i 0.782974 + 1.35615i 0.930202 + 0.367049i \(0.119632\pi\)
−0.147228 + 0.989103i \(0.547035\pi\)
\(770\) 0 0
\(771\) 8983.20 15559.4i 0.419614 0.726792i
\(772\) 0 0
\(773\) −13267.6 + 22980.1i −0.617337 + 1.06926i 0.372633 + 0.927979i \(0.378455\pi\)
−0.989970 + 0.141280i \(0.954878\pi\)
\(774\) 0 0
\(775\) −30427.4 −1.41030
\(776\) 0 0
\(777\) 1567.41 + 2714.83i 0.0723687 + 0.125346i
\(778\) 0 0
\(779\) −12261.3 −0.563938
\(780\) 0 0
\(781\) −14461.5 −0.662579
\(782\) 0 0
\(783\) 1784.87 + 3091.48i 0.0814635 + 0.141099i
\(784\) 0 0
\(785\) 2220.95 0.100980
\(786\) 0 0
\(787\) 8821.73 15279.7i 0.399569 0.692073i −0.594104 0.804388i \(-0.702493\pi\)
0.993673 + 0.112315i \(0.0358265\pi\)
\(788\) 0 0
\(789\) −11090.3 + 19208.9i −0.500410 + 0.866735i
\(790\) 0 0
\(791\) 3028.59 + 5245.67i 0.136137 + 0.235796i
\(792\) 0 0
\(793\) 36110.6 22331.9i 1.61706 1.00004i
\(794\) 0 0
\(795\) −2869.22 4969.63i −0.128001 0.221704i
\(796\) 0 0
\(797\) −12555.6 + 21747.0i −0.558022 + 0.966523i 0.439639 + 0.898175i \(0.355106\pi\)
−0.997661 + 0.0683486i \(0.978227\pi\)
\(798\) 0 0
\(799\) 5286.44 9156.38i 0.234069 0.405419i
\(800\) 0 0
\(801\) −1668.08 −0.0735816
\(802\) 0 0
\(803\) −984.074 1704.47i −0.0432469 0.0749057i
\(804\) 0 0
\(805\) 2277.13 0.0996998
\(806\) 0 0
\(807\) −3141.76 −0.137045
\(808\) 0 0
\(809\) 12842.0 + 22242.9i 0.558095 + 0.966649i 0.997656 + 0.0684361i \(0.0218009\pi\)
−0.439560 + 0.898213i \(0.644866\pi\)
\(810\) 0 0
\(811\) −13001.9 −0.562959 −0.281480 0.959567i \(-0.590825\pi\)
−0.281480 + 0.959567i \(0.590825\pi\)
\(812\) 0 0
\(813\) 3772.37 6533.93i 0.162734 0.281863i
\(814\) 0 0
\(815\) −4738.76 + 8207.77i −0.203671 + 0.352768i
\(816\) 0 0
\(817\) −12040.2 20854.3i −0.515586 0.893022i
\(818\) 0 0
\(819\) 36.4029 + 1202.55i 0.00155314 + 0.0513070i
\(820\) 0 0
\(821\) −15274.8 26456.7i −0.649322 1.12466i −0.983285 0.182073i \(-0.941719\pi\)
0.333963 0.942586i \(-0.391614\pi\)
\(822\) 0 0
\(823\) 10099.8 17493.4i 0.427773 0.740924i −0.568902 0.822405i \(-0.692632\pi\)
0.996675 + 0.0814813i \(0.0259651\pi\)
\(824\) 0 0
\(825\) −5177.62 + 8967.91i −0.218499 + 0.378452i
\(826\) 0 0
\(827\) −43905.1 −1.84611 −0.923054 0.384670i \(-0.874315\pi\)
−0.923054 + 0.384670i \(0.874315\pi\)
\(828\) 0 0
\(829\) 16815.3 + 29125.0i 0.704488 + 1.22021i 0.966876 + 0.255247i \(0.0821568\pi\)
−0.262388 + 0.964963i \(0.584510\pi\)
\(830\) 0 0
\(831\) −23988.7 −1.00140
\(832\) 0 0
\(833\) 19313.2 0.803316
\(834\) 0 0
\(835\) 2907.60 + 5036.12i 0.120505 + 0.208721i
\(836\) 0 0
\(837\) 7434.51 0.307018
\(838\) 0 0
\(839\) −4030.10 + 6980.33i −0.165834 + 0.287232i −0.936951 0.349461i \(-0.886365\pi\)
0.771117 + 0.636693i \(0.219698\pi\)
\(840\) 0 0
\(841\) 3454.45 5983.28i 0.141640 0.245327i
\(842\) 0 0
\(843\) 74.5644 + 129.149i 0.00304642 + 0.00527656i
\(844\) 0 0
\(845\) −4612.98 6977.97i −0.187801 0.284082i
\(846\) 0 0
\(847\) −506.619 877.489i −0.0205521 0.0355973i
\(848\) 0 0
\(849\) −3117.45 + 5399.59i −0.126020 + 0.218272i
\(850\) 0 0
\(851\) −38417.6 + 66541.3i −1.54752 + 2.68038i
\(852\) 0 0
\(853\) 10203.0 0.409547 0.204774 0.978809i \(-0.434354\pi\)
0.204774 + 0.978809i \(0.434354\pi\)
\(854\) 0 0
\(855\) −1242.04 2151.28i −0.0496807 0.0860494i
\(856\) 0 0
\(857\) 16302.0 0.649786 0.324893 0.945751i \(-0.394672\pi\)
0.324893 + 0.945751i \(0.394672\pi\)
\(858\) 0 0
\(859\) −15836.3 −0.629019 −0.314509 0.949254i \(-0.601840\pi\)
−0.314509 + 0.949254i \(0.601840\pi\)
\(860\) 0 0
\(861\) 723.569 + 1253.26i 0.0286401 + 0.0496062i
\(862\) 0 0
\(863\) 4868.59 0.192038 0.0960190 0.995380i \(-0.469389\pi\)
0.0960190 + 0.995380i \(0.469389\pi\)
\(864\) 0 0
\(865\) 5037.57 8725.32i 0.198014 0.342971i
\(866\) 0 0
\(867\) 2380.01 4122.30i 0.0932288 0.161477i
\(868\) 0 0
\(869\) 12356.5 + 21402.0i 0.482353 + 0.835460i
\(870\) 0 0
\(871\) 169.787 + 5608.81i 0.00660508 + 0.218194i
\(872\) 0 0
\(873\) −3275.56 5673.43i −0.126988 0.219950i
\(874\) 0 0
\(875\) 1278.62 2214.64i 0.0494004 0.0855640i
\(876\) 0 0
\(877\) 8526.79 14768.8i 0.328312 0.568652i −0.653865 0.756611i \(-0.726854\pi\)
0.982177 + 0.187959i \(0.0601871\pi\)
\(878\) 0 0
\(879\) −28543.7 −1.09528
\(880\) 0 0
\(881\) −12258.6 21232.4i −0.468787 0.811963i 0.530576 0.847637i \(-0.321976\pi\)
−0.999363 + 0.0356741i \(0.988642\pi\)
\(882\) 0 0
\(883\) 28530.6 1.08735 0.543676 0.839295i \(-0.317032\pi\)
0.543676 + 0.839295i \(0.317032\pi\)
\(884\) 0 0
\(885\) 10129.2 0.384734
\(886\) 0 0
\(887\) 11508.2 + 19932.8i 0.435634 + 0.754540i 0.997347 0.0727922i \(-0.0231910\pi\)
−0.561713 + 0.827332i \(0.689858\pi\)
\(888\) 0 0
\(889\) 2429.57 0.0916592
\(890\) 0 0
\(891\) 1265.08 2191.18i 0.0475666 0.0823877i
\(892\) 0 0
\(893\) 6644.67 11508.9i 0.248998 0.431278i
\(894\) 0 0
\(895\) 3706.63 + 6420.08i 0.138435 + 0.239776i
\(896\) 0 0
\(897\) −25079.8 + 15510.1i −0.933545 + 0.577332i
\(898\) 0 0
\(899\) 18202.5 + 31527.6i 0.675291 + 1.16964i
\(900\) 0 0
\(901\) −14487.5 + 25093.1i −0.535681 + 0.927826i
\(902\) 0 0
\(903\) −1421.04 + 2461.32i −0.0523691 + 0.0907059i
\(904\) 0 0
\(905\) −10979.2 −0.403270
\(906\) 0 0
\(907\) 2268.15 + 3928.55i 0.0830350 + 0.143821i 0.904552 0.426363i \(-0.140205\pi\)
−0.821517 + 0.570184i \(0.806872\pi\)
\(908\) 0 0
\(909\) 2933.45 0.107037
\(910\) 0 0
\(911\) 15771.7 0.573590 0.286795 0.957992i \(-0.407410\pi\)
0.286795 + 0.957992i \(0.407410\pi\)
\(912\) 0 0
\(913\) 2678.23 + 4638.83i 0.0970827 + 0.168152i
\(914\) 0 0
\(915\) 10346.6 0.373823
\(916\) 0 0
\(917\) −3071.80 + 5320.51i −0.110621 + 0.191602i
\(918\) 0 0
\(919\) −3513.63 + 6085.78i −0.126119 + 0.218445i −0.922170 0.386785i \(-0.873586\pi\)
0.796051 + 0.605230i \(0.206919\pi\)
\(920\) 0 0
\(921\) 6600.78 + 11432.9i 0.236160 + 0.409041i
\(922\) 0 0
\(923\) −18456.1 + 11413.8i −0.658170 + 0.407032i
\(924\) 0 0
\(925\) 20243.9 + 35063.4i 0.719583 + 1.24635i
\(926\) 0 0
\(927\) −7531.53 + 13045.0i −0.266848 + 0.462194i
\(928\) 0 0
\(929\) 10563.5 18296.5i 0.373064 0.646167i −0.616971 0.786986i \(-0.711640\pi\)
0.990035 + 0.140819i \(0.0449737\pi\)
\(930\) 0 0
\(931\) 24275.3 0.854554
\(932\) 0 0
\(933\) −2826.58 4895.78i −0.0991834 0.171791i
\(934\) 0 0
\(935\) −6859.25 −0.239916
\(936\) 0 0
\(937\) −3740.82 −0.130424 −0.0652120 0.997871i \(-0.520772\pi\)
−0.0652120 + 0.997871i \(0.520772\pi\)
\(938\) 0 0
\(939\) 12392.3 + 21464.1i 0.430679 + 0.745957i
\(940\) 0 0
\(941\) 19247.6 0.666794 0.333397 0.942786i \(-0.391805\pi\)
0.333397 + 0.942786i \(0.391805\pi\)
\(942\) 0 0
\(943\) −17734.9 + 30717.7i −0.612436 + 1.06077i
\(944\) 0 0
\(945\) −146.591 + 253.904i −0.00504616 + 0.00874020i
\(946\) 0 0
\(947\) 2308.36 + 3998.20i 0.0792098 + 0.137195i 0.902909 0.429831i \(-0.141427\pi\)
−0.823699 + 0.567027i \(0.808094\pi\)
\(948\) 0 0
\(949\) −2601.15 1398.59i −0.0889748 0.0478401i
\(950\) 0 0
\(951\) −15695.3 27185.0i −0.535178 0.926956i
\(952\) 0 0
\(953\) −18465.3 + 31982.8i −0.627648 + 1.08712i 0.360374 + 0.932808i \(0.382649\pi\)
−0.988022 + 0.154311i \(0.950684\pi\)
\(954\) 0 0
\(955\) −5210.45 + 9024.76i −0.176551 + 0.305795i
\(956\) 0 0
\(957\) 12389.6 0.418493
\(958\) 0 0
\(959\) 2517.35 + 4360.18i 0.0847648 + 0.146817i
\(960\) 0 0
\(961\) 46027.9 1.54503
\(962\) 0 0
\(963\) 678.688 0.0227107
\(964\) 0 0
\(965\) 2547.19 + 4411.87i 0.0849711 + 0.147174i
\(966\) 0 0
\(967\) −46234.2 −1.53753 −0.768764 0.639532i \(-0.779128\pi\)
−0.768764 + 0.639532i \(0.779128\pi\)
\(968\) 0 0
\(969\) −6271.43 + 10862.4i −0.207913 + 0.360115i
\(970\) 0 0
\(971\) 4182.77 7244.77i 0.138240 0.239439i −0.788590 0.614919i \(-0.789189\pi\)
0.926831 + 0.375480i \(0.122522\pi\)
\(972\) 0 0
\(973\) 708.719 + 1227.54i 0.0233510 + 0.0404451i
\(974\) 0 0
\(975\) 470.162 + 15531.5i 0.0154433 + 0.510160i
\(976\) 0 0
\(977\) −17324.2 30006.5i −0.567300 0.982592i −0.996832 0.0795401i \(-0.974655\pi\)
0.429532 0.903052i \(-0.358679\pi\)
\(978\) 0 0
\(979\) −2894.73 + 5013.82i −0.0945006 + 0.163680i
\(980\) 0 0
\(981\) −1062.63 + 1840.53i −0.0345842 + 0.0599016i
\(982\) 0 0
\(983\) 18374.0 0.596174 0.298087 0.954539i \(-0.403651\pi\)
0.298087 + 0.954539i \(0.403651\pi\)
\(984\) 0 0
\(985\) 3244.26 + 5619.22i 0.104945 + 0.181770i
\(986\) 0 0
\(987\) −1568.47 −0.0505825
\(988\) 0 0
\(989\) −69660.2 −2.23970
\(990\) 0 0
\(991\) −7812.32 13531.3i −0.250420 0.433741i 0.713221 0.700939i \(-0.247235\pi\)
−0.963642 + 0.267198i \(0.913902\pi\)
\(992\) 0 0
\(993\) 15635.1 0.499664
\(994\) 0 0
\(995\) 6243.16 10813.5i 0.198916 0.344533i
\(996\) 0 0
\(997\) −23308.2 + 40370.9i −0.740399 + 1.28241i 0.211915 + 0.977288i \(0.432030\pi\)
−0.952314 + 0.305120i \(0.901303\pi\)
\(998\) 0 0
\(999\) −4946.31 8567.26i −0.156651 0.271327i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 312.4.q.e.289.3 yes 12
4.3 odd 2 624.4.q.n.289.3 12
13.9 even 3 inner 312.4.q.e.217.3 12
52.35 odd 6 624.4.q.n.529.3 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.4.q.e.217.3 12 13.9 even 3 inner
312.4.q.e.289.3 yes 12 1.1 even 1 trivial
624.4.q.n.289.3 12 4.3 odd 2
624.4.q.n.529.3 12 52.35 odd 6