L(s) = 1 | + (−1.5 + 2.59i)3-s − 3.80·5-s + (1.42 + 2.46i)7-s + (−4.5 − 7.79i)9-s + (15.6 − 27.0i)11-s + (41.2 − 22.1i)13-s + (5.71 − 9.89i)15-s + (28.8 + 49.9i)17-s + (36.2 + 62.7i)19-s − 8.55·21-s + (−104. + 181. i)23-s − 110.·25-s + 27·27-s + (66.1 − 114. i)29-s + 275.·31-s + ⋯ |
L(s) = 1 | + (−0.288 + 0.499i)3-s − 0.340·5-s + (0.0769 + 0.133i)7-s + (−0.166 − 0.288i)9-s + (0.428 − 0.741i)11-s + (0.880 − 0.473i)13-s + (0.0983 − 0.170i)15-s + (0.411 + 0.712i)17-s + (0.437 + 0.758i)19-s − 0.0889·21-s + (−0.950 + 1.64i)23-s − 0.884·25-s + 0.192·27-s + (0.423 − 0.733i)29-s + 1.59·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.294 - 0.955i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.294 - 0.955i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.478777681\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.478777681\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (1.5 - 2.59i)T \) |
| 13 | \( 1 + (-41.2 + 22.1i)T \) |
good | 5 | \( 1 + 3.80T + 125T^{2} \) |
| 7 | \( 1 + (-1.42 - 2.46i)T + (-171.5 + 297. i)T^{2} \) |
| 11 | \( 1 + (-15.6 + 27.0i)T + (-665.5 - 1.15e3i)T^{2} \) |
| 17 | \( 1 + (-28.8 - 49.9i)T + (-2.45e3 + 4.25e3i)T^{2} \) |
| 19 | \( 1 + (-36.2 - 62.7i)T + (-3.42e3 + 5.94e3i)T^{2} \) |
| 23 | \( 1 + (104. - 181. i)T + (-6.08e3 - 1.05e4i)T^{2} \) |
| 29 | \( 1 + (-66.1 + 114. i)T + (-1.21e4 - 2.11e4i)T^{2} \) |
| 31 | \( 1 - 275.T + 2.97e4T^{2} \) |
| 37 | \( 1 + (183. - 317. i)T + (-2.53e4 - 4.38e4i)T^{2} \) |
| 41 | \( 1 + (84.5 - 146. i)T + (-3.44e4 - 5.96e4i)T^{2} \) |
| 43 | \( 1 + (-166. - 287. i)T + (-3.97e4 + 6.88e4i)T^{2} \) |
| 47 | \( 1 - 183.T + 1.03e5T^{2} \) |
| 53 | \( 1 + 502.T + 1.48e5T^{2} \) |
| 59 | \( 1 + (-443. - 767. i)T + (-1.02e5 + 1.77e5i)T^{2} \) |
| 61 | \( 1 + (-452. - 784. i)T + (-1.13e5 + 1.96e5i)T^{2} \) |
| 67 | \( 1 + (-59.8 + 103. i)T + (-1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 + (231. + 400. i)T + (-1.78e5 + 3.09e5i)T^{2} \) |
| 73 | \( 1 + 63.0T + 3.89e5T^{2} \) |
| 79 | \( 1 - 791.T + 4.93e5T^{2} \) |
| 83 | \( 1 - 171.T + 5.71e5T^{2} \) |
| 89 | \( 1 + (-92.6 + 160. i)T + (-3.52e5 - 6.10e5i)T^{2} \) |
| 97 | \( 1 + (363. + 630. i)T + (-4.56e5 + 7.90e5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.72464458210058026679266943506, −10.41910633596991672251072270173, −9.758685812930291766131019274612, −8.469137601699058459444877072268, −7.85954853348905109847067333738, −6.23032294315698070947823529150, −5.62958326491212658086107412984, −4.11976472133224704896762558333, −3.29114213576716561768856084640, −1.21631317146469301885114158905,
0.66514400523474104190877882490, 2.20784380253392733155663774017, 3.85866105142486613184751582188, 4.97155576361761728720109547542, 6.32547823999604739544470122393, 7.08971770083200936151217959430, 8.113091982201021798923053889441, 9.104380580788956654970956433136, 10.21851867105843997897892351466, 11.20119813786264668315135801119